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PAPER

A Hybrid Speech Emotion Recognition System Based on Spectral
and Prosodic Features

Yu ZHOU†a), Junfeng LI††b), Yanqing SUN†, Jianping ZHANG†, Yonghong YAN†, Nonmembers,
and Masato AKAGI††, Member

SUMMARY In this paper, we present a hybrid speech emotion recog-
nition system exploiting both spectral and prosodic features in speech. For
capturing the emotional information in the spectral domain, we propose a
new spectral feature extraction method by applying a novel non-uniform
subband processing, instead of the mel-frequency subbands used in Mel-
Frequency Cepstral Coefficients (MFCC). For prosodic features, a set of
features that are closely correlated with speech emotional states are se-
lected. In the proposed hybrid emotion recognition system, due to the in-
herently different characteristics of these two kinds of features (e.g., data
size), the newly extracted spectral features are modeled by Gaussian Mix-
ture Model (GMM) and the selected prosodic features are modeled by Sup-
port Vector Machine (SVM). The final result of the proposed emotion
recognition system is obtained by combining the results from these two
subsystems. Experimental results show that (1) the proposed non-uniform
spectral features are more effective than the traditional MFCC features for
emotion recognition; (2) the proposed hybrid emotion recognition system
using both spectral and prosodic features yields the relative recognition er-
ror reduction rate of 17.0% over the traditional recognition systems using
only the spectral features, and 62.3% over those using only the prosodic
features.
key words: speech emotion recognition, non-uniform subband processing,
spectral feature, prosodic feature

1. Introduction

As one of the most natural and important means in “human-
human” interaction, speech communication consists of two
channels, the explicit channel carrying the linguistic infor-
mation (i.e., the content of the conversation) and the implicit
channel carrying the non-linguistic information (e.g., gen-
der, age, emotion, dialect) [1], [2]. Both linguistic and non-
linguistic information play crucial roles in human speech
communication. Many studies in linguistic information pro-
cessing (e.g., speech recognition and speech synthesis) have
been done in the past several decades; however, the research
on non-linguistic cues has only recently become popular [3].

Non-linguistic cues generally include gender, age,
emotion, stress and nervousness, dialect, and so on [1].
Among these properties, emotion plays a key role in many
applications, for example, in text-to-speech systems to syn-
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thesize emotional speech [4]. So far, different approaches
have been presented to model emotions: one approach
is the definition of discrete basic emotions, for example,
anger, disgust, fear, happiness, sadness, and surprise, as pro-
posed by Ekman [5]; another approach is the utilization of
continuous emotional dimensions, for instance, the three-
dimensional emotional space: arousal (activation), potency,
and valence, as proposed by Schlosberg [6].

In this paper, we present our recent study on automatic
emotion recognition from speech, which has received much
attention for building more intuitive “human-machine” in-
terfaces [7]. Emotion recognition is basically a statistical
pattern classification problem, which consists of two major
steps, feature extraction and classification. While the theory
of classification is pretty well developed [2], the extraction
of distinctive features is a highly empirical issue [2]. There-
fore, our main focus in this research is to extract more ef-
fective features and apply them in one emotion recognition
system.

So far, many speech emotion recognition systems have
already been reported [7]. In these existing systems, how-
ever, the features exploited for emotion recognition are gen-
erally the mel-frequency cepstrum coefficients (MFCC) [7],
[8], which is often used in automatic speech recognition
(ASR) systems. For speech recognition, the features should
emphasize the content of speech (i.e., linguistic informa-
tion). In contrast, the features to be used in emotion recog-
nition systems should be able to highlight the discriminative
cues among different emotions (i.e., non-linguistic informa-
tion), rather than linguistic information of speech. This es-
sential difference means that the MFCC features that are
suitable for ASR systems do not satisfy the requirements
for emotion recognition from speech. As a result, the sys-
tems using only MFCC features achieve very limited emo-
tion recognition results, as reported in [7]–[9]. Furthermore,
prosodic features of speech, which were found to be useful
cues for representing speech emotion information in pho-
netics and linguistics [1], were also used for speech emo-
tion recognition systems [2], [7]. However, the recognition
systems using prosodic features alone demonstrated much
poorer recognition performance than those using spectral
features [2]. Many algorithms of utilizing both spectral and
prosodic features have been proposed. In [10], prosodic fea-
tures, MFCC, and formant features were investigated, and
only the mean and standard deviation of per-frame MFCC
features were extracted for each utterance, then the spectral
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and prosodic features were combined directly at the feature-
level, which might cause a loss of information. Many other
systems use the per-frame MFCC features, and then inte-
grate them with prosodic features, such as the phoneme-
level modeling in [11]. In [11], per-frame based MFCC fea-
tures was suggested to be complementary to the supraseg-
mental prosodic features, however, the improvement is not
obvious after combining the spectral features with prosodic
features. Besides, the prosodic features used in this study
mainly come from F0 and the performance could be fur-
ther improved including much wider range of prosodic fea-
tures [11].

To address the problems of traditional emotion recog-
nition systems, In this paper, we propose a new spectral fea-
ture extraction approach using a novel non-uniform subband
processing technique that is designed based on the speech
emotion production mechanism. Moreover, to make use of
the complementary information prosodic features may pro-
vide, a much wider range of prosodic features closely re-
lated to emotion states in speech are selected from the previ-
ous studies [1], [2] compared with [11]. Both the newly ex-
tracted spectral features and the selected prosodic features
are exploited in the proposed emotion recognition system.
Because of the differences in size of the feature vectors be-
tween the non-uniform spectral features and the prosodic
features, two different classifiers are applied in our pro-
posed emotion recognition system, namely, the Gaussian
Mixture Model (GMM) classifier for the non-uniform spec-
tral features, and the Support Vector Machine (SVM) classi-
fier for the prosodic features. The proposed hybrid emotion
recognition system yields the final decision through com-
bining the results from both classifiers. Experimental re-
sults show that (1) the proposed non-uniform spectral fea-
ture is more effective than the traditional MFCC feature for
emotion recognition; (2) the proposed emotion recognition
system using both spectral and prosodic features yields the
relative recognition error reduction rates of 17.0% over tra-
ditional recognition systems using only spectral features and
62.3% over using only the prosodic features.

The remainder of this paper is structured as follows.
In Sect. 2, we show the overview of the proposed speech

Fig. 1 Block diagram of the proposed hybrid emotion recognition system.

emotion recognition system. In Sect. 3, we describe the
GMM-based emotion recognition subsystem using the spec-
tral features extracted by a new non-uniform subband pro-
cessing technique. In Sect. 4, we introduce the SVM-based
emotion recognition subsystem using prosodic features. In
Sect. 5, the proposed hybrid emotion recognition system is
described by combining the GMM-based subsystem and the
SVM-based subsystem. In Sect. 6, experiments are per-
formed to evaluate the proposed non-uniform spectral fea-
tures and the proposed hybrid emotion recognition system.
Finally, Sect. 7 draws some conclusions.

2. Overview of the Proposed Hybrid Emotion Recogni-
tion System

As one pattern recognition system, the proposed emotion
recognition system includes: a training procedure to train
the models based on the extracted features, and a testing pro-
cedure to recognize emotions from speech using the trained
models. More specifically, the proposed hybrid emotion
recognition system consists of a GMM-based subsystem
using spectral features and a SVM-based subsystem using
prosodic features. The block diagram of the proposed sys-
tem is shown in Fig. 1.

In the GMM-based subsystem, the new spectral fea-
tures based on a novel non-uniform subband processing
technique are applied to each frame of input signal. In the
SVM-based subsystem, the prosodic features are exploited
for each utterance, rather than each frame signal, which
means that little data is available for prosodic features in
comparison with the spectral features. This difference fur-
ther leads to different modeling approaches being utilized
for individual feature sets. That is, in the training process,
spectral features are modeled using GMM, while prosodic
features are modeled using SVM. Those trained models
are further used for emotion classification in the recognition
procedure. The final decision on emotion recognition of the
proposed system is realized by combining the recognition
scores of two recognition sub-systems.
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3. GMM-Based Emotion Recognition Subsystem with
Non-uniform Spectral Features

In this section, a new non-uniform subband processing tech-
nique is proposed on the basis of the emotion production
mechanism [12], from which the new spectral features are
extracted to highlight the emotion information in speech. Fi-
nally, a GMM emotion recognition subsystem is constructed
using the new non-uniform spectral features.

3.1 Novel Non-uniform Subband Processing

Recent research on emotion in speech production showed
that horizontal shift of tongue tip is observed when emo-
tion changes [12], which concerns the third formant of vow-
els (i.e., around 3000 Hz) [13], and glottal information (e.g.,
100 ∼ 400 Hz) also contributes greatly to emotion expres-
sion in speech [2]. That is, emotion information in speech
is encoded unevenly in frequency regions, which provides
the basic motivation of the proposed non-uniform sub-band
processing.

3.1.1 Calculation of Mutual Information

To design the non-uniform sub-band processing technique,
the different contribution of each frequency band in emo-
tional speech production is proposed to be quantified
through investigating the dependency between the output
of each frequency band and emotional states. Specifically,
the input emotional speech signal is first divided into sev-
eral subbands by a group of triangle-shaped band-pass fil-
ters with linear frequency scale. For an emotional speech
feature X and emotional state Y , the dependency of the emo-
tional state on each frequency band is then formulated using
the mutual information measure, defined in [14]

I(X; Y) = H(X) + H(Y) − H(X,Y), (1)

where H(X) and H(Y) are the marginal entropies, and
H(X,Y) is the joint entropy of X and Y . The entropy of
X is defined as

H(X) = −
∑

x∈X
p(x) log p(x). (2)

where x is a value of an emotional speech feature X, which
is the output of each frequency band, and y is a label value
of emotional classes. Specific to our study, as x is a continu-
ous stochastic variable, its probability distribution function
(PDF) is estimated by discretizing x and represented by a
histogram [15], and then the marginal entropy is calculated
using Eq. (2). The detailed steps are as follows:

• Find the minimum and maximum values of x, i.e., xmin,
and xmax, as the boundary.
• Divide [xmin, xmax] equally into I intervals, with the

length of each segment equals Δx.

• Count the number of samples in the i-th interval, denote
as ki.
• With the total number of samples equals N, the

marginal entropy of x is calculated as H(X) =

−∑I
i=1

(
ki

N log ki

N

)
+ logΔx

As y is a discrete variable, the possible values of Y
could be enumerated. Denote K is the number of emo-
tion classes, the marginal entropy of Y is calculated as
H(Y) = −∑K

j=1

( k j

N log k j

N

)
+ logΔy, where k j is the num-

ber of samples of the jth emotion class, and Δy = 1. As
in the training data, the samples of different emotion classes
are approximately the same, k j is approximated as N

K , and
H(Y) ≈ log K.

The calculation of joint entropy of H(X,Y) using his-
togram is similar to the calculation of H(X).

• The same with the first two steps of the calculation of
H(X).

• Count the number of samples in the i-th interval for the
j-th emotion class, denote as ki j.

• With the total number of samples equals N, the
joint entropy of X and Y is calculated as H(X,Y) =
−∑I

i=1
∑K

j=1

( ki j

N log ki j

N

)
+ log(ΔxΔy)

With the entropies H(X), H(Y), and joint entropy H(X,Y),
the mutual information I(X; Y) is finally computed using
Eq. (1).

3.1.2 Design of Non-uniform Subband Processing

Given each emotional speech utterance, the speech is framed
and windowed by a hamming window, then the FFT is car-
ried on each frame. Using uniform spaced filter bands, the
output of each frequency band could be obtained. Then the
mutual information between the output of each frequency
band and the emotional state could be calculated using
above methods on each frequency band. After the mutual
information are obtained for each subband using Eq. (1), a
frequency-dependent mutual information curve is obtained
by plotting each mutual information value at the center of its
frequency region. To exemplify the non-uniform distribu-
tion of emotion in speech according to frequencies, we used
the CASIA Mandarin emotional speech corpus, which was
designed and collected for emotion recognition study, pro-
vided by Chinese-LDC [16]. This database contains short
utterances from four persons, covering five emotions (i.e.,
angry, happy, surprised, neutral and sad). For each per-
son, there are 1500 utterances (i.e., 300 utterances for each
emotion) with the sampling frequency of 16 kHz. The emo-
tion discriminating ability of each frequency band is quanti-
fied using mutual information criterion with 2000 utterances
(i.e., 100 utterances for each person and each emotion), as
shown in Fig. 2.

Figure 2 indicates that different frequency bands are
characterized by frequency-dependent mutual information
indices, corresponding to their different contributions to



2816
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.10 OCTOBER 2010

Fig. 2 Emotional speech discriminative score in frequency domain using
mutual information.

Fig. 3 The design procedure of the non-uniform sub-band processing.

emotion in speech. More specifically, two frequency re-
gions, the region with frequencies less than 300 Hz (cor-
responding to glottal information) and that with frequen-
cies around 3000 Hz (corresponding to the movement of
tongue tip), play the important roles in emotion discrimi-
nation, which is also consistent with the study on emotional
speech production [12], [13].

3.1.3 Implementation of Non-uniform Subband Process-
ing

The non-uniform distribution of emotion information of
speech in the frequency domain is realized by a novel sub-
band processing technique. The basic idea behind this pro-
posed non-uniform subband processing technique is that:
the frequency regions with high mutual information (i.e.,
contribute more to emotion discrimination) should be em-
phasized through more subband filters with narrower band-
width (i.e., high frequency resolution); while those with low
mutual information should be de-emphasized through using
fewer subband filters with wider bandwidth (i.e., low fre-
quency resolution).

The implementation of the proposed non-uniform sub-
band processing technique is shown in Fig. 3. The band-
width of each subband is determined according to the recip-
rocal of mutual information in that corresponding subband.
It is not easy to calculate the bandwidth for each subband
directly from the reciprocal value of mutual information
when the boundary of the subband is not fixed, therefore,
the number of subbands that is proportional to the mutual
information is instead considered first. Since scaling does

Fig. 4 Bandwidth of non-uniform sub-bands according to the reciprocal
value of mutual information. The vertical axis shows the relative values of
bandwidth and the reciprocal of mutual information.

not change the distribution function, the normalized distri-
bution function of the number of bands is the same as that of
the mutual information. Assuming the mutual information
value for each subband is MIi, (i ∈ 1 . . . 24), first the cu-
mulative sum of Mdi is calculated to obtain the distribution
function of the mutual information as:

Mdi =
Σi

j=1MIj

Σ24
j=1MIj

, i ∈ 1 . . . 24 (3)

Second, the distinct distribution function is interpo-
lated from the frequency domain to the FFT space using cu-
bic spline interpolation [17], which is the Mcj. When the
sampling rate is 16 kHz and the window size is 25 ms, the
number of FFT is 512, then j ∈ 1 . . . 256. Third, given the
target number of subbands Ns, the distribution is mapped
from [0, 1] to 1..Ns by linear transformation and Rounding
to ceiling integers as:

Cnj = ceil(Mcj ∗ Ns), j ∈ 1 . . . 256 (4)

where ceil(x) signifies the least integer which is no less than
x. Then the new map from FFT point to the corresponding
channel number is gotten as Cnj. The data chosen for the
mutual information analysis is the CASIA Mandarin emo-
tional speech corpus, including 5 emotions from 4 speakers.

The obtained bandwidths of all subbands are plotted
with frequency in Fig. 4, where the ranges of curves have
been normalized for comparison. Figure 4 demonstrates that
the bandwidths of the designed subbands follow the chang-
ing tendency of the reciprocal value of mutual informa-
tion. The designed non-uniform subband filters are shown
in Fig. 5, along with the mel-frequency subband filters for
comparison.

3.2 Novel Spectral Features Extraction Using Non-
uniform Subband Processing

The non-uniform subband processing technique is further
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Fig. 5 The mel-frequency subband filters in MFCC features, and the pro-
posed non-uniform subband filters in NUFCC features.

Fig. 6 The extraction diagram of the proposed spectral features, non-
uniform frequency cepstral coefficient (NUFCC).

exploited to design the new spectral features, namely non-
uniform cepstral coefficients (NUFCC). The NUFCC fea-
tures are extracted using a similar procedure, shown in
Fig. 6, to that in the calculation of mel-frequency cepstral
coefficient (MFCC) which is generally used in speech recog-
nition systems. Specifically, a voice activity detector (VAD)
is first used to eliminate pauses in speech (while the pauses
within one utterance are kept, since they contain some emo-
tion information [18]); the hamming window with 25 ms
frame length and 10 ms shift is applied to provide the win-
dowed short-time frames. The 512-sample Fast Fourier
Transform (FFT) is then exploited, followed by the pro-
posed non-uniform subband processing to output the spec-
trum for each subband. Finally, logarithm and discrete co-
sine transform (DCT) are adopted to generate 12 order cep-
stral coefficients with energy. Note that the difference of
calculation procedures between NUFCC and MFCC is that
different subband design criterions are used, namely, mel-
frequency subbands for MFCC and non-uniform subbands
for NUFCC. We believe that this proposed NUFCC feature
could be more suitable for emotion recognition task because
of its frequency-dependent emotion discrimination ability
(i.e., the non-uniform sub-band processing), which will be
verified through an experiment.

3.3 GMM-Based Emotion Recognition Subsystem

In our emotion recognition system, the newly designed
NUFCC features are modeled using GMM, which has been
widely used in state-of-the-art emotion recognition. GMM
can provide a smooth approximation to the underlying dis-

tribution of the feature vectors of the speech signal. GMM
assumes that the probability distribution of the mixture den-
sity used for the likelihood function of a D-dimensional fea-
ture vector, x, is defined as:

p(x|λ j) =
M∑

i=1

πiN(x : μi,Σi) for j = 1, 2..K (5)

where K is the number of emotion classes, i.e., the number
of emotion models, πi are the mixture weights, N(x : μi,Σi)
are the multivariate normal distribution, and M is the num-
ber of the components. Each component densities are pa-
rameterized as Eq. (6) with

∑
i is a covariance matrix and μi

is a mean vector.

N(x : μi,Σi) =
1

(2π)
D
2 |Σi| 12

e−
1
2 (x−μi)TΣ−1

i (x−μi) (6)

The mixture weight, πi, must satisfy the constraint ΣM
i=1πi =

1. The complete density model parameters can be written as
Eq. (7)

λ j = [π1, . . . , πM , μ1, . . . , μM ,Σ1, . . . ,ΣM] (7)

There are several methods available for estimating pa-
rameters of a GMM [19], and the most popular method is
the Expectation Maximization (EM), which is based on the
maximum likelihood (ML) criterion. The mixture weight,
πi, mean vector, μi, and covariance matrix Σi can be de-
termined using the EM algorithm iteratively [20], [21]. To
choose suitable orders of GMM, orders above 512 were not
studied, considering insufficient training data for properly
training the emotion models. For orders varying from 32 to
512, experiments which were not included here had shown
that our best result is achieved for 512 mixture components
with spectral features. The parameters of the GMM model
are estimated during the training stage, and further used in
the emotion recognition stage for the likelihood probability
calculation.

Given an observation x, a spectral feature sample for
emotion recognition, the posterior probability of being the
j-th emotion model λ j is defined as:

p(λ j|x) =
p(λ j, x)

p(x)
=

p(x|λ j)p(λ j)∑K
i=1 p(x|λi)p(λi)

(8)

where p(x|λ j) is the likelihood of seeing the observation
x given the j-th emotion model. Generally, all the emo-
tion models are assumed to have equal priori, so this term
could be removed from both the numerator and denomina-
tor, and the posterior probability p(λ j|x) can be obtained us-
ing Eq. (8) and Eq. (5).

4. SVM-Based Emotion Recognition Subsystem with
Prosodic Features

As mentioned in the Introduction, in addition to spectral fea-
tures, prosodic features have been found to be closely re-
lated to speech emotional states. In this paper, therefore,
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prosodic features are also used in speech emotion recog-
nition. According to the studies on prosodic features and
emotional speech [1], [2], [8], the following prosodic fea-
tures, namely, fundamental frequency, loudness features,
voice source features and harmonicity features, are selected
and implemented in the emotion recognition system. In the
recognition system, more specifically, the prosodic features
include the 11 dimensional fundamental frequency feature
vector, 20 dimensional loudness feature vector, 42 dimen-
sional voice source feature vector and 14 dimensional har-
monicity feature vector. The detailed description of these
prosodic features is shown in [1]. In total, 87 dimensional
prosodic feature is extracted for each utterance and further
used in the recognition system. For emotion recognition, the
extracted prosodic features are modeled by support vector
machine (SVM), which is motivated by the high robustness
of SVM classifier in the scenario when only limited train-
ing data are available [22]. This is essentially because the
prosodic features are extracted for each utterance, unlike the
spectral features for each short-time frame.

C-Support Vector Classification was chosen as the
SVM type, and the radial basis function (RBF) kernel was
used in this study [22]. Crucial parameters for training a
SVM are the value of variance (γ) in the RBF and the
penalty parameter (C) allowing us how strictly we want the
classifier to fit the training data [22]. However, LIBSVM
provides a parameter selection tool: cross validation via par-
allel grid search [22]. First, the training data is separated to
several folds. Sequentially a fold is considered as the vali-
dation set and the rest are for training. The average of accu-
racy on predicting the validation sets is the cross validation
accuracy. Then, a possible interval of C (or γ) with the grid
space was provided, and all grid points of (C, γ) are tried to
see which one gives the highest cross validation accuracy.
The best parameter was used to train the whole training set
and generate the final model, which were used to predict the
class label for a given utterance [22].

SVM was originally designed for binary classification.
As emotion recognition is a multi-class decision problem,
SVMs should be extended efficiently for this purpose. In
[23], three methods of constructing a multiclass classifier by
combining several binary classifiers were compared: ‘one-
against-all’ (or ‘1-vs-rest’), ‘one-against-one’ and the di-
rected acyclic graph SVM (DAGSVM), as well as other
methods considering all classes at once. The results indi-
cated that ‘one-against-one’ and DAG methods are more
suitable for practical use than the other method, with less
training time, and higher accuracy. So in this paper, the
‘one-against-one’ method is adopted to calculate the pair-
wise class probabilities [24], which were further used to get
the class-dependent-probabilities for combination with the
GMM system, with details given below.

For a multi-class decision problem, where the number
of classes is k, given any input x, the posterior probability of
being the i-th emotion model:

pi = p(y = i|x), i = 1, 2, . . . , k. (9)

First, pairwise class probabilities ri j was estimated us-
ing an improved implementation [25] of [26]

ri j ≈ p(y = i|y = i or j, x) ≈ 1

1 + eA f̂+B
, (10)

Where A and B were estimated by minimizing the negative
log-likelihood function using known training data and their
decision value f̂ [25]. Labels and decision values were ob-
tained through conducting the above cross-validation.

Then the approach which was brought up in [24] is
used to obtain pi from ri j’s. It solves the following opti-
mization problem:

min
p

1
2

k∑

i=1

∑

j: j�i

(r ji pi − ri j p j)
2

subject to
k∑

i=1

pi = 1, pi ≥ 0,∀i (11)

For further discussion, please refer to [25] and [22].

5. Proposed Hybrid Emotion Recognition System

With the GMM-based and SVM-based emotion recognition
subsystems, described in Sects. 3 and 4, the proposed hybrid
emotion recognition system finalizes the recognition results
by combining these two subsystems.

Suppose pigmm and pisvm are the posteriori probabili-
ties for the i-th emotion class obtained by the GMM-based
recognition subsystem in Sect. 3 and by the SVM-based
recognition subsystem 4. The recognition score for the i-
th emotion class by the proposed hybrid recognition sys-
tem can be finalized by the linear combination of pigmm and
pisvm, given by

pihybrid = α ∗ pigmm + (1 − α) ∗ pisvm, (12)

where α is a weight constant between 0 and 1, and denotes
a parameter controlling the contributions of both the GMM-
based subsystem and the SVM-based subsystem to the hy-
brid recognition system. If α equals 0, then the classification
result is entirely determined by the SVM likelihoods. On the
contrary, if α equals 1, then it is entirely determined by the
GMM likelihoods. This parameter was experimentally set
to 0.8 in the following experiments, which means that the
weight of the GMM-based posterior probability (α) is much
larger than that of SVM-based posterior probability. It is
reasonable as the recognition performance of GMM-based
method is better than SVM-based one.

6. Experiments and Results

To evaluate the superiority of the proposed NUFCC features
over the traditional MFCC features, the emotional recog-
nition system with NUFCC features was compared with
the system with MFCC features. In addition, the proposed
emotion recognition system using both non-uniform spec-
tral features and prosodic features was examined and further
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Fig. 7 Recognition results of the emotion recognition system with dif-
ferent spectral features, namely NUFCC and MFCC features. The GMM
classifier is used in both recognition systems.

compared with the systems using only NUFCC features, and
a system with only prosodic features.

In the following two experiments, the emotional speech
corpus CASIA provided by Chinese-LDC was used. For
training, 200 utterances from each emotion of each person
were randomly selected, and the other remaining utterances
were used for testing.

6.1 Evaluation of the NUFCC Features

In this experiment, we focus on investigation of the superi-
ority of the newly proposed NUFCC features relative to the
traditional MFCC features. In the experiment, both static
and dynamic features were extracted and employed in emo-
tion recognition. Specifically, 39 dimensional NUFCC (or
MFCC) features, including 12 NUFCC (or MFCC) and their
first and second order derivatives, along with the normalized
power feature, were extracted from emotional speech as fea-
tures of the emotion recognition system. The GMM with
512 mixtures were trained using the extracted NUFCC fea-
tures or MFCC features for discriminating emotions in these
two systems.

The recognition results for each emotion obtained by
the two systems with different features (i.e., NUFCC or
MFCC) are shown in Fig. 7. Figure 7 indicates that the sys-
tem with NUFCC features provides higher emotion recog-
nition rates for all emotional states except for happy, com-
pared with the system with MFCC features. The relative
error reduction rate averaged across all emotions amounts
to 16.4%. The improved emotion recognition performance
should be attributed to the fact that different contributions
of different frequency bands to emotion discrimination in
speech have been considered in the design of NUFCC fea-
tures.

Table 1 Recognition results of three emotion recognition systems, the
GMM-based system with NUFCC features, the SVM-based system with
prosodic features, and the proposed hybrid system with both NUFCC fea-
tures and prosodic features.

GMM-NUFCC SVM-Prosodic Proposed Hybrid
Angry 92.25 71.25 90.25
Happy 77.75 59.75 82.25
Neutral 97.25 80.75 98.00
Sad 91.50 91.00 94.50
Surprise 85.25 73.50 88.50
Average 88.80 75.30 90.70

Fig. 8 Plots of the results of three emotion recognition systems, the
GMM-based system with NUFCC features, the SVM-based system with
prosodic features, and the proposed hybrid system with both NUFCC fea-
tures and prosodic features.

6.2 Evaluation of the Proposed Hybrid Emotion Recogni-
tion System

In this section, experiments were conducted to evaluate the
performance of the proposed hybrid emotion recognition
system, which was further compared with that of the GMM-
based recognition system with NUFCC features and the
SVM-based recognition system with prosodic features.

In implementation, the GMM-based recognition sys-
tem with NUFCC features was the same as that used in Ex-
periment 1. The SVM-based recognition system involved
the 87 dimensional prosodic features detailed in Sect. 4,
which was trained and classified by SVM approach with ra-
dial basis function as kernel. The proposed hybrid system
combined both subsystems in a linear way with the parame-
ter α = 0.8 in Eq. (12).

The recognition results of three emotion recognition
systems, namely the GMM-based system with NUFCC fea-
tures, the SVM-based system with prosodic features and the
proposed hybrid system with both NUFCC and prosodic
features, are listed in Table 1 and further plotted in Fig. 8.
These experimental results show that the GMM-based sys-
tem with NUFCC features results in much higher recogni-
tion accuracies for all emotion states in comparison with
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the SVM-based system with prosodic features. The rela-
tive error reduction rate averaged across all emotions gets to
54.7%. Furthermore, the proposed hybrid emotion recogni-
tion system, by combining these two subsystems, results in
more improved recognition rate (except for “angry”), which
leads to the average relative recognition error reduction rates
of about 62.3% and 17.0% compared to the SVM-based sys-
tem and GMM-based system, respectively.

7. Conclusion

This paper introduced a hybrid speech emotion recogni-
tion system based on both spectral and prosodic features.
For spectral features, we employed a new feature extraction
method based on a novel non-uniform sub-band processing
technique. For prosodic features, a set of prosodic features
that are highly correlated with speech emotional states was
chosen. The proposed hybrid emotion system combines a
GMM-based subsystem that exploits the non-uniform spec-
tral features and a SVM-based subsystem that exploits the
prosodic significance. Experimental results show that the
proposed hybrid emotion recognition system outperforms
the systems using only spectral features or prosodic features.
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