IEICE TRANS. INE. & SYST., VOL.E93-D, NO.9 SEPTEMBER 2010

2639

[LETTER

Indexing of Tagged Moving Objects over Localized Trajectory with

Time Intervals in RFID Systems™**

Jongwan KIM'®, Member, Dukshin OH', and Keecheon KIM'™*, Nonmembers

SUMMARY Since a radio frequency identification (RFID) transponder
(tag) generates both location and time information when it enters and leaves
a reader, the trajectory of a moving, tagged object can be traced. Due to
the time intervals between entries to successive readers, during which tags
are not tracked, accurate tracing of complete trajectories can be difficult. To
overcome this problem, we propose a tag trajectory indexing scheme called
TR-tree (R-tree-based tag trajectory index) that can trace tags by combining
the local trajectories at each reader. In experiments, this scheme showed
superior performance compared with other indices.

key words: R-tree, trajectory, spatiotemporal index, RFID, tag index

1. Introduction

The radio frequency identification (RFID) system consists
of RFID readers, radio frequency (RF) tags, and computer
systems. A tag uniquely identifies an object [1]. RFID tags
are used for tracking inventory, container management at
harbors, supply chain management, efc. One reason for at-
taching tags to objects is tracing [1], [2]. To trace and man-
age the movement of tagged objects requires a trajectory in-
dex that specifies both previous and current movements.

A tag contains spatiotemporal information that shows
the location and time of entry at each reader. This informa-
tion can be managed in a manner similar to that in existing
spatiotemporal data-management methods for moving ob-
jects. However, despite the shared characteristics of RFID
tags and other spatiotemporal data, there has not been suffi-
cient research on RFID tag trajectories.

Tags differ from existing moving objects in two ways.
First, a moving object normally reports its location to a
server regularly using a location identification device such
as a global positioning system (GPS)[7]. An RFID tag,
however, does not possess a device for identifying its loca-
tion. Second, a moving object has information about its lo-
cation continuously, whereas a tag’s location is known only
when it is read by a reader. Despite these differences, it is
possible to manage a tag’s trajectories using only informa-
tion from readers.

Manuscript received December 25, 2009.

"The authors are with the Dept. of Management Information
Systems, Sahmyook University, Seoul, Korea.

"'The author is with the Dept. of Computer Science & Engi-
neering, Konkuk University, Seoul, Korea.

*Corresponding author.

“*This work was supported by the National Research Foun-
dation of Korea Grant funded by the Korean Government [NRF-
2009-351-D00075].

a) E-mail: wany @korea.ac.kr

DOI: 10.1587/transinf. E93.D.2639

gation)
IterOE
arcd
reader-3
P Al

reader-2

reader-1

Fig.1 Movement and interrogation of tags (7,4, 7p).

Due to the characteristics of RFID systems, a tag is
localized by the reader’s location, and the time when the
tag enters the reader and leaves the reader can be checked.
Since a tag’s time trajectories are tracked separately by
each reader, there are intervals between the time trajecto-
ries tracked by readers. This interruption affects the gener-
ation of tags’ trajectories, making it difficult to trace their
past trajectories. To overcome this problem, in this paper
we construct complete trajectories for tags by connecting
the local trajectories created by individual readers. We pro-
pose TR-tree, a tag index based on R-tree [3] that can trace
tags’ movements by composing minimum bounding boxes
(MBBs) along the dimensions of location and time in the
index. We implement TR-tree with a tag-link (TL) index
that is a hash-based index for costless dynamic updates [4].

We assume that tags are passive tags that receive sig-
nals from readers and transmit data via backscattering [1].
As shown in Fig. 1, an enter event occurs when a tag, 7, or
Ty, enters a reader’s area, and a leave event occurs when it
leaves that area. By using these two events, we can calculate
how long the tag has stayed in the reader’s area.

Our Contributions. We have developed a tag trajec-
tory index without time interruptions to trace tags in RFID
systems. Our contributions are as follows. First, we use
R-tree-based trajectory index to manage RFID tags. Sec-
ond, we create a spatiotemporal trajectory to trace the tags.
Third, we improve the query performance by combining in-
terrupted and localized tag trajectories into a complete tra-
jectory. Therefore, TR-tree is a novel tag trajectory index
that manages tags’ movements and updates in RFID sys-
tems.

2. Previous Work

We previously reviewed the Time-Parameterized Interval
R-tree (TPIR-tree) [2], which is one of the few indexing
schemes that are capable of managing tag trajectories in
RFID systems. The time-parameterized interval, or tp-
interval, is dependent on the time in a reader. In TPIR-tree,

Copyright © 2010 The Institute of Electronics, Information and Communication Engineers



2640

if a tag enters and does not leave a reader, the tag’s time tra-
jectory is presented as a point and no tp-interval is created.
We call this a ‘point tag’ 7,. If there is no tp-interval, the
tag can’t be searched in the index.

TPIR-tree dictates that the tp-interval has only an en-
try time and not an exit time in the tag trajectory. The tp-
interval has the form (t;4, X, ¥, tenser, now). The now element,
which is the present time, is called now-interval and is de-
noted ‘nowl’ [2]. In TPIR-tree, if a tag is a point tag, the
time of the tag must be extended to now when processing
queries. The augmentation of the time-dimension results in
the expansion of MBB [2]. From what has been outlined
above, we can search a tag that possesses only an entry time
in TPIR-tree.

TPIR-tree has three shortcomings. First, tag trajecto-
ries exist within each reader but not for intervals during
which the tag is moving from one reader to another. Sec-
ond, since MBB should be augmented for query process-
ing, MBBs overlap. This degrades search performance and
increases CPU time. Third, tag trajectories exist indepen-
dently within each reader, so they cannot solve the problem
of time intervals between trajectories. Hence, we focused
on the construction of a tag index that combines localized
trajectories.

3. RFID Tag Trajectory

Characteristics of Tag Trajectories. The trajectory of a
tag is constructed by linking the local trajectories at various
readers. The time trajectory appears along with the time
axis in each reader. To construct a tag trajectory in practice,
we define the trajectory as follows. Square brackets ([z,, #;])
are used to denote closed time intervals.

Definition 1: (The time duration that a tag stays in a
reader:) Let t be the time when a tag enters the interroga-
tion area of a reader r;, and e and [ be the events correspond-
ing to the tag’s arrival and departure from the interrogation
area. The duration, 74, in which the tag stays in the reader is
as follows:

ritg =A{lte,t]] 1 t. <t <1} . (D

Definition 2: (Tag trajectory in a reader.) Let r.x and r.y
be the x- and y-coordinates of the reader, respectively. The
tag trajectory T, in a reader is expressed as follows:

Tr:{(-xny’td)r|x:r~x7y:r'y’td = [teatl]} N (2)

The ¢, is expressed as ¢ in the paper. Like a moving
object’s trajectory, a tag trajectory is expressed as a line
from (x,y,Hr; to (x,y,1)r;, where r; is the reader that the
tag passes after reader r;. However, there are intervals dur-
ing which the tag is out of range of any reader. To improve
the efficiency of tag tracing, trajectories created over time
by different readers can be connected to form a continuous
line. The interruptions in the time trajectory are defined as
tagless time intervals in Definition 3.

Definition 3: (Tagless time interval (TTI).) Let r; and r; be

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.9 SEPTEMBER 2010

I %)

o t er
X, (ta, rz,/z, enter) (1, 13, ts, enter)

\

(Ta v

3
T
'
'
'
'
'
'
'
'
'
'

\
IR Y

Fig.2  3-dimensional expression of tag trajectory and point tag.

two readers passed by tag 7. The periods of time that 7 stays
in the readers are [, #;]r; and [¢,, t;]r;, respectively. There is
a time interruption between readers r; and r;. This interval
is defined as follows:

Tjle — 1ty (i< ])
0 ,otherwise .

TTI = { 3)

In Fig.2, the tag trajectory is presented by three-
dimensional form of location and time based on the readers.
If a tag that has entered reader 73 does not leave it, the tag
trajectory is expressed as point 7, in the index. This point
does not have a trajectory, so it is not detected by any query.
The query g pp, Which overlaps with the time [#,, #4] of tag
7,4, Teturns tag 7, at query time .

Trajectory Representation of Tags. A tag’s moving
path is connected to construct the full trajectory. The time
trajectory in a reader is based on the enter and leave events
[z.,#], where t, < t;. If the interrogation areas of two read-
ers do not overlap, the relationship of the time trajectory
between reader r; and r; is given by

(te, 1)r; < (Lo, 1)rj i=12,...,n, i<]). “)

If the interrogation area of two readers does overlap,
the created time trajectories also overlap. A tag T establishes
the following relationship between reader r; and r;:

Tide <rjle <rpfp <rjty . ®))

Definition 4: (Tag’s spatio-temporal trajectory.) Let At be
the length of a trajectory interruption interval, TTI. The TTI
is At = rj.t, — ri.t; (i < j). The spatiotemporal trajectory is
expressed as an augmented data structure, {x, y, [At, t,, ;]).

The time trajectory, [At, t,,t;], has the following prop-
erties.
Property 1. The At and t; of the first tag are null. 1If a
tag visits a reader for the first time and stays there, the time
trajectory is expressed as [¢, t., ¢]. This tag is expressed as
a point tag that has only a location and an entry time rather
than a trajectory. In order to process queries, t; is assigned
as the maximum time of the corresponding MBB to which
the tag belongs next:

Tty = MAX_TIME(MBB) . (6)

Property 2. A tag that visits only one reader has a null At.
If a tag leaves a reader, it has a time trajectory of [, t., #]



LETTER

until it enters another reader.

Property 3. A tag that visits one reader and then enters an-
other reader has a At. i.e., the time difference between leav-
ing the previous reader and entering the current one, which
is non-null. A tag that passes multiple readers has non-null
values of At, which are (pre_reader.t;—cur_reader.t,). Thus,
the time trajectory is [At, ., #;]. In particular, # is null when
the tag visits multiple readers and enters another reader.

4. Tag Trajectory Index in RFID Systems

Index Structure. An entry at a leaf node is composed of
(MBB, 14, 0bject_pointer). An MBB is a 3-D interval for
the tag 7;4 and consists of (x, y, f). Here, x and y are reader’s
locations comprising the spatial trajectory of the tag. The
value t is the time that the tag spends in the readers and is
represented in the form [Atz, t,, #;]. The real location of a tag
7,4 stored in the database is pointed to by the object_pointer.
A non-leaf node entry has the form of (MBB, child_pointer).
The size of a node is 4 KB, the block unit for disk pages.

In Fig. 3, TL contains all of the tags. An entry in TL
has a leaf node pointer that links the tag identifications (IDs)
to the TR-tree. We access the leaf nodes directly using TL.
One advantage of TL is that the cost of dynamic updates of
tags is low. In TR-tree, a tag’s time information is updated
as follows. For example, as shown in Fig. 2, if tag 7, leaves
areader ry at time t3, first the tag is found in TL and then the
time property of the leaf node is changed to [¢,;,#3] and
written to the index. If this process is executed in R-tree,
which has three levels as in Fig. 3, the nodes have to be ac-
cessed at least four times, whereas in TR-tree, two accesses
are sufficient. In this paper, however, TL is a minor subject.
We focus on tag trajectory and query processing.

Tag Search Algorithm. In TR-tree, tag search is di-
vided into four query types, as follows. Algorithm 1 is a
basic search algorithm reflecting these query types.

e OBJECT query: q = (t;y), returns a tag of t;; with its
current location and time.

o TIME query: g = ([tsiart> tenal), returns all the tags
within the designated time interval.

e TRAJECTORY query: q = (tig, time/location), returns
a time or location trajectory for the tag.

e SCOPE query: q = (X1,X2,Y1, Y2, [fstarts tena]), returns
the tag corresponding to the time interval within the
designated spatial scope. At that time, if the spatial
coordinates are not specified, they are the same as the
TIME query.

5. Performance Evaluation

Experimental Environments. We compared R-tree, TPIR-
tree and TR-tree by implementing the environment in C++.
R-tree was modified to store the time dimension. The ex-
periments were conducted on a Pentium IV 2.6-GHz com-
puter with 1 GB of memory running Windows XP. The
simulation data were created using the Oporto [5] genera-

2641

Algorithm 1 Tag search: Search tags by a query

Procedure TagSearch (tagID, tagLocation, tagTimelnterval)
Input: taglD is a tag identification, tagLocation is tag location,
tagTimelnterval is time of a tag
Output: Searched tags or a trajectory
Begin
1: Read the ROOT node of TR-tree;
2: Select Case option
Case Object(tagID):
Seek the tagID in TL index;
if ragID exists in TL then return an object;
Case Time(tagTimelnterval):
do Search tags between starting and end time;
tagObjectList += object Loop;
10:  return tagObjectList;
11: Case Trajectory(taglD,[tagLocation/tagTimelntervall):
12:  Seek the ragID in TL index and access to an entry;
13:  return a trajectory in location or time;
14: Case Scope(tagLocation, tagTimelnterval):
15:  do Traverse TR-tree with location [x1, x2], [y1, y2]
and time interval [z, 7,];
16: if found an object then tagObjectList += object Loop;
17:  return tagObjectList; //query result
18: End Select
End

LoeRNAER

Table1  Simulation parameters.
Item Contents Remarks
time interval [ti,t2] or [t1,12) | closed/open
tags 1000 tag data synthetic
point tags ratio 30, 60, 90% not leaved
query workload | 100 query lines each query

tor for moving tags, with datapoints having the structure
(tag_id, (x,,y,), [enter_time, leave_time]). The movement of
the tags is assumed to be uniform. Table 1 shows the ex-
perimental parameters. The time intervals in the dataset are
composed of the closed time interval [#1,7,] and the open
time interval [f1, ).

Node Accesses of Queries. The performance of R-
tree variants depends on the number of node accesses. The
node accesses mainly involve insert, update, and search
queries. These operations increase the amount of disk i/o.
Figure 4 (a) compares the average number of node accesses
when searching for a tag in TR-tree, TPIR-tree, and R-tree
using OBJECT query. The results were obtained by execut-
ing 500 queries. Using TR-tree, the results for 200 to 1000
tags were homogenous because the leaf nodes are accessed
directly. However, the number of node accesses in TR-tree
increases slightly with the number of tags because there is



2642
24K~ R-tree ﬁ/@— 300K Rree |
21k —O—TPIR-lree 270Kk TPIR-tree]
g |~@—TR-tree e 2 Zaok TR-tree 1
2 H
$ 151 Poudl g ~
g =0 2 0
12K =
T o 21 o
= k = T _W
e —— = gt — |
200 400 600 800 1000 200 400 600 800 1000
Tags Tags

(a) OBJECT query (b) TIME query

160K - Retree 1AMY - Retree ’ﬁ—
, 140kg —O— TPIR-tree Lamhl ~O-TPiR-iree
g, —@—TR-tree g " [l-@=TRure
£ 1001 g
2 son =g £ 800.
§ . 2 600.0k}
E
bl 401@?%_ Z 400.0k
s s
= — = 200
200 400 600 800 1000 M5 a0 w0 1000
Tags Tags

(c) TRAJECTORY query (d) SCOPE query

Fig.4  The number of node accesses with number of tags in query types.

some backtracking caused by overlapping MBBs.

TIME query searches tags within a time window. Fig-
ure 4 (b) shows the results for returning all the tags in a spe-
cific time window. In TPIR-tree, since a point tag’s time is
extended to the present time, MBBs overlap. The perfor-
mance of TPIR-tree is worse than that of TR-tree. TRAJEC-
TORY query results (Fig. 4 (c)) of TPIR-tree are similar to
those of TR-tree. However, R-tree produces very high num-
bers because it uses a different structure to store trajectories.
In Fig. 4 (d), SCOPE query has high numbers from the start
because it needs three parameters, two points of an MBR
and a time window. Since there is expansion of MBBs in
TPIR-tree, this yields a high number of node accesses.

Update Cost and Search Time. We simulated the up-
date cost for 30, 60 and 90% of the point tags. However,
as space is limited, we show only Fig.5(a). In Fig.5 (a),
the number of node accesses increases when the number of
tags increases. TPIR-tree shows a much larger number of
accesses because it searches for tags to be updated in top-
down manner [4]. Another reason for the poor performance
is that if a point tag (nowEntry in TPIR-tree) is encountered
in a query, MBB is expanded to the present time [2] for the
trajectory. If an MBB is expanded, it overlaps with other
MBBSs, which in turn causes a backtracking and increases
the number of node accesses. In comparison, TR-tree al-
ready has MAX_TIME for the point tag’s trajectory. That is,
since no expansion of MBB occurs in TR-tree, the number
of node accesses is much smaller.

We simulated the search time of queries using CSIM
simulator [6]. Since TIME query returns all the tags within
the designated time interval, it is fit to check the perfor-
mance of the time-based query by CSIM. The simulator
generates the simulation time (st), which is independent of
the operating system.

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.9 SEPTEMBER 2010

140
—O—TPIR-trec | o
12001 —@—TR-tree
Sann|_Point tags=60% =
Z
” R
2 800 /O, E
g o el E
&
S 400 E/ o—° £
3+ o
20 Aég/./— 3
200 400 600 800 1000 200 400 600 800 1000
Tags Tags

(a) Update cost of tags (b) Search time of tags

Fig.5 Update cost according to a point tag ratio of 60% and a search
time via TIME query (st: simulation time).

In Fig. 5 (b), since the time dimension of TPIR-tree is
extended to the present time, the search time is higher than
that of TR-tree. That is, the result of Fig.5 (b) is that TR-
tree decreases the number of overlapping MBBs compared
with TPIR-tree.

6. Conclusion

Fast tag tracing is essential in RFID systems. We propose
a novel tag trajectory index that solves the problem of lo-
calized tag trajectories between readers, as well as the prob-
lem of point tags being observed. Since no augmentation
of MBBs is required in TR-tree, MBBs do not overlap in
the query time. Therefore, TR-tree provides a considerable
improvement in node accesse, update and search time per-
formance. As shown in our simulation, the performance of
TR-tree is superior to existing indices. The number of node
accesses decreases more gradually as the point tag ratio and
the number of tags increases.

References

[1] H. Vogt, “Efficient object identification with passive RFID tags,”
LNCS2414, pp.98-113, Springer, 2002.

[2] C.H. Ban, B.H. Hong, and D.H. Kim, “Time parameterized interval
R-tree for tracing tags in RFID systems,” LNCS 3588, pp.503-513,
Springer, 2005.

[3] A. Guttman, “R-trees: A dynamic index structure for spatial search-
ing,” Proc. ACM SIGMOD conference on Management of data,
vol.14, pp.47-57, 1984.

[4] D.Kwon, S. Lee, and S. Lee, “Indexing the current positions of mov-
ing objects using the lazy update R-tree,” Proc. Third Intl. Conference
on Mobile Data Management, pp.113-120, 2002.

[5] J.-M. Saglio and J. Moreira, “Oporto: A realistic scenario generator
for moving objects,” Workshop on Database and Expert Systems Ap-
plications, pp.426-432, 1999.

[6] H. Schwetman, “CSIM19: A powerful tool for building system mod-
els,” Proc. 2001 Winter Simulation Conference, pp.250-255, 2001.

[71 K.C.K. Lee, J. Schiffman, B. Zheng, W.-C. Lee, and H.V. Leong,
“Tracking nearest surrounders in moving object environments,” Proc.
Pervasive Services, 2006 ACS/IEEE International Conference, pp.3—
12, 2006.



