2660

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.9 SEPTEMBER 2010

[LETTER

Correcting Syntactic Annotation Errors Using a Synchronous Tree

Substitution Grammar

SUMMARY This paper proposes a method of correcting annotation er-
rors in a treebank. By using a synchronous grammar, the method trans-
forms parse trees containing annotation errors into the ones whose errors
are corrected. The synchronous grammar is automatically induced from the
treebank. We report an experimental result of applying our method to the
Penn Treebank. The result demonstrates that our method corrects syntactic
annotation errors with high precision.

key words: error correction, synchronous tree substitution grammar, syn-
tactic annotation, treebank, parallel corpus

1. Introduction

Annotated corpora play an important role in the fields such
as theoretical linguistic researches or the development of
NLP systems. However, they often contain annotation er-
rors which are caused by a manual or semi-manual mark-up
process. These errors are problematic for corpus-based re-
searches.

To solve this problem, several error detection and cor-
rection methods have been proposed so far [1]-[8]. These
methods detect corpus positions which are marked up incor-
rectly, and find the correct labels (e.g. pos-tags) for those
positions. However, the methods cannot correct errors in
structural annotation. This means that they are insufficient
to correct annotation errors in a treebank.

This paper proposes a method of correcting errors
in structural annotation. Our method is based on a syn-
chronous grammar formalism, called synchronous tree sub-
stitution grammar (STSG) [9], which defines a tree-to-tree
transformation. By using an STSG, our method transforms
parse trees containing errors into the ones whose errors are
corrected. The grammar is automatically induced from the
treebank. To select STSG rules which are useful for error
correction, we define a score function based on the occur-
rence frequencies of the rules. An experimental result shows
that the selected rules archive high precision.

This paper is organized as follows: Section 2 gives an
overview of previous work. Section 3 explains our method
of correcting errors in a treebank. Section 4 reports an ex-
perimental result using the Penn Treebank.

2. Previous Work

This section summarizes previous methods for correcting er-

Manuscript received March 24, 2010.
"The authors are with Information Technology Center, Nagoya
University, Nagoya-shi, 464—-8601 Japan.
a) E-mail: yosihide @el.itc.nagoya-u.ac.jp
DOI: 10.1587/transinf.E93.D.2660

Yoshihide KATO™® and Shigeki MATSUBARA', Members

(a) incorrect parse tree

S
NP PRN VP .
1 1 — 1
DT S MD VP
1 1 —
That , NP VP , will VB ADJP
1 1 —_— 1 1 —
, PRP VBP SBAR be U PP
1 1 — 1 N
they say -NONE- S good IN NP
1 1 1 1
0 -NONE- for NNS
1 1
T bonds
(b) correct parse tree
S
NP PRN VP .
1 — e ——— — 1
DT S MD VP
! 1 —_— ; 1 —
That , NP VP will VB ADJP
1 —_— ! 1 —
PRP VBP SBAR be U PP
1 1 — 1 —
they say -NONE- S good IN NP
1 1 1 1
0 -NONE- for NNS
1 1
T bonds

Fig.1 An example of an annotation error in a treebank.

rors in corpus annotation and discusses their problem.

Some research addresses the detection of errors in pos-
annotation [2], [3], syntactic annotation [4], [5],[7], and de-
pendency annotation [8]. These methods only detect corpus
positions where errors occur. It is unclear how we can cor-
rect the errors.

Several methods can correct annotation errors [1], [6].
These methods are to correct tag-annotation errors, that is,
they simply suggest a candidate tag for each position where
an error is detected. The methods cannot correct syntactic
annotation errors, because syntactic annotation is structural.
There is no approach to correct structural annotation errors.

To clarify the problem, let us consider an example. Fig-
ure 1 depicts two parse trees annotated according to the Penn
Treebank annotation *. The parse tree (a) contains errors and
the parse tree (b) is the corrected version. In the parse tree
(a), the positions of the two subtrees (, ,) are erroneous.
To correct the errors, we need to move the subtrees to the po-
sitions which are directly dominated by the node PRN. This
example demonstrates that we need a framework of trans-
forming tree structures to correct structural annotation er-

*® and *T* are null elements.

Copyright © 2010 The Institute of Electronics, Information and Communication Engineers

LETTER

rors.
3. Correcting Errors by Using Synchronous Grammar

To solve the problem described in Sect. 2, this section pro-
poses a method of correcting structural annotation errors by
using a synchronous tree substitution grammar (STSG) [9].
An STSG defines a tree-to-tree transformation. Our method
induces an STSG which transforms parse trees containing
errors into the ones whose errors are corrected.

3.1 Synchronous Tree Substitution Grammar

First of all, we describe the STSG formalism. An STSG
defines a set of tree pairs. An STSG can be treated as a
tree transducer which takes a tree as input and produces a
tree as output. Each grammar rule consists of the following
elements:

e a pair of trees called elementary trees
e a one-to-one alignment between nodes in the elemen-
tary trees

For a tree pair (t,’), the tree ¢ and ¢’ are called source and
target, respectively. The non-terminal leaves of elementary
trees are called frontier nodes. There exists a one-to-one
alignment between the frontier nodes in ¢ and #'. The rule
means that the structure which matches the source elemen-
tary tree is transformed into the structure which is repre-
sented by the target elementary tree. Figure 2 shows an ex-
ample of an STSG rule. The subscripts indicate the align-
ment. This rule can correct the errors in the parse tree (a)
depicted in Fig. 1.

An STSG derives tree pairs. Any derivation process
starts with the pair of nodes labeled with special symbols
called start symbols. A derivation proceeds in the following
steps:

1. Choose a pair of frontier nodes (n,7’) for which there
exists an alignment.

2. Choose a rule (#,#') s.t. label(n) = root(t) and
label(n) = root(t") where label(n) is the label of 7 and
root(t) is the root label of ¢.

3. Substitute 7 and ¢’ into 7 and 7', respectively.

Figure 3 shows a derivation process in an STSG.

In the rest of the paper, we focus on the rules in which
the source elementary tree is not identical to its target, since
such identical rules cannot contribute to error correction.

source target
PRN PRN
I __._———‘—l\
S ’n S 7
—_—T I~
n NP, VP; NP, VP,

Fig.2 Anexample of an STSG rule.

2661

3.2 Inducing an STSG for Error Correction

This section describes a method of inducing an STSG for
error correction. The basic idea of our method is similar to
the method presented by Dickinson and Meurers [4]. Their
method detects errors by seeking word sequences satisfying
the following conditions:

e The word sequence occurs more than once in the cor-
pus.

o Different syntactic labels are assigned to the occur-
rences of the word sequence.

Unlike their method, our method seeks word sequences
whose occurrences have different partial parse trees. We
call a collection of these word sequences with partial parse
trees pseudo parallel corpus. Moreover, our method ex-
tracts STSG rules which transform the one partial tree into
the other.

3.2.1 Constructing a Pseudo Parallel Corpus

Our method firstly constructs a pseudo parallel corpus which
represents a correspondence between parse trees containing
errors and the ones whose errors are corrected. The proce-
dure is as follows: Let T be the set of the parse trees oc-
curring in the corpus. We write Sub(c) for the set which
consists of the partial parse trees included in the parse tree
o. A pseudo parallel corpus Para(T) is constructed as fol-
lows:

[(a) S 3
(b) S S
—_— —_—
N|P PRN VP . l\iP PRN VP .
DT DT
1 1
That That
() S s
—_— — —_— —
NP PRN VP . NP PRN VP .
1 I v~
DT S DT S
1 —7 R as)
That, NP VP , That NP VP
v
(d) S S
—_— — —_— —
NP PRN VP . NP PRN VP .
1 1 [
DT S DT S
1 — 1 ; s)
That, NP VP , That = NP VP
' ,
' PRP PRP
r 1
they they
v

Fig.3 A derivation process of tree pairs in an STSG.

2662
PRN PRN
1 —_—
S " S o
1 —_— 1
. NP, VP, 1o , NP, VP, ,
] 1 —_— 1 1 —_—

, PRP, VBP, SBAR,
1 1 —_
they say -NONE-;, Sg
1 1
0 -NONE-,
1
*Tk

PRP; VBPg SBARg
1 1 —_
they say -NONE-, S,
1 1

0 -NONE-4

%

Fig.4 Anexample of a partial parse tree pair in a pseudo parallel corpus.

S
NP PRN VP .
N —T — 1
DT S VBD ADJP
1 —_— H 1 —
That , NP VP will) PP
1 —_— 1 —~—
PRP VBP SBAR proud IN NP
1 1 —_—— 1 —
they say -NONE- S of PRPS NNS
1 1 1 1
0 -NONE- his abilities
1
T

Fig.5 Another example of a parse tree containing a word sequence
“, they say ,”.

Para(T) = {r,7') | 1,7 € U Sub(o)
oeT
AT#T

A yield(t) = yield(t")

A root(t) = root(t')}

where yield(t) is the word sequence dominated by 7.

Let us consider an example. If the parse trees depicted
in Fig. 1 exist in the treebank 7', the pair of partial parse trees
depicted in Fig. 4 is an element of Para(T). We also obtain
this pair in the case where there exists not the parse tree (b)
depicted in Fig. 1 but the parse tree depicted in Fig. 5, which
contains the word sequence “, they say ,”.

3.2.2 Inducing a Grammar from a Pseudo Parallel Corpus

Our method induces an STSG from the pseudo parallel cor-
pus according to the method proposed by Cohn and Lap-
ata[10]. Cohn and Lapata’s method can induce an STSG
which represents a correspondence in a parallel corpus.
Their method firstly determine an alignment of nodes be-
tween pairs of trees in the parallel corpus and extracts STSG
rules according to the alignments.

For partial parse trees 7 and 7/, we define a node align-
ment C(t, 7') as follows:

C(r,7') = {(n,1') | 1 € Node(r)
AN € Node(t)
A 7718 not the root of T
A 1’ is not the root of 7’
A label(n) = label(n")
A yield(y) = yieldGr'))

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.9 SEPTEMBER 2010

where Node(7) is the set of the nodes in 7, and yield(n) is the
word sequence dominated by 7. Figure 4 shows an example
of a node alignment. The subscripts indicate the alignment.

An STSG rule is extracted by deleting nodes in a par-
tial parse tree pair (7,7’) € Para(T). The procedure is as
follows:

e For each (n,17") € C(r,7’), delete the descendants of
and .

For example, the rule shown in Fig.2 is extracted from the
pair shown in Fig. 4.

3.3 Rule Selection

Some rules extracted by the procedure in Sect. 3.2 are not
useful for error correction, since the pseudo parallel corpus
contains tree pairs whose source tree is correct or whose
target tree is incorrect. The rules which are extracted from
such pairs can be harmful. To select rules which are use-
ful for error correction, we define a score function which is
based on the occurrence frequencies of elementary trees in
the treebank. The score function is defined as follows:

)
J@0+ f(r)

where f(-) is the occurrence frequency in the treebank. The
score function ranges from 0 to 1. We assume that the oc-
currence frequency of an elementary tree matching incor-
rect parse trees is very low. According to this assumption,
the score function S core({t,t’)) is high when the source el-
ementary tree ¢ matches incorrect parse trees and the target
elementary tree ¢ matches correct parse trees. Therefore,
STSG rules with high scores are regarded to be useful for
error correction.

Score({t,t')) =

4. An Experiment

To evaluate the effectiveness of our method, we conducted
an experiment using the Penn Treebank [11].

We used 49208 sentences in Wall Street Journal sec-
tions. We induced STSG rules by applying our method to
the corpus. We obtained 8776 rules. We measured the pre-
cision of the rules. The precision is defined as follows:

precision =
of the positions where an error is corrected

of the positions to which some rule is applied

Since it is time-consuming and expensive to evaluate
all of the rules, we only evaluated the first 100 rules which
are ordered by the score function described in Sect.3.3.
These rules were applied at 331 positions. The precision
of the rules is 71.9%. For each rule, we measured the preci-
sion of it. 70 rules achieved 100 % precision. These results
demonstrate that our method can correct syntactic annota-
tion errors with high precision. Moreover, 30 rules of the 70
rules transformed bracketed structures. This fact shows that
the treebank contains structural errors which cannot be dealt

LETTER

@ pp PP 2 s s
—_—T — N~ —_
IN NP PP IN NP NP VP T O NP WP

1 — 1
NP NP PP NP

B) wp NP
N —_ N
NP NP NP PP

/\ /\

—_
IN NP IN NP source target

Fig.6 Examples of error correction rules induced from the Penn
Treebank.

with by the previous methods.

Figure 6 depicts examples of error correction rules in-
duced in this experiment. Rule (1) and (2) are rules which
transform bracketed structures. Rule (3) simply replaces
a node label. Rule (1) corrects an incorrect position of a
prepositional phrase (PP) attachment. Rule (2) deletes a use-
less node NP in a subject position. Rule (3) replaces a node
label NP with the correct label PP.

5. Conclusion

This paper proposes a method of correcting errors in a tree-
bank by using a synchronous tree substitution grammar. Our
method constructs a pseudo parallel corpus from the tree-
bank and extracts STSG rules from the parallel corpus. The
experimental result demonstrates that we can obtain error
correction rules with high precision.

In future work, we will explore a method of increas-
ing the recall of error correction by constructing a wide-
coverage STSG.

Acknowledgments

This research was partially supported by the Grant-in-Aid
for Scientific Research (B) (No.20300058) of JSPS and

2663

by the Kayamori Foundation of Informational Science Ad-
vancement.

References

[1] E. Eskin, “Detecting errors within a corpus using anomaly detec-
tion,” Proc. 1st North American Chapter of the Association for Com-
putational Linguistics Conference, pp.148—153, 2000.

[2] T. Nakagawa and Y. Matsumoto, “Detecting errors in corpora us-
ing support vector machines,” Proc. 19th Internatinal Conference on
Computatinal Linguistics, pp.709-715, Taipei, Taiwan, Aug. 2002.

[3] M. Dickinson and D. Meurers, “Detecting errors in part-of-speech
annotation,” Proc. 10th Conference of the European Chapter of the
Association for Computational Linguistics, pp.107—-114, 2003.

[4] M. Dickinson and D. Meurers, “Detecting inconsistencies in tree-
banks,” Proc. 2nd Workshop on Treebanks and Linguistic Theories,
2003.

[5] T. Ule and K. Simov, “Unexpected productions may well be er-
rors,” Proc. 4th International Conference on Language Resources
and Evaluation, pp.1795-1798, 2004.

[6] M. Murata, M. Utiyama, K. Uchimoto, H. Isahara, and Q. Ma, “Cor-
rection of errors in a verb modality corpus for machine translation
with a machine-learning method,” ACM Trans. Asian Language In-
formation Processing (TALIP), vol.4, no.1, pp.18-37, 2005.

[71 M. Dickinson and W.D. Meurers, “Prune diseased branches to get
healthy trees! how to find erroneous local trees in a treebank and
why it matters,” Proc. 4th Workshop on Treebanks and Linguistic
Theories, Barcelona, Spain, 2005.

[8] A. Boyd, M. Dickinson, and D. Meurers, “On detecting errors in
dependency treebanks,” Research on Language and Computation,
vol.6, no.2, pp.113-137, 2008.

[9] J. Eisner, “Learning non-isomorphic tree mappings for machine
translation,” Proc. 41st Annual Meeting of the Association for Com-
putational Linguistics (ACL), Companion Volume, pp.205-208,
Sapporo, July 2003.

[10] T. Cohn and M. Lapata, “Sentence compression as tree transduc-
tion,” J. Artificial Intelligence Research, vol.34, no.1, pp.637-674,
2009.

[11] M.P. Marcus, B. Santorini, and M.A. Marcinkiewicz, “Building a
large annotated corpus of English: the Penn Treebank,” Computa-
tional Linguistics, vol.19, no.2, pp.310-330, 1993.

