
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010
2747

PAPER

Efficient Distributed Web Crawling Utilizing Internet Resources

Xiao XU†, Nonmember, Weizhe ZHANG†a), Member, Hongli ZHANG†, and Binxing FANG†, Nonmembers

SUMMARY Internet computing is proposed to exploit personal com-
puting resources across the Internet in order to build large-scale Web appli-
cations at lower cost. In this paper, a DHT-based distributed Web crawling
model based on the concept of Internet computing is proposed. Also, we
propose two optimizations to reduce the download time and waiting time
of the Web crawling tasks in order to increase the system’s throughput and
update rate. Based on our contributor-friendly download scheme, the im-
provement on the download time is achieved by shortening the crawler-
crawlee RTTs. In order to accurately estimate the RTTs, a network coordi-
nate system is combined with the underlying DHT. The improvement on
the waiting time is achieved by redirecting the incoming crawling tasks to
light-loaded crawlers in order to keep the queue on each crawler equally
sized. We also propose a simple Web site partition method to split a large
Web site into smaller pieces in order to reduce the task granularity. All the
methods proposed are evaluated through real Internet tests and simulations
showing satisfactory results.
key words: Internet computing, distributed Web crawling, DHT, network
coordinate system, load balancing

1. Introduction

Web search services are becoming more and more important
in everyone’s daily life. Their availability and effectiveness
largely depend on the efficiency of the underlying crawling
systems. The current super large Web search systems such
as Google and Yahoo all deploy their crawling systems on
well-maintained computer clusters. However, as the size of
the internet increases, the clusters have to become larger and
larger to cope with the trend thus raising huge maintenance
and administration costs.

Based on the inspiration of internet computing [1] and
SETI@home [2], a number of large-scale distributed Web
crawling (DWC) systems utilizing personal computing re-
sources across the Internet [3]–[5] have emerged lately. By
utilizing the large amount of Internet resources, the system
can throw the cost of bandwidth, memory space and stor-
age space back to the Internet itself. DWC system faces the
following core issues:

Scalability How to maintain high throughput and high sta-
bility while the set of crawlers within the system is al-
ways changing due to the churns on the Internet.

Efficiency First, how to crawl a Web host as soon as pos-
sible while there is no central scheduler in the system.
Second, how to reduce the time gap between task sub-
mission and execution while the crawlers are all the

Manuscript received December 16, 2009.
Manuscript revised May 28, 2010.
†The authors are with Harbin Institute of Technology, China.

a) E-mail: wzzhang@hit.edu.cn
DOI: 10.1587/transinf.E93.D.2747

ordinary PCs with limited capacities and long waiting
queues.

There are following DWC systems that have been pub-
lished in sufficient detail.

Ubicrawler [6] It is the first published system to pro-
pose the idea of hash mapping the Web sites to slots
(crawlers) in order to partition the set of Web hosts.
The system adopts consistent hashing mechanism [7]
so that the addition or removal of one slot (crawler)
does not significantly change the overall mapping of
Web hosts to slots (crawlers). The idea solves the scal-
ability problem that all distributed systems face. And
the random generator used in consistent hashing also
provides a natural load balancing solution. However,
consistent hashing also brings shortcomings, e.g. its
hash function is based on a random generator which
ignores the information of networking.

Apoidea [8] It made a further improvement to the model of
Ubicrawler on scalability. Instead of using consistent
hashing, Apoidea adopts a Chord-like DHT to achieve
full distribution so that each crawler can independently
discover new URLs and routes the URLs if the URLs
are mapped to the other crawlers according to DHT’s
hash-based mapping mechanism. Unfortunately, the
system hashes the Web hosts without taking the effi-
ciency issues into consideration. In addition, the lack
of central control makes it difficult to derive a global
consistent re-crawl strategy.

IPMicra [9] Unlike the above two hash-based systems, IP-
Micra implements a location-aware mapping mecha-
nism based on an IP address hierarchy imported from
infrastructures called the RIRs (Regional Internet Reg-
istries). For each Web host, a central coordinator is
responsible for finding it an optimal crawler according
to the Web host’s and the crawlers’ IPs. The idea suffi-
ciently reduces the time cost of download process, but
it pays few attentions on the scalability issue.

All three systems are all adopting creative system ar-
chitectures, but they only concentrate on part of the issues
we outlined. Inheriting their ideas, our goal is to build a
system which combines the advantages of the above three
systems while overcomes their shortcomings.

In this paper, we propose a highly scalable DWC sys-
tem architecture and our solutions to the two efficiency is-
sues. Our system is built on top of a well-known DHT called

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers



2748
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

the Content Addressable Network (CAN) [10]. The crawlers
are treated as peers, at the same time the Web hosts are
treated as resources maintained by the peers. A manager is
built to periodically re-submit all the discovered Web hosts
in order to keep them up-to-date.

For the two efficiency issues, we solve the first one
by utilizing the Network Coordinate System (NC). Our
experiments have shown that the crawlers’ performance
is greatly affected by the crawler-host RTTs when the
crawler’s throughput is restricted below the crawler’s down-
load bandwidth limit. By shortening the RTTs the crawl-
ing process can be sped up. In our system, an application-
independent NC is used to estimate the crawler-host “dis-
tances”. Moreover, by mapping the crawlers’ and Web
hosts’ network coordinates calculated by the NC to IDs and
keys of the DHT, we build a “network location-aware” DHT
and transforms the task assignment problem to the DHT’s
space partition problem.

We solve the second efficiency issue by implementing
an effective load balancing algorithm. Uneven distribution
of loads among the crawlers may prevent the system from
updating each target Web site on time. In our experiment
we observed that if a crawler is overloaded, a Web host may
wait in the crawler’s task queue for so long that the wait
time exceeds the Web host’s pre-configured update inter-
val. We propose an optimization to CAN in order to balance
the load among the crawlers. In the method, the overloaded
crawlers will forward their crawling tasks to less burdened
crawlers. Such load balancing operation is only performed
when each Web host is submitted (or re-submitted) into the
system. The load balancing method also contributes a lot to
the total throughput of the system as it significantly reduces
the number of queued crawling tasks.

All the methods are evaluated through a small scale real
Internet test and a series of larger scale simulations based on
the data collected from the real Internet. All the experiments
show satisfactory results.

The rest of the paper is organized as follows: Section 2
presents our system model. Section 3 describes how the sys-
tem utilizes the network locality in order to speed up the
crawling process. Section 4 provides a simple load balanc-
ing solution. In Sect. 5, the methods proposed are evaluated
through real internet tests and simulations. Section 6 out-
lines the related works of distributed Web crawling. Finally,
in Sect. 7 we conclude the paper and outline the future re-
search directions.

2. System Model

In the following literature, we call each crawler a peer
and each Web host a resource. The Web host is the host-
name extracted from the URL, for example the hostname of
URL http://en.wikipedia.org/BA model is en.wikipedia.org.
A Web site such as wikipedia.org may consist of multiple
Web hosts, for example: zh.wikipedia.org, ja.wikipedia.org,
fr.wikipedia.org, etc.

As shown in Fig. 1, the system consists of a number

Fig. 1 The architecture of the proposed DWC system.

of crawlers and a manager. The only task of the manager
is to maintain the URL database and submitting crawling
tasks to the crawlers. The crawlers all join a DHT, while
the Web hosts are inserted to the same DHT. Each crawler’s
ID is self-calculated under the help of an independent net-
work coordinate service (NC) (the detailed implementation
is shown in Sect. 3). The Web host’s key is calculated by
a randomly selected bootstrap crawler each time when it is
submitted by the manager to the DHT (also see Sect. 3). As
we are in the context of Internet computing, the power of
global control has to be minimized. With the self-organized
DHT overlay, the manager doesn’t need to monitor the state
of the crawling tasks and the behavior of the crawlers.

2.1 Detailed DHT Design

We use the Content Addressable Network (CAN) as the sys-
tem’s underlying DHT. As a result, all the IDs and keys
are multi-dimensional coordinates. According to CAN, the
whole coordinate space is dynamically partitioned so that
each peer is assigned a distinct space called a zone. Each
peer holds the information of other peers (we call them the
peer’s direct neighbors) whose zones are close to its own.
The information is used as routing table, in order to route
messages between arbitrary peers in the coordinate space.

Upon the joining of each new crawler (peer), firstly the
new peer’s coordinate is assigned as its ID. Then, According
to the JOIN functionality of CAN, after a routing process on
the overlay, an already-joined peer’s space (or zone) is split
into two if the new peer’s coordinate finally falls into that
peer’s zone. The split is done by using a certain ordering of
the dimensions in deciding along which dimension a zone is
to be split. The new peer picks one of the newly partitioned
spaces as its own zone and the already-joined peer continues
to hold the remainder space as its zone. The above splitting
method proposed by [10] is effective on balanced space par-
tition and zone re-merging. Each peer constantly checks the
availability of all its direct neighbors in order to discover the
un-notified peer departures. The peer departure algorithm is
achieved by merging the departed peer’s with other peer’s
zone using the method proposed in Appendix A of [10].

On the other hand, Web hosts (resources) are submit-
ted by the manager to a randomly selected crawler (as the



XU et al.: EFFICIENT DISTRIBUTED WEB CRAWLING UTILIZING INTERNET RESOURCES
2749

bootstrap crawler of the INSERT process). Then they are
given coordinates as their keys by the bootstrap crawler.
According to the INSERT functionality of CAN, each Web
site is assigned to a peer if the Web site’s key falls into that
peer’s zone according to CAN’s routing mechanism. When
the inserting message of a Web site arrives at its destina-
tion peer, the peer invokes the crawling process on itself to
crawl that Web site. Different from the case of file shar-
ing, the crawling tasks are difficult to migrate as they con-
sume large system resources. In our system, if a peer A’s
zone is split by a newly joined peer B, the Web hosts (and
the corresponding crawling tasks) within B’s new zone (the
Web hosts are currently on peer A) don’t migrate from peer
A to peer B. When a peer leaves the system (or crashes),
the crawling tasks running on it are redone by the peer who
takes over the peer’s zone. The crawling process terminates
itself when the crawling task is complete. In order to keep
the retrieved Web data up-to-date, all the Web sites will be
periodically re-crawled. During each re-crawl, each Web
site is re-submitted by the manager to the DHT through a
randomly chosen bootstrap peer. Currently the crawlers are
designed to work in the firewall mode [11] under which the
inter-host Web links are ignored.

According to the algorithm described so far, the rela-
tionship between crawlers and Web sites is established in
which a peer is responsible for a set of Web sites, at the
same time one single Web site is only owned by one single
crawler. In addition to this scheme, task replication can be
utilized to achieve fault tolerance. But to avoid further com-
plexity, in the following part of the paper, we don’t replicate
one Web hosts to multiple crawlers.

2.2 The Other Issues

Keeping the crawler’s throughput under the contributor’s
download rate limit is important to our system since all the
machines are contributed by the ordinary Internet users who
may want to do other things besides crawling (such strat-
egy is called contributor-friendly strategy). In our system,
the crawler opens one TCP persistent connections to the tar-
get Web host and downloads one Web page (only sends one
GET request) each time. The maximum number of concur-
rent TCP connections (we call the connection limit or CL) is
limited to a small value in order to restrict the crawler from
occupying too much system resource. If the number of Web
hosts (tasks) assigned to a single crawler is over connection
limit, the tasks are queued. The queue is a FIFO queue.
Each queued Web host (task) will not be executed until one
of the executing Web host (task) is done.

If a Web host contains too many pages, a crawler may
not be able to traverse all the pages in its life time (since
the crawlers are all from the internet users). We have de-
veloped a Web host partition method so that each Web host
to be crawled is not necessarily submitted to the DHT as
a whole at once. Large Web host can be split into smaller
pieces according to its sub-directories and the pieces can be
submitted to the crawlers in turn. In this context, each piece

is treated as an independent task by the crawlers. Our ex-
periment in Sect. 5 shows that using the sub-directories to
partition the Web host is feasible. Also, by further reducing
the size of the scheduling unit (the unit changes from Web
host to piece), the system can achieve a better load balanc-
ing.

The Web pages downloaded are not stored on the
crawler side. They are sent to a distributed storage system
we call the storage module. The crawler removes the struc-
tural information of all Web pages, compress the extracted
data and insert them to the storage module. We consider this
amount of data to be transferred to the storage module is
much smaller compared with their original size on the Web.
Assuming that the average size of a Web page is 10 KB; typ-
ically for a news page the size of the extracted data (content)
is 1000 B; after compressing (using gzip) the size of the ex-
tracted data usually reduces to less than 1/10 of its original
size, then the size of the final data (from a single Web page)
to be sent to the Storage Module is less than 100 B, which
is 1/100 the size of the original Web page. Moreover, if the
crawlers send the data through UDP, the network cost can
be further reduced.

3. Efficiency Issue: RTT

3.1 Why RTT

One of our goals is to download the Web data as soon as
possible so that we can keep the retrieved Web data up-to-
date. However, since our system consists of a large number
of low-capacity crawlers, this cannot be achieved by simply
increasing the number of TCP connections on each crawler.
Instead, in our system, as our crawlers are distributed all
over the Internet, each Web host is assigned to a crawler
“close” to it on the Internet in order to reduce the download
overhead thus increasing the download rate.

When it comes to Web crawling, an intuitive under-
standing is that the download speed is decided by the band-
width. Different from this approach, we decide to use the
round trip time (RTT) as the metric to estimate the download
speed. Under our contributor-friendly download scheme
mentioned in 2.2, the actual download time of each Web
page consists of three parts (as is demonstrated by Fig. 2):

• The round trip time (RTT) spent on initializing a HTTP
request;
• The actual download time (DLT) which is the time gap

between the arrival of the first byte of the Web page
and the arrival of the last byte of the Web page;
• The politeness wait time (PWT) interval which is a pre-

configured constant value.

Note that one Web page may reach the crawler piece
by piece as is demonstrated in Fig. 2 because one Web page
may be divided into several IP packets. Taking an ADSL
connection for example, the typical download bandwidth is
1 Mb/s, the average size of each Web page is 10 KB, then
the DLT can be approximately calculated by dividing 10 KB



2750
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

Fig. 2 Download scheme of a crawler.

by 1 Mb/s. The result is 80 ms (the actual result may be
longer since the bandwidth cannot be completely occupied).
In our experience, the typical RTTs are around 50 100 ms,
which has the same order of magnitude with the DLT. As-
suming that we can save 20 ms of RTT from each Web page,
then after downloading 10,000,000 pages (almost the num-
ber of pages we use in our experiment), we totally save more
than 55 hours. With such amount of time, we can down-
load 2,000,000 more pages (100 ms per page). Actually
in our experiment, we observed that the typical RTT/2 re-
duction under the RTT-optimized method is between 20 ms
and 50 ms (which means 40 ms 100 ms of RTT has been re-
duced).

Another thing to note, by assigning the Web hosts to
the crawlers according to the RTTs, the traffic between the
crawlers and the Web hosts can be restricted within small
network regions (AS or ISP) avoiding a large number of
cross-network communications. As a result, to some degree,
we also achieve an ISP-friendly system.

It is not easy to collect all the RTTs between arbitrary
hosts on the Internet. To solve this problem, we choose to
estimate the RTTs using the Network Coordinate System
(NC) [12]–[16].

3.2 Combining NC and CAN

The other problem is how to partition the network coordi-
nate space (NC space) in a global consistent manner. We no-
tice that the Content Addressable Network (CAN) provides
an effective way to partition a multi-dimensional space.
Moreover, as a DHT method, CAN also provides sufficient
scalability and stability. Therefore, using CAN to partition
the NC space would be a reasonable choice.

3.2.1 3-Tier Mapping Mechanism

The combining of NC and CAN is achieved by adopting a
3-tier mapping. As is demonstrated in Fig. 3, from bottom
to top, the 3 tiers are physical tier, coordinate tier and DHT
tier.

• On the coordinate tier, a network coordinate service

Fig. 3 Mapping from network positions to DHT.

(NC) maps the physical locations (measured using the
network latencies) of the crawlers and the Web hosts to
the coordinates in a multi-dimensional network coor-
dinate space. The NC is an independent, general pur-
pose Web service that doesn’t participate in the crawl-
ing process. It is now implemented using the method
of GNP [12]. The NC in our system plays a role very
similar to the Domain Name System (DNS).
• On the DHT tier, all the crawlers join a DHT (we use

the Content Addressable Network) using their network
coordinates as IDs, while the Web hosts are inserted to
the same DHT using their network coordinates as keys.
The DHT’s joining and inserting procedure has already
been described in 2.1.

The above method can be classified as a proximity
identifier selection [17] method used to solve the DHT’s
topological inconsistency problem. However, different
from the existing examples such as Topologically-aware
CAN [18] and Proximity-aware CAN [19], our system not
only maps the peers (crawlers) from NC to CAN, but also
maps the resources (Web hosts or pieces).

3.2.2 Detailed Steps

The first step is to map the nodes on the physical tier to the
network coordinates on the coordinate tier. Upon the join-
ing of a crawler, the crawler sends a measuring request to
the NC. The NC’s landmarks then measure the RTTs to that
crawler and send the result and the landmark’s coordinate
back to that crawler. The crawler then can calculate its net-
work coordinate by itself. When inserting a Web host to the
DHT, the Web host should firstly be submitted to a bootstrap
crawler. The bootstrap crawler sends a measuring request
for the Web host and calculates the Web host’s coordinate
according to the landmark’s answers.

The second step is to map the network coordinates to
the DHT tier (CAN space). The network coordinates of the
crawlers are used to generate their IDs; on the other hand,
the network coordinates of the Web hosts are used to gener-



XU et al.: EFFICIENT DISTRIBUTED WEB CRAWLING UTILIZING INTERNET RESOURCES
2751

ate their keys. The number of dimensions in the CAN space
is determined by the number of dimensions of the network
coordinates.

Each crawler queries the NC for new network coor-
dinate after each time interval. If a crawler’s new coordi-
nate shifts too far away from the central coordinate of the
crawler’s zone (the length of the zone’s diagonal is used
as the threshold), then the crawler automatically leaves the
DHT and re-join using the new coordinate as its ID. During
the re-join process, the crawling tasks assigned (submitted)
to the crawler still runs. According to Sect. 3, the Web hosts
are re-submitted to the DHT during their re-crawl. Before
the submission, each Web host’s network coordinate is al-
ways renewed by the bootstrap crawler, so that they can be
assigned to the latest optimal crawler.

3.2.3 The Other Issues

So far, there are still several issues to face. First, many Web
hosts reject ping or traceroute probing. According to our
experiences, due to the limitation of the gateways (either on
the crawler side or the Web host side), more than 60% Web
hosts are not reachable by ping and traceroute. Since the ac-
cess policies of the Web hosts are uncontrollable, the most
reliable strategy is to use the http services. As a result, the
measured RTTs are actually HTTP-RTTs. We find that al-
though the HTTP-RTTs differ from ping-RTTs (the relative
error is about 10%), they can still be estimated accurately by
the NC.

Second, some Web hosts have multiple IPs. According
to our experiences, approximately 1% Web hosts have mul-
tiple IPs. Currently, if a Web host does have multiple IPs we
only choose one IP.

Third, the network coordinates have to cope with the
fluctuation of the RTTs. Because the RTT between each
crawler-host pair is changing during the whole day, the re-
sult of a single probing is unable to determine an RTT value
with guiding significance. However, the RTT’s daily trends
subjects to little change. An alternative method is to use
the median of multiple RTT test results throughout the day.
With the stable RTTs, the network coordinates don’t have
to change constantly. Even if the network coordinate of a
crawler changes, as long as the shift remains smaller than
the threshold, it is not necessary to replace the old coordi-
nate with the new one. Finally, the upper bound of the CAN
space is different from that of the network coordinate space
(NC space). Because the metric of the network coordinate
equals to the RTT on the real network, the network coordi-
nate space can be logically infinity. On the other hand, the
CAN space should be a limited space with upper and lower
bounds on each dimension. In other words, the CAN space
is only a subspace of the NC space. Moreover, in order to
achieve a balanced load distribution, the node density in the
CAN space should be high enough.

According to our analysis to the distribution of nodes
on the NC space, most nodes concentrate in a small number
of clusters while the rest lies far away from the majority. In

Fig. 4 Demonstration of coordinate transformation (2-dimension).

our system, we use a simple method (Fig. 4 shows a demon-
stration on a 2d NC space) to allocate the CAN space from
the NCS. The transformation method is under such an as-
sumption that if we have enough favorable Web host sam-
ples, we can decide the bounds on each dimension before
the system’s deployment. In other words, the bounds are
trained from well selected samples. Once they are decided,
we don’t intend to change them while the system is online.

The samples used to allocate the CAN space is from
the historical records of known Web hosts’ network coor-
dinates. 1) first, we find the lowest and the highest coordi-
nate values on each dimension. By combining all the lowest
coordinate values we get a “lowest” point in the NC space
called the start point. Meanwhile, by combining all the high-
est coordinate values we get a “highest” point called the end
point. Now all the nodes are included in the cube space
(we call the node space) between the start point and the end
point. 2) Then we push the lower bound of the node space
on each dimension upward until λ% nodes are left outside.
At the same time, we push the upper bound on each dimen-
sion downward until λ% nodes are left outside. The cube
space within the new bounds are the CAN space we need.
3) Each node left outside during 2) is moved to the bound-
ary closest to it. When a new node (for example a crawler or
a Web host) joins the system, its final coordinate can be cal-
culated as follows. Assuming that in the n-dimensional NC
space, the lower bounds of the CAN space are l0, l1, . . . , ln−1,
while the upper bounds are h0, h1, . . . , hn−1; the new node’s
network coordinate given by the NC is (t0, t1, . . . , tn−1); then
the new node’s final coordinate on each dimension is t′i =
(li ≤ ti ≤ hi?ti : (li > ti?li : hi)), 0 ≤ i < n.

We also tested the other kinds of transformations, for
example using arctan (arctan has fixed upper and lower
bounds (−π/2, π/2) to smoothly restrict the bounds of the
NC space. However, this method cannot effectively re-
serve the relative positions between the nodes and makes
the scheduling result much worse compared to the method
mentioned above. The works of [19] proposes an Affine-
transformation-based method to transform the Vivaldi’s [16]
network coordinates. Under this method, all peers inde-
pendently adjust their coordinates according to their local
knowledge. But the convergence of this method is not



2752
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

proved. Moreover, we cannot deploy Vivaldi program on
all the nodes (the Web hosts are uncontrollable).

4. Efficiency Issue: Load Balancing

4.1 Why Load Balancing

Both conventional hash-based DHT and our new NC-based
DHT tend to cause uneven distribution of load among
crawlers. The fact has two main impacts to the system:

• Due to the limitation of a crawler’s capacity, if a
crawler is overloaded, many Web hosts have to be
queued, which reduces the system’s total throughput
and delays the update of the corresponding Web hosts.
• The overloaded crawler process may affect the perfor-

mance of the residing host causing the contributor’s an-
tipathy.

Here we provide a theoretical analysis to the issue. As-
suming that the birth of each new Web page on each Web
host i obeys a Poisson distribution (mean λi). In our system
model, each Web host has two states:

Crawling Under this state, the Web host is being crawled
by the crawlers;

Wait Under this state, the Web host is either queued by a
crawler or is hold by the manager waiting for the next
re-submission.

The time cost of the two state are labeled as T crawl
i and

Twait
i . The re-crawl interval of Web host i then equals to
ΔTi = T crawl

i + Twait
i . Typically, the interval is a fixed value.

We define the Birth-Detect-Delay (BDD) of each URL as
tBDD
url = tdetect

url − tbirth
url . The BDD is the time gap between the

birth of a new Web page and time when a crawler detects
that page. The URLs can be divided into two categories ac-
cording to their birth time: A) URLs created during T crawl

i ;
B) URLs created during Twait

i . The number of URLs in cate-
gory A) equals to Ncrawl

i = T crawl
i · λi. On the other hand, the

number of URLs in category B) equals to Nwait
i = Twait

i · λi.
Here we use two extreme situations to limit the upper and
lower bounds of the BDD. The situations are as follows,
assuming that all the URLs of category A) are born at the
beginning of T crawl

i and category B) URLs are born at the
beginning of Twait

i .

Worst All the URLs are detected and crawled at the end
of T crawl

i . This means the BDD of category A) URLs
equals to BDDmax

i,A = T crawl
i , while the BDD of category

B) URLs equals to BDDmax
i,B = Twait

i + T crawl
i .

Best All the URLs are detected and crawled at the begin-
ning of T crawl

i . This means the BDD of category A)
URLs equals to BDDmin

i,A = 0, while the BDD of cate-
gory B) URLs equals to BDDmin

i,B = Twait
i .

The BDD’s expectation in the Worst situation (the up-
per bound) equals to Equation 4.1.

Emax(BDD) =
Ncrawl

i

Ncrawl
i + Nwait

i

· BDDmax
i,A +

Nwait
i

Ncrawl
i + Nwait

i

· BDDmax
i,B = T crawl

i +
(Twait

i )2

T crawl
i + Twait

i

(1)

The BDD’s expectation in the Best situation (the lower
bound) equals to Equation 4.1.

Emin(BDD) =
Ncrawl

i

Ncrawl
i + Nwait

i

· BDDmin
i,A +

Nwait
i

Ncrawl
i + Nwait

i

· BDDmin
i,B =

(Twait
i )2

T crawl
i + Twait

i

(2)

If we assume that T crawl
i has been minimized by uti-

lizing the RTT optimization, then T crawl
i can be treated as a

constant value. From Equation 4.1 and 4.1 we can conclude
that the lower and upper bounds of BDD linearly depend on
the value of Twait

i . And a large portion of Twait
i is the time

the Web host spends in the crawler’s task queue.
The above analysis shows that if a Web host is queued

for too long, the system cannot be able to guarantee high
update-rate. The issue becomes more serious when the con-
nection limit of each crawler is a small value (which matches
the case of our system model), because long task queues are
unavoidable.

Since queuing time cannot be avoided, the only choice
is to balance the load among the crawlers and keep the
length of each crawler’s queue short.

4.2 Load Balancing on INSERT

The transformation method mentioned in Sect. 3 only re-
lieves the load balancing issue but can’t substantially solve
it. Here we propose a heuristic method called load balancing
on INSERT (LBI). Different from the existing load balanc-
ing method for CAN which focuses on placing the peers on
the CAN space [20]–[24], the method focuses on placing the
resources upon their INSERT to the system. The main prin-
ciple of the method is that if a peer is overloaded, then the
resources to be inserted to the peer are forwarded to another
peer which is less loaded. In our system, the process of re-
source insertion equals to the process of Web host submis-
sion. Because each Web host is periodically re-submitted
(re-crawl) to the DHT, the load balancing operations can be
periodically performed.

Assuming that we have a new resource (Web host) to
be inserted to the system, first, we have to find the peer (we
call it the proto-owner of the resource) in whose zone the
resource’s key lies according to CAN’s routing algorithm.
Second, upon the arrival of the resource, the proto-owner
compares its relative task load (RTL) with its pre-configured
Overloading Threshold (OT). The RTL of a crawler is cal-
culated through the following formula, in which Npieces rep-
resents the number of active Web hosts (pieces) assigned
to the crawler (including the Web hosts or pieces queued);
BWdownload represents the download bandwidth (Mb/s) that



XU et al.: EFFICIENT DISTRIBUTED WEB CRAWLING UTILIZING INTERNET RESOURCES
2753

the crawling process can utilize on the crawler; S memory rep-
resents the memory size of the crawler (GB).

RT Li =
Npieces

min(BWdownload, S memory)
(3)

OT is calculated through Formula 4. Nmax
pieces is a

contributor-defined value. Different contributors can con-
figure this value according to their will and their machines’
capacity. Note that typically a crawler’s OT should be no
less than its connection limit (CL). Otherwise, the crawler’s
actual connection limit should reduce to OT.

OT =
Nmax

pieces

min(BWdownload, S memory)
(4)

We also define the relative page load (RPL) as:

RPLi =

∑i=Npieces

i=1 N pages
i

min(BWdownload, S memory)
(5)

N pages
i is the number of pages within each Web host

(piece). This number is inherited from the record of the Web
host’s last crawl.

If the RTL exceeds OT, then the proto-owner consid-
ers itself overloaded. In this circumstance, the proto-owner
compares its RPL with the RPLs of all its direct neighbors
and forwards the message containing the resource (crawl-
ing task) to the peer that appears to be the least loaded.
The RPLs can be exchanged among neighbors on the over-
lay by packaging the information in the routine heart beat
messages. A TTL (time to live) is added to the forwarded
message of the resource, so that the message can be for-
warded again by the receiving peer in order to find a peer
with even lower load. The TTL is subtracted by 1 after each
hop. When the TTL is reduced to 0, the last peer on the for-
warding path should unconditionally accept the resource as
its own.

We use the RTL to decide whether a crawler is over-
loaded because using the number of Web hosts (pieces) is
relatively easy to conclude a stable OT. On the other hand,
we use the RPL to decide the forwarding destination be-
cause the RPL shows the work load assigned to the crawler
and indicates how soon the forwarded task is to be executed
on the destination crawler.

According to the algorithm shown above, there are 2
steps involved in the process of an resource insertion. The
steps are demonstrated in Fig. 5.

Routing A user submits an insert request of a resource to a
randomly selected bootstrap peer. The bootstrap peer
then finds the proto-owner of the resource using the
routing algorithm of CAN.

Forwarding Considering itself overloaded, the proto-
owner forwards the insert request to a certain lower
loaded peer called the real-owner.

The detailed description is outlined in Fig. 6. In the
insertion process, firstly, the insert function of a randomly

Fig. 5 Steps of an INSERT operation.

Fig. 6 The pseudo code of the LBI method.

selected bootstrap peer is invoked. The process just follows
the traditional routine to route the INSERT request to the
proto-owner. On considering itself overloaded, the proto-
owner then calls the insertForward function of a selected
neighbor to forward the insert request. The function find-
ALowestLoadedNeighbor within insertForward is supposed
to return a peer with the lowest load among the local peer’s
direct neighbors. In the forwarding path, only insertFor-
ward function NOT insert function is called by each peer.
The forwarding process only adds a constant (TTL) to the
routing cost of CAN (d d√

N). In addition, the time cost on
INSERT is very very small compared with the time cost on
downloading the Web pages. So the LBI method doesn’t
bring too much additional cost to the system.



2754
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

The forwarding doesn’t lead to a global minimum
point. It only achieves a limited local-area optimization.
However, according to our experiments, this approach is
well enough. Another thing to note is that in certain con-
ditions, circles may exist in the forwarding path in which a
peer receives the forwarded resource twice. This situation
may occur if a peer reduces its load and informs its neigh-
bors in a very short time. We consider the circles no harm
to our overall strategy, since our goal is forwarding the re-
sources to less loaded peers no matter whom the peer is.

The LBI method may increase the crawler-host RTTs
as many Web hosts are not assigned to their proto-owners.
We have implemented more complicated methods taking
both RPL and RTT into consideration (shown in 5.3.2).
However, in the experiment, we find that these methods
don’t outperform the LBI. Our experience shows that load
balancing performs an important role in deciding the sys-
tem’s throughput. The benefit that the LBI brings exceeds
its drawback on RTTs.

5. Experiments and Evaluations

In this section, we conduct three kinds of experiments to
prove our theories and evaluate our methods proposed in the
previous sections.

5.1 Small Scale Real Internet Test

We conducted a series of experimental crawling on the Chi-
nese Web in 2008. The experiment involves 10 crawlers de-
ployed on four major cities in China Mainland. The target
Web hosts are carefully selected 203 large hosts (more than
10000 pages per host) distributed all over China Mainland
(at least one Web host in each province). Each crawler’s
download rate is limited to 2 Mb/s. We keep the number
of Web hosts small so that the crawling speed won’t ex-
ceed the crawler’s download rate limit. During the crawl-
ing, the crawler opens one TCP persistent connections to the
target Web host and downloads one Web page (only sends
one GET request) each time. We tested several scheduling
schemes:

Random Web hosts are randomly assigned to the crawlers.
City Each Web host is assigned to the crawler which is ge-

ographically close to it.
ISP-City Each Web host is assigned to the crawler within

the same ISP. If there are multiple choices, we choose
the geographically closest crawler.

RTT-worst For each Web host, choose the RTT-farthest
crawler.

RTT-best (RTT-top-1) For each Web host, choose the RTT-
closest crawler.

NC-CAN The proposed method using GNP as the NC and
using the LBI method.

All the RTTs used in the experiment are HTTP-RTTs.
During the experiment, we measured the relative error be-
tween the HTTP-RTTs and the ping-RTTs. The result is

shown in Fig. 8. We can see that 70% HTTP-RTTs have a
relative error less than 0.1, which indicates that the HTTP-
RTT and the ping-RTT are very similar. Note that the statis-
tics are derived from only 40% of the Web hosts since the
rest ones are unreachable by ping.

The average aggregated download rates (the total
throughput of the system) of all the 6 methods are shown
in Fig. 7. The ordinates are calculated through Eq. (6). N
represents the number of Web hosts crawled by the system;
Di represents the total data size downloaded from host i; Ti

represents the total download time of host i which is fixed to
15 minutes. We simply add the average throughputs of all
Web hosts because they are concurrently crawled. No Web
host was queued.

Throughput =
i=N∑

i=1

Di

Ti
(6)

From the figure we can see that the RTT performs a key
role in deciding the system’s total throughput: the method
of RTT-worst performs the worst, while the method of RTT-
best performs the best. Note that RTT-best is difficult to
implement in a fully distributed manner: the only choice is
to build the whole scheduling logic into the manager which
is inconsistent with our original intention. The figure also
shows the performance of the LBI method (NC-CAN). Al-
though it doesn’t perform as well as the RTT-best does, the
result is encouraging. Figure 8 shows the relative error of
the Web hosts’ network coordinates. The figure indicates
that although we are using the HTTP-RTTs, the NC still
achieves high accuracy. Figure 9 shows the node distribu-
tion before and after the transformation proposed in 3.2. The
original NC space is an unbounded space and all nodes are

Fig. 7 Throughputs of different scheduling methods.

Fig. 8 Relative errors of the HTTP-RTT.



XU et al.: EFFICIENT DISTRIBUTED WEB CRAWLING UTILIZING INTERNET RESOURCES
2755

(a) NC space (b) CAN space

Fig. 9 Node distribution before and after transformation.

located above the origin of the space. The allocated CAN
space is a bounded space and nodes are distributed much
more uniformly.

The following facts can explain the RTT’s importance.
First, the download process involves the RTT. In a typical
download scenario, a crawler downloads Web pages from a
certain Web host through http persistent connections, so that
multiple Web pages can be downloaded in one TCP connec-
tion. In order to perform politely, the crawler should only
keep one TCP connection to the Web host at one time. After
each download, there must be a politeness wait time inter-
val. As is mentioned in 3.1, the total download time (TDT)
of a Web page is determined by RTT, DLT and PWT. It is
obvious that under fixed DLT and PWT, if the RTT is longer,
the total download time will be longer.

Second, RTT has deeper impact to the total download
time. For a typical ADSL user with 1 Mb/s download band-
width, the time cost for downloading 1 page (10 KB) is ap-
proximately 80 ms; while a typical RTT is 20 100 ms. This
means that the RTT and the DLT have the same order of
magnitude. However, the RTT plays a more important role
in estimating the total download time. The conclusion is
based on the following two observations:

1. Figure 10 (a) is drawn according to the results of 1738
separate crawls. In each crawl, one Web host is crawled
separately by the 10 crawlers mentioned above so that
10 different RTTs (the median result of multiple RTT
tests throughout the day) and download rates (the me-
dian result of multiple download tests) are recorded.
We than calculate the coefficient variation of the 10
RTTs and the 10 download rates of each Web host, and
put them in the CDF. From Fig. 10 (a) we can see that
the RTT subjects to more variation than the download
rate (which determines the DLT) on different crawlers.

2. Figure 10 (b) is drawn according to the results of 1738
separate crawls on one crawler. In each crawl, the
RTTs and the download rates of a Web host is recorded
every 30 minutes throughout 6 hours. We than cal-
culate the coefficient variation of all RTTs and all
download rates of each Web host, and put them in
CDF. From Fig. 10 (b) we can see that the RTT sub-
jects to smaller variation then the download rate on one
crawler.

The first observation shows that the crawler-host RTT

(a) on different crawlers

(b) on the same crawler at different time

Fig. 10 Stability comparisons between RTT and download rate.

can be dramatically reduced by choosing the right crawler.
The second observation shows that it is easier to conclude
a stable scheduling strategy from the RTT. The above con-
clusions makes the RTT a better tool in estimating the total
download time. Moreover, the RTTs can be estimated by the
NC, which further improves the ease of RTT’s utilization.

5.2 Splitting Single Web Host into Pieces

In the system, the basic scheduling unit is the Web host.
However, some Web hosts are so large that each of them
may contain millions of Web pages. Since our crawlers are
all contributed by the ordinary Internet users, a crawler may
not be able to traverse all the pages on this kind of Web
hosts in its life time. We figured out an experimental Web
host partition method to split a single large Web host into
smaller pieces. These pieces can be separately submitted to
the crawlers so that the original Web host can be crawled
piece by piece until all the pages have been traversed. In or-
der to minimize the impact of partitioning, the pieces should
have small overlap and should cover most of the Web pages
on the Web host.

A typical Web host consists of a number of sub-
directories. Here we only focus on the sub-directories on
the Web host’s first level (depth = 1). For each Web host,
we find that on average 19% first-level sub-directories (we
call the key directories) contain more than 90% Web pages
on that host. The result is concluded from our analysis over
1000 Chinese Web hosts (mostly news sites and university
sites). To split a Web host into N pieces, we first find out the
top K key directories of the Web host. As a result, the Web



2756
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

(a) overlap rate

(b) coverage rate

Fig. 11 The overlap and coverage caused by the partition method.

host can be partitioned into K + 1 sub-sets. Here 1 (one)
refers to the rest less important sub-directories). Then we
uniformly assign each sub-set to N pieces and N must be
lower than K + 2.

For each sub-set, we use the sub-directory’s path as a
filter and use the URL of the Web host’s main page as the
seed URL. If a sub-set (contained in a piece) is submitted
to a crawler, the crawler will traverse the Web host from the
seed URL and only download the URLs that can pass the
filters (since a piece may contain several sub-sets, there may
be multiple filters).

Figure 11 shows the overlap rate and coverage rate
caused by our partition method under five different Ns. On
one hand, we can see that when the number of pieces (N)
increases, the overlap rate increases accordingly. The best
choice may lie between N = 2 and N = 5. On the other
hand, the coverage rates under different Ns subject to little
difference. Under the worst condition, only 50% Web pages
are found. However there are still 80% Web hosts whose
coverage is bigger than 90%.

5.3 DHT Simulations

5.3.1 Simulation Setups

In this sub-section we conduct a series of DHT simulations
based on PlanetSim† to evaluate the proposed load balanc-
ing method. We adopt MIT’s King dataset†† to simulate the
RTTs between the crawlers and the Web hosts. We adopt
the algorithm of GNP to map the network hosts into coor-
dinates of a 3d coordinate space. The node distribution of
the NC space and the CAN space are shown in Fig. 12. Al-
though Fig. 12 (b) shows much better node distribution than

(a) NC space (b) CAN space

Fig. 12 Node distribution before and after transformation (King dataset).

Fig. 13 Relative errors of the network coordinates.

Fig. 14 Distribution of the page number.

Fig. 12 (a), most of the nodes still concentrate on four small
areas. This severely uneven node distribution causes load
balancing issue in the simulation. Figure 13 shows the rela-
tive error of the network coordinates.

The king dataset (1740 nodes) is divided into two sets:
1600 simulated Web hosts and 140 simulated crawlers. We
randomly select 1600 hosts from the 1738 hosts used in 5.2
and map their sizes (number of pages, 10 KB each) to the
1600 simulated Web hosts (the distribution of page num-
ber is shown in Fig. 14). The total number of Web pages
is 15,187,511. The simulation involves 10000 steps. In or-
der to quickly push the system into a stable mode, we insert
70% crawlers in the first step and within the first 10 steps
we submit all the Web hosts (pieces).

On one hand, the crawlers are added to the system
according to the Poisson distribution (λ = 0.1). The
living time of each crawler obeys the normal distribution
N(1000, 200) which means 95% crawlers’ living time is be-

†http:// projects-deim.urv.cat/trac/planetsim/
††http://pdos.csail.mit.edu/p2psim/kingdata/



XU et al.: EFFICIENT DISTRIBUTED WEB CRAWLING UTILIZING INTERNET RESOURCES
2757

tween 1000− 1.96 · 200 = 608 steps and 1000+ 1.96 · 200 =
608 steps. After the living time, the crawler either LEAVEs
or FAILs with a random probability. Because we don’t have
too many unique crawlers (only 140) in the dataset, the dead
crawlers are recycled: each dead crawler is re-inserted to the
event chain and will re-JOIN the DHT later again. The re-
JOIN time gap obeys the normal distribution N(600, 200).

On the other hand, the Web hosts are submitted to the
system according to the Poisson distribution (= 1) which
is more frequent than that of the crawlers. We also simu-
late the situation when a Web host can be partitioned into
pieces. Here, we use the partition results of the 1600 hosts
(randomly selected from the 1738 hosts) to form the Web
hosts’ pieces. The number of pieces a Web host can be split
are decided according to the overlap rate (less than 50$).
Typically each Web host is split to 2 3 pieces. The max-
imum number of pieces of one Web host is no more than
4. All Web hosts and pieces are periodically re-crawled (re-
submitted), the time gap of each re-crawl is fixed to 500
steps. During the crawl, we assign at most one TCP con-
nection to each Web host (piece). The maximum number
of concurrent TCP connections on each crawler is fixed to
5. If the number of Web hosts (or pieces) assigned to the
crawler exceeds this number, they are queued. If a Web host
(or piece) is queued on a crawler so long that the time ex-
ceeds the re-crawl time gap (500 steps), then the Web host
(or piece) will be canceled by the crawler. We choose to set
the number of concurrent TCP connections to a relatively
small value so that the issue of load balancing can stand out.

All the crawler-host download rate are equally sized
(1 Mb/s), while the crawler-host RTT are extracted from
the king dataset. Then the execution time of each Web
host is calculated by adding all the RTTs, DLTs and PWTs
(100 ms) involved. The execution time (ms) of each Web
host is mapped to steps by dividing the execution time by
2 · 104. For example, assuming that for one Web page the
RTT = 100 ms, DLT = 100 ms, PWT = 100 ms, the total
download time (execution time) of the Web host (or piece)
with 10000 pages is (100+100+100) ·10000 = 3 ·106. Then
the execution steps is 3·106

2·104 = 150. According to this map-
ping method, the total simulation time (10000 steps) equals
to 55.56 hours. The crawler’s memory size is fixed to 1 GB.
Thus the crawler’s capacity min(BWdownload, S memory) equals
to min(1 Mb/s, 1 GB) = 1. And the crawler’s RTL equals to
RT Li =

Npieces

1 = Npieces.

5.3.2 Simulation Results

In the simulation, we compare the following schemes:

DHT Conventional DHT: SHA1 hash-based Chord (the
method of Apoidea) and CAN.

NC-CAN Proposed in Sect. 3.
LBI LBI-optimized NC-CAN proposed in Sect. 4. We set

TTL = 3 (the best choice according to experience),
OT = 11.

LBI split LBI with partitioned Web hosts: we split larger

Fig. 15 System throughput comparison.

Fig. 16 RTT/2 comparison.

Web hosts into pieces and submit the pieces in turn.

We found that with SHA1 hash, Chord and CAN per-
forms similarly. As a result, only the performance of CAN
is presented in the figures. The OT in LBI scheme is de-
cided according to the number of the Web hosts (1600) and
the number of the crawlers (140). On average the Npieces

is 1600
140 = 11.4; as the crawlers’ capacities are equally sized,

the OT equals to 11.4
min(1,1) = 11.4 ≈ 11

Figure 15 shows the aggregated download rate of the
system (the combination of all crawlers’ download rate) at
different steps. We use the download rate as the metric to
evaluate the system’s throughput. On one hand, compared
with conventional DHT, NC-CAN on average increases the
system throughput by 27%. The result is mainly caused
by the NC-estimated RTTs. As we analyzed in 5.1, reduc-
ing the crawler-host RTTs can reduce the download time of
each Web page, thus the aggregated download rate can be
increased. On the other hand, LBI and LBI split achieve
much higher download rate (more than 43% increase) and
LBI split outperforms LBI by 10%.

Figure 16 shows the mean of crawler-host RTT/2s.
First, through both Fig. 15 and Fig. 16 we can see that the
scheme with the highest RTTs which is DHT has the lowest
system throughput. Second, although NC-CAN has lower
RTTs than that of the LBI, the LBI has higher download rate.
This time the determining factor is load balancing. The is-
sue is further investigated in the following literature.

In addition, we add a trivial scheme called LBI RTT
to try to save LBI’s RTT reduction. Under this method,
when a crawler A is to forward a Web host a, crawler A



2758
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

(a) executing tasks

(b) executing workloads

Fig. 17 Executing tasks comparison.

not only compares the RPL of its neighboring crawlers but
also compares the Euclidean distances between each neigh-
boring crawler and a. Crawler A then derives a forwarding
target by weighing the two factors. This method achieves
even lower RTTs than NC-CAN. However, its throughput is
very similar to that of the LBI (the two curves almost coin-
cide so we don’t draw it in Fig. 15).

Figure 17 (a) shows the number of executing tasks
within the system. Here we treat the Web hosts and the
pieces equally as tasks because from the perspective of a
crawler they don’t have substantial difference. The curves
is very similar to Fig. 15. Intuitively, we can conclude that
the more tasks the system is executing the more download
rate the system can achieve. However, this is only partially
true as the curve of NC-CAN is even lower than the curve
of the DHT . The reason why the download rate of NC-CAN
still exceeds that of the DHT in Fig. 15 lies in the RTTs.
With lower RTTs, the crawlers in the NC-CAN-system can
achieve higher download rates. The download rates of NC-
CAN-scheme are so high that they catch up with the DHT-
scheme which has more executing tasks.

In Fig. 17 (b) we take the number of pages (we call the
workloads) in each Web host into consideration. An impor-
tant thing to note is that the curve of the LBI split is very
low. This is because the Web hosts are split into pieces.
And the workload of each piece is relatively small. In the
following analysis we can see that smaller workload leads
to shorter execution time which is important in a dynamic
environment where crawlers JOIN and LEAVE (FAIL) con-
stantly.

Figure 18 (a) shows the number of queued tasks. Fig-

(a) queued tasks

(b) queued work loads

Fig. 18 Queued tasks comparison.

ure 18 (b) takes the number of pages (we call the work-
loads) in each Web host into consideration. In Fig. 18 (a)
the LBI split’s queued tasks outnumber the LBI’s. This is
because there are more tasks (pieces) within the LBI split-
system. However, when it comes to the workloads, we can
see that the LBI split-system doesn’t queue more workloads
than the LBI-system does. The figures also reveal why there
are more tasks under execution in the LBI*-system: more
than half of the tasks in DHT-system and NC-CAN-system
are queued! We think this is because a portion of crawlers in
these systems bears too many tasks (and workloads) while
the other crawlers are almost idle. The analysis of Fig. 19
confirms our assumption.

Figure 19 shows the coefficient variation of each
crawler’s tasks (we call load variation). In Fig. 19 (a), we
take all the tasks assigned to the crawlers (including execut-
ing tasks and queued tasks) into consideration. As is already
shown in Fig. 12, the Web hosts unevenly distribute across
the logical space. This phenomenon causes load balancing
issue. NC-CAN-scheme in Fig. 19 (a) performs the worst be-
cause it doesn’t make adjustment to the issue. DHT-scheme
performs a little better, because it uses a SHA1 hash method
instead of the network coordinates. In contrast, all the LBI*
methods leads to much lower load variation. The LBI split
shows the lowest load variation because 1) it has smaller
task granularity and 2) the number of tasks (pieces) within
the system is bigger than that of the LBI. In Fig. 19 (b) we
only take the executing tasks into consideration. The trend
is very similar to Fig. 19 (a).

In our system, if a crawler LEAVEs or FAILs, the tasks
assigned to it are migrated to other crawlers. The dead



XU et al.: EFFICIENT DISTRIBUTED WEB CRAWLING UTILIZING INTERNET RESOURCES
2759

(a) all tasks

(b) executing tasks

Fig. 19 Load variation comparison.

crawler’s successor re-executes all the inherited tasks. An
alternative design (we call the recovery strategy) is to peri-
odically replicate the crawler’s breakpoint information (in-
cluding the current depth, current URL todo and URL seen
data structures) and recover the tasks accordingly when the
crawler leaves the system. We consider the re-execution
strategy a better choice than the recovery strategy since
periodically replicating breakpoints brings more additional
bandwidth cost to the system. Figure 20 (a) shows the num-
ber of migrated tasks and Fig. 20 (b) shows the number of
migrated workloads recorded under the re-execution strat-
egy. The number of NC-CAN-system is smaller than that
of DHT-system, because compared with the DHT-system
tasks within the NC-CAN-system have shorter execution
time (download time). But because there are too many tasks
queued in the NC-CAN-system, many queued tasks are mi-
grated even before their execution. In contrast, thanks to
the load balancing, more tasks are able to be completed be-
fore their crawlers leave the system. From Fig. 20 (b) we
can see that LBI split has the smallest number of migrated
workloads which means that the time cost on re-executing
the migrated tasks is also small.

More re-crawl times leads to higher update-rate which
is very important to a Web search service. As the Web hosts
(or pieces) are periodically submitted to the crawlers (every
500 steps), ideally, each Web host should be re-crawled 20
times (10000 steps/500 steps). However, in our simulation,
we find that not all the Web hosts are re-crawled that many
times. Some tasks are cancelled because they have been
waiting in the crawler’s queue for over 500 steps. We draw
a CDF (Fig. 21) to show the distribution of each Web host’s

(a) migrated tasks

(b) migrated work loads

Fig. 20 Migrated tasks comparison.

Fig. 21 Execution time comparison (CDF).

re-crawl times. From the figure we can see that all the Web
hosts under the four system schemes are at least re-crawled
2 times. More than 50% Web hosts within NC-CAN-system
are re-crawled more than 10 times. More than 90% Web
hosts within the LBI*-systems are re-crawled more than 15
times. The result means that each Web host is re-crawled
(updated) every 3.7 hours under LBI*-systems.

The final experiment we take is a scalability test. Here
we separately run 7 tests for each scheme we mentioned be-
fore. In each test, the crawlers’ maximum number is lim-
ited to 20, 40, 60, 80, 100, 120 and 140. Figure 22 (a)
shows the statistics on the system throughput. Figure 22 (b)
shows the average throughput of each single crawler. Under
LBI*-scheme, the single-crawler throughput always main-
tains between 0.75 Mb/s and 0.9 Mb/s. On the other hand,
the crawler’s throughput under NC-CAN-scheme and DHT-
scheme tends to decrease. Both NC-CAN-scheme and DHT-
scheme decrease 0.15 Mb/s of throughput when the num-



2760
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

(a) system throughput

(b) single crawler throughput

Fig. 22 Scalability comparison.

ber of crawlers changes from 20 to 140. Nevertheless, NC-
CAN-scheme still outperforms DHT-scheme by about 30%.
The results shows the high scalability of the LBI*-schemes.

5.3.3 Conclusions

Here we conclude the result of our simulations. The sys-
tem’s performance is mainly contributed by the two fac-
tors: the crawler-host RTTs and load variation. The con-
ventional DHT-based system model (such as Apoidea) only
achieves conservative performance since it barely pushes the
load balancing issue to the hash function and ignores the
impact of the RTTs. In our simulation, the optimization on
the RTTs described in 3.2 (NC-CAN) increases the system’s
throughput by 27%. However, through a further analysis we
find that the system’s performance can be further optimized
by balancing the load among the crawlers. By applying the
load balancing method proposed in 4.2 (LBI), the system’s
throughput can increase more than 43%. We also test our
Web host partition method (LBI split). The method also
brings improvements to the LBI. Finally, we take a scal-
ability test which shows the high scalability of the LBI*-
methods.

6. Related Works

The existing distributed Web crawling systems can be clas-
sified into two types: the cluster-based systems and the
Internet-based systems. The cluster-based systems such as
Mercator [25], the early form of Google [26] have their ma-
chines located in the same location both in the network and

the physical world. There’s no way to reduce network dis-
tance between the crawlers and hosts since all crawlers sub-
ject to the same network distance to any Web site.

The Internet-based systems have their machines lo-
cated all over the Internet, so that they are able to make opti-
mizations in reducing the crawler-host distance and achieve
a higher retrieving speed. The research on the Internet-based
crawling generally started from the beginning of the 21st
century, as the cluster-based systems are facing bottlenecks
in network bandwidth, update rate and scalability. Cho,
J. [11] first proposed a series of basic concepts on paralle
crawling and distributed crawling, including classification
methods, evaluation metrics and so on. After 2003, several
systems were proposed: UbiCrawler [6] is the first crawling
system announced to be deployed on WAN. The consistent
hashing [7] method it adopts guarantees the load balancing
among crawlers. However, it prevents the system from opti-
mizations on network distance. In IPMicra [8], crawler is se-
lected to crawl a certain Web site if they were located in the
same AS or ISP network according to the information pro-
vided by Regional Internet Registries (RIRs); SE4SEE [27]
reduces the network distance by assigning crawler Web sites
that were located within the crawler’s country; Apoidea [8]
implements a Chord-based DWC system. However, it didn’t
make optimizations in reducing the crawler-host distance.

Many Internet-based systems are also built by commer-
cial companies and open source community, but few de-
tailed information was exposed about these systems. So
far as we know, YaCy [3] is a distributed search engine
providing user-customized search services; Majestic [5] im-
plemented a crawling system using the architecture of
SETI@Home [2] and sets up a top list of contributors; FA-
ROO [4] implemented a fully distributed P2P search engine
and feeds back profit to the resource contributors.

7. Conclusions and Future Works

DHT-based distributed Web crawling (DWC) is proposed to
implement the Web search service over ordinary computing
resources across the Internet. Content Addressable Network
(CAN) over Network Coordinate System (NC) provides a
way to map network distances to logical distances on the
DHT. Based on this concept, we propose a new system
model for DHT-based distributed Web crawling. We also
propose a new load balancing method for CAN in which the
load balancing operation is performed when each resource
(Web host) is inserted (submitted) into the DHT. Through
our small scale tests, we not only prove the efficiency of our
system model but also find that the crawler-host RTT plays
an important role in determining the system’s total through-
put. Through a larger scale simulation, we further evaluate
the system’s performance.

We recognize that in our current system model, the NC
and manager may become the system’s bottleneck as the
number of Web hosts and crawlers continually increase. In
the future, we want to find more scalable solutions and eval-
uate the system’s scalability.



XU et al.: EFFICIENT DISTRIBUTED WEB CRAWLING UTILIZING INTERNET RESOURCES
2761

The other problem is that if a node (crawler) doesn’t
want to do the jobs it could always pretend to be overloaded
and send the jobs to the other nodes, which increases the
possibility of selfishness. We consider the selfishness can be
avoided if the selfish behavior brings no benefit. A reason-
able way is to build a mechanism to encourage the contribu-
tion of computing resources, e.g. feedback profit (from the
search service) to the contributor according to the number
of Web pages his/her machine has downloaded. Under this
mechanism, the selfish nodes who don’t do the jobs would
gain no profit at all. Therefore, the selfish nodes have no
reason to be “selfish”.

Currently we only implement the functionality of
crawling the Web 1.0 sites, for example news sites and uni-
versity sites. We recognize our system model can be applied
to the BBS site. The only difference is the design of the
crawler since crawling the BBS sites needs some additional
functionality such as login. To the Blog sites we currently
don’t have sufficient solutions since these sites may consist
of millions of independent hostnames and lack global in-
dexes. In the future, we want to scale our system to support
the BBS sites and Blog sites.

Acknowledgments

I would like to give my special thanks to Master students Li
Sun, Chuan-Liang Yu and Yi-Fan Wei who helped me a lot
during the writing of this paper.

This paper was partially supported by the Na-
tional Natural Science Foundation of China under Grant
No.60703014; the National Grand Fundamental Research
973 Program of China under Grant No.G2005CB321806;
the Specialized Research Fund for the Doctoral Program of
Higher Education, SRFDP No. 20070213044; the National
High-Tech Research and Development Plan of China under
Grant Nos. 2007AA01Z442; the National High-Tech Re-
search and Development Plan of China under Grant Nos.
2009AA01Z437.

References

[1] I. Foster, “Internet computing and the emerging grid,” Nature, 2000.
[2] D. Werthimer, J. Cobb, M. Lebofsky, D. Anderson, and E. Korpela,

“Seti@home–massively distributed computing for seti,” Comput.
Sci. Eng., vol.3, pp.78–83, 2001.

[3] “Yacy distributed Web search.” http://yacy.net/
[4] “Faroo real time searchh.” http://www.faroo.com/
[5] “Majesti-12: Distributed Web search.” http://www.majestic12.co.uk/
[6] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “Ubicrawler: A

scalable fully distributed Web crawler,” Eighth Australian World
Wide Web Conference (AUSWEB’02), 2002.

[7] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D.
Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide Web,” ACM
Symposium on Theory of Computing, pp.654–663, ACM, New
York, NY, USA, 1997.

[8] A. Singh, M. Srivatsa, L. Liu, and T. Miller, “Apoidea: A decen-
tralized peer-to-peer architecture for crawling the world wide Web,”
SIGIR’03 Workshop on Distributed Information Retrieval, pp.126–
142, ACM, 2003.

[9] O. Papapetrou and G. Samaras, “Ipmicra: Toward a distributed and
adaptable location-aware Web crawler,” ADBIS’04, Budapest, Hun-
gary, 2004.

[10] S. Ratnasamy, P. Francis, R.K.M. Handley, and S. Shenker, “A scal-
able content addressable network,” ACM SIGCOMM’01, pp.161–
172, ACM, San Diego, California, USA, 2001.

[11] J. Cho and H. Garcia-Molina, “Parallel crawlers,” 11th International
Conference on World Wide Web, pp.124–135, ACM, New York,
NY, USA, 2002.

[12] H.Z.T.S.E. Ng, “Towards global network positioning,” ACM SIG-
COMM Internet Measurement Workshop, San Francisco, CA, USA,
2001.

[13] H.Z.T.S.E. Ng, “A network positioning system for the Internet,”
USENIX Annual Technical Conference, Berkeley, CA, USA, 2004.

[14] M.C.A.R.M. Costa, “Pic: Practical Internet coordinates for dis-
tance estimation,” International Conference on Distributed Systems,
Tokyo, Japan, 2004.

[15] J.C.S.W.M. Pias, “Lighthouses for scalable distributed location,”
2nd International Workshop on Peer-to-Peer Systems (IPTPS’03),
2003.

[16] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decen-
tralized network coordinate system,” ACM SIGCOMM’04, pp.15–
26, 2004.

[17] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, and I. Stoica,
“The impact of dht routing geometry on resilience and proximity,”
ACM SIGCOMM’03, pp.381–394, 2003.

[18] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-
aware overlay construction and server selection,” INFOCOM’02,
2002.

[19] K. Doi, S. Tagashira, and S. Fujita, “Proximity-aware content ad-
dressable network based on Vivaldi network coordinate system,”
5th International Workshop on Databases, Information Systems and
Peer-to-Peer Computing, 2002.

[20] O.D. Sahin, A. Gupta, D. Agrawal, and A.E. Abbadi, “A peer-to-
peer framework for caching range queries,” ICDE’04, 2004.

[21] P. Ganesan, B. Yang, and H. Garcia-Molina, “One torus to rule them
all: Multi-dimensional queries in p2p systems,” 7th International
Workshop on the Web and Databases: colocated with ACM SIG-
MOD/PODS2004, pp.19–24, New York, NY, USA, 2004.

[22] A. Gupta, O.D. Sahin, D. Agrawal, and A.E. Abbadi, “Meghdoot:
Content-based publish/subscribe over p2p networks,” 5th ACM/
IFIP/USENIX international conference on Middleware, pp.254–
273, 2004.

[23] J. Xiong, Q. Qi, P. Hong, and J. Li, “A few optimized load balancing
methods of content addressable network,” J. Electronics & Informa-
tion Technology, 2006.

[24] D. Takemoto, S. Tagashira, and S. Fujita, “Distributed algorithms for
balanced zone partitioning in content-addressable networks,” 10th
International Conference on the Parallel and Distributed Systems,
Washington, DC, USA, 2004.

[25] A. Heydon and M. Najork, “Mercator: A scalable, extensible Web
crawler,” World Wide Web, vol.2, pp.219–229, 1999.

[26] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web
search engine,” Computer Networks and ISDN Systems, vol.30,
pp.107–117, 1998.

[27] B.B. Cambazoglu, E. Karaca, T. Kucukyilmaz, A. Turk, and C.
Aykanat, “Architecture of a grid-enabled Web search engine,” Inf.
Process. Manage., vol.43, pp.609–623, 2007.



2762
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

Xiao Xu received his B.S. and M.S. de-
grees in computer science from Harbin Insti-
tute of Technology (HIT) in 2005 and 2007.
He is now working towards his Ph.D. degree
in computer science at Harbin Institute of Tech-
nology. His research interests include computer
network, distributed computing.

Weizhe Zhang received his B.S., M.S. and
Ph.D. degrees in computer science from Harbin
Institute of Technology (HIT) in 1999, 2001 and
2006 respectively. He has been working in HIT
from 2002 and been an Associate Professor at
computer science of HIT since 2007. His re-
search interests include computer network, the-
ory of computation and parallel computing.

Hongli Zhang received her Ph.D. degree
in computer science in 1999. She is now a Pro-
fessor of school of computer science and tech-
nology of Harbin Institute of Technology (HIT).
She is a member of China Computer Federation.
Her research interests include network security
and grid computing.

Binxing Fang received his Ph.D. in com-
puter science in 1989. He is a Professor of
school of computer science and technology of
Harbin Institute of Technology (HIT). He has
been a Academician of Chinese Academy of En-
gineering since 2005. His research interests in-
clude network security and grid computing.


