
2898
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

PAPER Special Section on Architectures, Protocols, and Applications for the Future Internet

A Robust Security Mechanism for Mobile Commerce Transactions

Eun-Jun YOON†a) and Kee-Young YOO†b), Members

SUMMARY In 2006, Yeh and Tsai proposed a mobile commerce secu-
rity mechanism. However, in 2008, Yum et al. pointed out that Yeh-Tsai se-
curity mechanism is not secure against malicious WAP gateways and then
proposed a simple countermeasure against the attack is to use a crypto-
graphic hash function instead of the addition operation. Nevertheless, this
paper shows that both Yeh-Tsai’s and Yum et al.’s security mechanisms still
do not provide perfect forward secrecy and are susceptible to an off-line
guessing attack and Denning-Sacco attack. In addition, we propose a new
security mechanism to overcome the weaknesses of the previous related
security mechanisms.
key words: cryptography, security analysis, security protocol, mobile com-
merce, WAP, authentication

1. Introduction

Due to the mobile devices have become popular in re-
cent years, mobile electronic transactions over the mobile
platform is also growing fast [1]. In this environment,
secure mobile electronic transactions between the mobile
client and the mobile commerce server should be guaran-
teed for protecting mobile commerce transactions. More-
over, due to resource constraints of mobile computing plat-
forms, lightweight security mechanisms are needed for pro-
tecting mobile commerce transactions [2].

In 2003, Lam et al. [3] proposed a lightweight secu-
rity mechanism for protecting mobile transactions, which
was designed to meet the security needs in face of the re-
source constraints. However, the lightweight security mech-
anism depends on the assumption that the mobile client
should have the mobile commerce server’s public key in
advance. To overcome the drawback and gain more effi-
ciency, in 2006, Yeh and Tsai [4] proposed an enhanced
mobile commerce security mechanism. The main idea of
Yeh-Tsai’s security mechanism is to utilize the WAP gate-
way instead of the mobile client to verify the mobile com-
merce server’s public key. Through the security analysis,
Yeh-Tsai’s claimed that their mechanism ensures that even a
malicious WAP gateway cannot get the mobile client’s PIN
by sending a faking public key. However, in 2008, Yum
et al. [5] pointed out that Yeh-Tsai security mechanism is
not secure against malicious WAP gateways by amplifying

Manuscript received February 18, 2010.
Manuscript revised May 4, 2010.
†The authors are with the School of Electrical Engineering

and Computer Science, Kyungpook National University, 1370
Sankyuk-Dong, Buk-Gu, Daegu 702–701, South Korea.

a) E-mail: ejyoon@knu.ac.kr
b) E-mail: yook@knu.ac.kr (Corresponding Author)

DOI: 10.1587/transinf.E93.D.2898

information leakage in addition operation. And also, they
proposed a simple countermeasure against the attack is to
use a cryptographic hash function instead of the addition
operation.

Nevertheless, this paper shows that both Yeh-Tsai’s and
Yum et al.’s security mechanisms still do not provide per-
fect forward secrecy [6], [7] and are susceptible to an off-
line guessing attack [8], [9] and Denning-Sacco attack [10].
Perfect forward secrecy means that if a long-term private
key (e.g. user password or server private key) is compro-
mised, this does not compromise any earlier session keys. A
guessing attack involves an adversary (randomly or system-
atically) trying long-term private keys (e.g. user password
or server secret key), one at a time, in the hope of find-
ing the correct private key. Ensuring long-term private keys
chosen from a sufficiently large space can reduce exhaus-
tive searches. Most users, however, select passwords from
a small subset of the full password space. Such weak pass-
words with low entropy are easily guessed by using the so-
called dictionary attack. The Dennig-Sacco attack is where
an attacker compromises an old session key and tries to find
a long-term private key (e.g. user password or server private
key) or other session keys. In addition, we propose a ro-
bust security mechanism for mobile commerce transactions
to overcome the weaknesses of the previous related security
mechanisms. As a result, the proposed security mechanism
not only remedies the weaknesses shown in both security
mechanisms, but also greatly improves the robustness of se-
curity mechanism through secure mutual authentication and
session key agreement.

The remainder of this paper is organized as follows. In
Sects. 2 and 3, we briefly review both Yeh-Tsai’s and Yum
et al.’s security mechanisms and then describes its weak-
nesses. A robust security mechanism for mobile commerce
transactions is proposed in Sect. 4 and the security discus-
sions and the efficiency discussions are described in Sects. 5
and 6, respectively. Finally, we make some conclusions in
Sect. 7.

2. Cryptanalysis of Yeh-Tsai’s Security Mechanism

This section briefly review the Yeh-Tsai’s security mecha-
nism [4] and then shows that their security mechanism is not
only susceptible to an off-line password guessing attack and
Denning-Sacco attack, but also does not provide perfect for-
ward secrecy [6]–[10]. The notations used throughout the
paper can be summarized in Table 1. Figure 1 shows the

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

YOON and YOO: A ROBUST SECURITY MECHANISM FOR MOBILE COMMERCE TRANSACTIONS
2899

system architecture of security mechanism for secure mo-
bile commerce transactions [3].

2.1 Review of Yeh-Tsai’s Security Mechanism

Figure 2 shows the Yeh-Tsai’s security mechanism and it

Table 1 Notations used in the security mechanism.

C Mobile client
S Mobile commerce server
GW WAP gateway
EKS Public (encryption) key of S
DKS Private (decryption) key of S
Cert Certificate of EKS follows the X.509 v3 certificate

standard [11]
PIN Secret password of C
Ra Random number generated by S
Rb Random number generated by C
S N Serial number generated by S for this protocol run
sk Symmetric session key shared by S and C for

protecting transaction messages in the session
Esk[X] Encryption of data X under the control of

session key sk
P Generator of the order n on an elliptic curve Zp

and satisfied with n · P = O
p Large prime number
O Point at infinity
H(·) Cryptographic one-way function
⊕ Bitwise exclusive-or (XOR) operation

Fig. 1 System architecture for mobile commerce transactions.

Mobile Client C
(PIN)

WAP Gateway
GW

Server S
(EKS ,DKS ,Cert,

H(PIN), S N)

Generate Ra

Ra ⊕ H(PIN),Cert←−−−
Check Cert

Ra ⊕ H(PIN), EKS←−−−
Extract Ra = Ra ⊕ H(PIN) ⊕ H(PIN)
Generate Rb

EKS [(Ra + 1) ⊕ PIN,Rb]−−→
Decrypt DKS [EKS [(Ra + 1) ⊕ PIN,Rb]]

Extract PIN = (Ra + 1) ⊕ PIN ⊕ (Ra + 1)
Verify H(PIN)

Compute sk = Ra ⊕ Rb

Generate S N
Esk[S N,Rb]←−−−

Compute sk = Ra ⊕ Rb

Decrypt Dsk[Esk[S N,Rb]]
Verify Rb

Shared session key between C and S :sk = Ra ⊕ Rb

Fig. 2 Yeh-Tsai’s security mechanism.

performs as follows:

1. S → GW: Ra ⊕ H(PIN),Cert
S generates a random number Ra and then XORed with
H(PIN) retrieved from its database. The result together
with S ’s certificate Cert is sent to GW.

2. GW → C: Ra ⊕ H(PIN), EKS

After successfully verifying Cert of EKS , GW sends
S ’s public key EKS together with the received Ra ⊕
H(PIN) to C.

3. C → GW → S : EKS [(Ra + 1) ⊕ PIN,Rb]
C gets PIN from the user’s input and computes
H(PIN), which in turn is XORed with the received
Ra ⊕ H(PIN) to get Ra. Then, Ra is increased by one
and then is XORed with PIN. The result and Rb, a ran-
dom number generated by C, are encrypted with EKS

and sent to S via the GW.
4. S → GW → C: Esk[S N,Rb]

S decrypts the received EKS [(Ra+1)⊕PIN,Rb] by us-
ing its private key DKS and then XORed the decrypted
(Ra + 1) ⊕ PIN with (Ra + 1) to get PIN. The hashed
value H(PIN) is then compared with the stored value
H(PIN) in the database for user authentication. If it
holds, S believes that the responding part is the real
client; a serial number S N and Rb are encrypted with a
session key sk = Ra ⊕ Rb and sent to C via the GW as
a response. Otherwise, S believes that the responding
part is not the real client and the protocol is terminated.

5. Upon receiving the message Esk[S N,Rb] from GW, C
computes the shared session key sk = Ra ⊕Rb and then
decrypts Esk[S N,Rb] to get S N and Rb. C checks Rb

is equal to its generated Rb. If so, C believes that the
responding part is the real server; otherwise, C believes
that the responding part is not the server and the proto-

2900
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

col is terminated.

As a result, C and S can use the shared secret session
key sk = Ra ⊕ Rb in private communication soon.

2.2 Off-Line Password Guessing Attack

This subsection shows that Yeh-Tsai’s security mechanism
is vulnerable to off-line password guessing attacks [8], [9].
Let Eve be an active adversary who interposes the commu-
nication between C and GW. Then, Eve can easily obtain
a legitimate communication parties’ password PIN by per-
forming the following off-line password guessing attacks:

1. Eve→ C: X, EK∗S
When GW sends Ra ⊕ H(PIN) and EKS to C, Eve re-
places Ra ⊕H(PIN) with a random number X and EKS

with a fake public key EK∗S . Finally, Eve sends X and
EK∗S to C.

2. C → Eve: EK∗S [(X ⊕ H(PIN)) + 1) ⊕ PIN,Rb]
Upon receiving X and EK∗S , C will get PIN from the
user’s input and compute H(PIN), which in turn is
XORed with the received X to get X ⊕ H(PIN). Then,
X ⊕ H(PIN) is increased by one and is XORed with
PIN. The result (X ⊕ H(PIN)) + 1) ⊕ PIN and a gen-
erated random number Rb are encrypted with EK∗S and
sent to Eve.

3. Eve decrypts EK∗S [(X ⊕ H(PIN)) + 1) ⊕ PIN,Rb] by
using the corresponding private key DK∗S of EK∗S to
get (X ⊕ H(PIN)) + 1) ⊕ PIN and Rb.

4. Eve makes a guess at the secret password PIN∗ from
dictionary D to obtain the secret password PIN shared
between C and S .

5. By using the decrypted value (X⊕H(PIN))+1)⊕PIN,

Eve checks if (X⊕H(PIN))+1)⊕PIN
?
=(X⊕H(PIN∗))+

1)⊕PIN∗. If it holds, Eve has guessed the correct secret
password PIN∗ = PIN.

6. If it is not correct, Eve repeatedly performs the Steps

(4) and (5) until (X ⊕ H(PIN)) + 1) ⊕ PIN
?
=(X ⊕

H(PIN∗)) + 1) ⊕ PIN∗.

The algorithm of an off-line password guessing attack
is as follows:

Password Guessing Attack ((X⊕H(PIN))+1)⊕PIN, X,D)
{

for i := 0 to |D|
{

PIN∗ ← D;

if (X⊕H(PIN))+1) ⊕ PIN
?
=(X⊕H(PIN∗))+1)⊕PIN∗

then return PIN∗
}

}

2.3 Perfect Forward Secrecy Problem

Perfect forward secrecy [8] is a very important security re-
quirement for evaluating a strong authentication protocol.
An authentication protocol with perfect forward secrecy as-

sures that even if one entity’s long-term key (e.g. user’s pass-
word or server’s secret key) is compromised, it will never
reveal any old fresh session keys used before. For example,
the well-known Diffie-Hellman key agreement scheme can
provide perfect forward secrecy.

Yeh-Tsai’s security mechanism, however, does not pro-
vide it because once the secret password PIN of the client
and the secret key DKS of the server are disclosed, all previ-
ous fresh session keys sk = Ra ⊕ Rb will also be opened and
hence previous communication messages will be learned.
In the Yeh-Tsai’s security mechanism, suppose an attacker
Eve obtains the secret password H(PIN) and the secret pri-
vate key DKS from the compromised server and intercepts
transmitted values (Ra ⊕H(PIN), EKS [(Ra + 1)⊕ PIN,Rb])
from an open network. It is easy to obtain the information
since its are exposed over an open network. Then, Eve can
compute Ra ⊕H(PIN)⊕H(PIN) by using the compromised
H(PIN) to get RA and decrypt EKS [(Ra + 1) ⊕ PIN,Rb] by
using the compromised DKS to get Rb. Finally, Eve can
compute the shared session key sk = Ra⊕Rb by using Ra and
Rb. By using the compromised sk, Eve can get all previous
communication messages. Obviously, Yeh-Tsai’s security
mechanism does not provide perfect forward secrecy.

2.4 Denning-Sacco Attack

Denning-Sacco attack [10] is an offensive action where an
attacker captures a session key from an eavesdropped ses-
sion and uses the key either to gain the ability to imperson-
ate the user directly or to mount a dictionary attack on the
user’s password. Yeh-Tsai’s security mechanism is vulner-
able to the Denning-Sacco attack based on a compromised
session key sk = Ra ⊕ Rb.

In the Yeh-Tsai’s security mechanism, suppose an at-
tacker Eve obtains the session key sk = Ra ⊕ Rb from the
compromised client or mobile commerce server and inter-
cepts transmitted values (Ra ⊕ H(PIN), Esk[S N,Rb]) from
an open network. It is easy to obtain this information since
it is readily available over the open network. Then, Eve
can decrypt Esk[S N,Rb] by using sk to get Rb and directly
extract the hashed user’s secret password H(PIN) by com-
puting Ra ⊕ H(PIN) ⊕ sk ⊕ Rb as follows:

Ra ⊕ H(PIN) ⊕ sk ⊕ Rb

= Ra ⊕ H(PIN) ⊕ Ra ⊕ Rb ⊕ Rb (1)

= H(PIN)

Furthermore, if Eve wants to get real secret password
PIN, he/she can obtain the PIN by performing the following
off-line password guessing attack; Eve makes a guess at the
secret password PIN∗ from dictionary D and then checks

whether H(PIN)
?
=H(PIN∗). If it holds, Eve has guessed

the correct secret password PIN∗ = PIN. If it is not cor-
rect, Eve repeatedly performs the verification process until

H(PIN)
?
=H(PIN∗).

As a result, the compromise of the user’s secret pass-
word PIN or its hashed value H(PIN) will enable the at-

YOON and YOO: A ROBUST SECURITY MECHANISM FOR MOBILE COMMERCE TRANSACTIONS
2901

Mobile Client C
(PIN)

WAP Gateway
GW

Server S
(EKS ,DKS ,Cert,

H(PIN), S N)

Generate Ra

Ra ⊕ H(PIN),Cert←−−−
Check Cert

Ra ⊕ H(PIN), EKS←−−−
Extract Ra = Ra ⊕ H(PIN) ⊕ H(PIN)
Generate Rb

EKS [H(Ra),Rb]−−→
Decrypt DKS [EKS [H(Ra),Rb]]

Verify H(Ra)
Compute sk = Ra ⊕ Rb

Generate S N
Esk[S N,Rb]←−−−

Compute sk = Ra ⊕ Rb

Decrypt Dsk[Esk[S N,Rb]]
Verify Rb

Shared session key between C and S :sk = Ra ⊕ Rb

Fig. 3 Yum et al.’s security mechanism.

tacker to impersonate the client C or the server S freely. Ob-
viously, Yeh-Tsai’s security mechanism is insecure against
a Denning-Sacco attack.

3. Cryptanalysis of Yum et al.’s Security Mechanism

This section briefly review the Yum et al.’s security mech-
anism [5] and then shows that their security mechanism is
not only susceptible to an off-line password guessing attack
and Denning-Sacco attack, but also does not provide perfect
forward secrecy.

3.1 Review of Yum et al.’s Security Mechanism

Figure 3 shows the Yum et al.’s security mechanism and it
performs as follows:

1. S → GW: Ra ⊕ H(PIN),Cert
This step is same as Yeh-Tsai’s security mechanism.

2. GW → C: Ra ⊕ H(PIN), EKS

This step is same as Yeh-Tsai’s security mechanism.
3. C → GW → S : EKS [H(Ra),Rb]

C gets PIN from the user’s input and computes
H(PIN), which in turn is XORed with the received
Ra ⊕ H(PIN) to get Ra. Then, H(Ra) and Rb, a ran-
dom number generated by C, are encrypted with EKS

and sent to S via the GW.
4. S → GW → C: Esk[S N,Rb]

S decrypts the received EKS [H(Ra),Rb] by using its
private key DKS and then the hashed value H(Ra) is
then compared with the compute value H(Ra) for user
authentication. If it holds, S believes that the respond-
ing part is the real client; a serial number S N and Rb

are encrypted with a session key sk = Ra ⊕ Rb and sent
to C via the GW as a response. Otherwise, S believes

that the responding part is not the real client and the
protocol is terminated.

5. Upon receiving the message Esk[S N,Rb] from GW, C
computes the shared session key sk = Ra ⊕Rb and then
decrypts Esk[S N,Rb] to get S N and Rb. C checks Rb

is equal to its generated Rb. If so, C believes that the
responding part is the real server; otherwise, C believes
that the responding part is not the server and the proto-
col is terminated.

As a result, C and S can use the shared secret session
key sk = Ra ⊕ Rb in private communication soon.

3.2 Off-Line Password Guessing Attack

This subsection shows that Yum et al.’s security mechanism
is also vulnerable to off-line password guessing attacks. Let
Eve be an active adversary who interposes the communica-
tion between C and GW. Then, Eve can easily obtain a legit-
imate communication parties’ password PIN by performing
the following off-line password guessing attacks:

1. Eve→ C: X, EK∗S
When GW sends Ra ⊕ H(PIN) and EKS to C, Eve re-
places Ra ⊕H(PIN) with a random number X and EKS

with a fake public key EK∗S . Finally, Eve sends X and
EK∗S to C.

2. C → Eve: EK∗S [X ⊕ H(PIN),Rb]
Upon receiving X and EK∗S , C will get PIN from the
user’s input and compute H(PIN), which in turn is
XORed with the received X to get X ⊕ H(PIN). Then,
the hash value of X ⊕ H(PIN) and a generated random
number Rb are encrypted with EK∗S and sent to Eve.

3. Eve decrypts EK∗S [X⊕H(PIN),Rb] by using the corre-
sponding private key DK∗S of EK∗S to get X ⊕ H(PIN)

2902
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

and Rb.
4. Eve makes a guess at the secret password PIN∗ from

dictionary D to obtain the secret password PIN shared
between C and S .

5. By using the decrypted value X ⊕ H(PIN), Eve checks

if X ⊕ H(PIN)
?
= X ⊕ H(PIN∗). If it holds, Eve has

guessed the correct secret password PIN∗ = PIN.
6. If it is not correct, Eve repeatedly performs the Steps

(4) and (5) until X ⊕ H(PIN)
?
= X ⊕ H(PIN∗).

The algorithm of an off-line password guessing attack
is as follows:

Password Guessing Attack ((X ⊕ H(PIN)) + 1) ⊕ PIN, X,D)
{

for i := 0 to |D|
{

PIN∗ ← D;

if X ⊕ H(PIN)
?
= X ⊕ H(PIN∗)

then return PIN∗
}

}

3.3 Perfect Forward Secrecy Problem

Like the Yeh-Tsai’s security mechanism, Yum et al.’s secu-
rity mechanism also does not provide the perfect forward
secrecy because once the secret password PIN of the client
and the secret key DKS of the server are disclosed, all previ-
ous fresh session keys sk = Ra ⊕ Rb will also be opened and
hence previous communication messages will be learned.

In the Yum et al.’s security mechanism, suppose an at-
tacker Eve obtains the secret password H(PIN) and the se-
cret private key DKS from the compromised server and in-
tercepts transmitted values (Ra ⊕ H(PIN), EKS [H(Ra),Rb])

Mobile Client C
(PIN)

WAP Gateway
GW

Server S
(EKS ,DKS ,Cert,

H(PIN), S N)

Generate aP
aP ⊕ H(PIN),Cert←−−−

Check Cert
aP ⊕ H(PIN), EKS←−−−

Extract aP = aP ⊕ H(PIN) ⊕ H(PIN)
Generate bP
Compute sk = abP

EKS [bP,H(sk)]−−−→
Decrypt DKS [EKS [bP,H(sk)]]

Compute sk = abP
Verify H(sk)
Generate S N

Esk[S N, bP]←−−−
Decrypt Dsk[Esk[S N, bP]]
Verify bP

Shared session key between C and S :sk = abP

Fig. 4 Proposed security mechanism.

from an open network. It is easy to obtain the information
since its are exposed over an open network. Then, Eve can
compute Ra ⊕H(PIN)⊕H(PIN) by using the compromised
H(PIN) to get RA and decrypt EKS [H(Ra),Rb] by using the
compromised DKS to get Rb. Finally, Eve can compute the
shared session key sk = Ra ⊕ Rb by using Ra and Rb. By
using the compromised sk, Eve can get all previous commu-
nication messages. Obviously, Yum et al.’s security mecha-
nism does not provide perfect forward secrecy.

3.4 Denning-Sacco Attack

Since Yum et al.’s security mechanism performs basically
the same process as Yeh-Tsai’s except the steps (3) and (4),
Yum et al.’s security mechanism is also vulnerable to the
Denning-Sacco attack based on a compromised session key
sk = Ra ⊕ Rb. The attack procedure is same as described in
the above Sect. 2.4. So, we omit the detail description of the
attack procedure in here. For further details, please refer to
the above Denning-Sacco attack.

4. Proposed Security Mechanism

This section proposes a robust security mechanism that can
not only withstand the off-line password guessing attack and
Denning-Sacco attack, but also provide perfect forward se-
crecy. Figure 4 shows the proposed security mechanism and
it performs as follows:

1. S → GW: aP ⊕ H(PIN),Cert
S randomly selects a number a ∈ Z∗n , computes aP,
and then XORed it with H(PIN) retrieved from its
database. The result together with S ’s certificate Cert
is sent to GW.

YOON and YOO: A ROBUST SECURITY MECHANISM FOR MOBILE COMMERCE TRANSACTIONS
2903

2. GW → C: aP ⊕ H(PIN), EKS

After successfully verifying Cert of EKS , GW sends
S ’s public key EKS together with the received aP ⊕
H(PIN) to C.

3. C → GW → S : EKS [bP,H(sk)]
C gets PIN from the user’s input and computes
H(PIN). Then, H(PIN) is XORed with the received
aP ⊕ H(PIN) to get aP. C randomly selects a number
b ∈ Z∗n and computes bP and a session key sk = abP.
Finally, bP and H(sk) are encrypted with EKS and sent
to S via the GW.

4. S → GW → C: Esk[S N, bP]
S decrypts the received EKS [bP,H(sk)] by using its
private key DKS and then computes a session key
sk = abP and its hash value H(sk). The hashed value
H(sk) is then compared with the decrypted value H(sk)
for user authentication. If it holds, S believes that the
responding part is the real client; a serial number S N
and bP are encrypted with a session key sk and sent
to C via the GW as a response. Otherwise, S believes
that the responding part is not the real client and the
protocol is terminated.

5. Upon receiving the message Esk[S N, bP] from GW, C
decrypts Esk[S N, bP] by using sk to get S N and bP.
Then, C checks bP is equal to its generated bP. If so,
C believes that the responding part is the real server;
otherwise, C believes that the responding part is not
the server and the protocol is terminated.

As a result, C and S can use the shared secret session
key sk = abP in private communication soon.

5. Security Analysis

This section analyzes the security of the proposed secu-
rity mechanism. First, we define the security terms [7],
[8] needed to conduct an analysis of the proposed security
mechanism. They are as follows:

Definition 1: A weak secret key (user’s password PIN) is
the value of low entropy W(k), which can be guessed in
polynomial time.

Definition 2: A strong secret key (server’s private secret
key DKS) is the value of high entropy S (k), which cannot
be guessed in polynomial time.

Definition 3: The Elliptic Curve Discrete Logarithm Prob-
lem (ECDLP) is as follows: given a public key point V =
αP, it is hard to compute the secret key α.

Definition 4: The Elliptic Curve Diffie-Hellman Problem
(ECDHP) is as follows: given point elements αP and βP, it
is hard to find αβP.

Definition 5: A secure one-way hash function y = H(x)
is one where given x to compute y is easy and given y to
compute x is hard.

Here, the following six security properties [6]–[10]

must be considered for the proposed security mechanism:
replay attacks, man-in-middle attacks, modification attacks,
password guessing attacks, Denning-Sacco attacks, mutual
authentication, and perfect forward secrecy. Regarding the
above mentioned definitions, the followings are used to an-
alyze the six security properties of the proposed security
mechanism.

5.1 Resistance to Replay Attacks

The proposed security mechanism can resist replay attacks:
A replay attack is an offensive action in which an at-
tacker impersonates or deceives another legitimate partic-
ipant through the reuse of information obtained in a pro-
tocol. When the mobile client C receives the message
aP ⊕ H(PIN), EKS from the gateway GW in step (2), it in-
cludes a fresh Diffie-Hellman element aP by the server S .
Therefore, the C must compute a fresh session key sk by
using the received aP and a generated random number b.
C then sends back an encrypted value EKS [bP,H(sk)] in-
cluding another fresh Diffie-Hellman element bP to S as a
response. Note that aP and bP separately generated by C
and S are fresh on each session and are different every time.
Besides, H(sk) in EKS [bP,H(sk)] and bP in Esk[S N, bP]
guarantee their integrity and source, respectively. In addi-
tion, it is impossible to create corresponding responses and
their message authentication values, EKS [bP,H(sk)] and
Esk[S N, bP], without knowing the shared secret password
PIN between C and S . Since the C and S always verify the
integrity of the fresh session key sk by checking H(sk) and
bP, the replayed messages can be detected by the C and S ,
respectively. Therefore, except for C and S , no one can pass
the challenges. As a result, the proposed security mecha-
nism can resist replay attacks.

5.2 Resistance to Modification Attacks

The proposed security mechanism resists modification at-
tacks: An attacker Eve may modify the messages aP ⊕
H(PIN), EKS , EKS [bP,H(sk)], and Esk[S N, bP] being
transmitted over an insecure network. However, although
Eve forges them, the proposed security mechanism can de-
tect this attack, because it can verify not only the equality
of sk computed by each party, but also the correctness of
EKS [bP,H(sk)] and Esk[S N, bP] transmitted between two
parties through validating H(sk) and bP in the security
mechanism. Therefore, the proposed security mechanism
resists modification attacks.

5.3 Resistance to Password Guessing Attacks

The proposed security mechanism resists password guess-
ing attacks: An attacker Eve can intercept a message aP ⊕
H(PIN), EKS sent by GW in step (2) over a public network.
However, due to Definitions 3 and 5, he/she cannot derive
the C’s secret password PIN from aP ⊕ H(PIN). Suppose
that Eve intercepts EKS [bP,H(sk)] sent by C in step (3)

2904
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

Table 2 A comparison of security properties.

Security properties Yeh-Tsai’s [4] Yum et al.’s [5] Proposed
Resistance to Replay attacks Yes Yes Yes
Resistance to Modification attacks No Yes Yes
Resistance to Password guessing attacks No No Yes
Resistance to Man-in-middle attacks Yes Yes Yes
Resistance to Denning-Sacco attacks No No Yes
Secure mutual authentication Provide Provide Provide
Session key agreement Provide Provide Provide
Perfect forward secrecy No provide No provide Provide

and Esk[S N, bP] sent by S in step (4), respectively. Due
to Definition 2, it is also extremely hard for Eve to decrypt
EKS [bP,H(sk)] and Esk[S N, bP] without knowing the S ’s
strong private key DKS and the session key sk. Therefore,
the proposed security mechanism resists password guessing
attacks.

5.4 Resistance to Man-in-Middle Attacks

The proposed security mechanism resists man-in-middle at-
tacks: A mutual secret password PIN between C and S (or
GW) is used to prevent the man-in-middle attack. The il-
legal attacker Eve cannot pretend to be C or S (or GW) to
authenticate the other since he/she does not own the mu-
tual secret password PIN. Therefore, the proposed security
mechanism resists man-in-middle attacks.

5.5 Resistance to Denning-Sacco Attacks

The proposed security mechanism resists Denning-Sacco at-
tacks: In the proposed security mechanism, although an at-
tacker Eve obtains a fresh session key sk = abP, he/she can-
not obtains the C’s secret password PIN and the S ’s private
key DKS from the public channel values aP⊕H(PIN), EKS

in step (2), EKS [bP,H(sk)] in step (3) and Esk[S N, bP] in
step (4) because DKS is a strong secret key by Definition 1
and H(PIN) is protected by aP. Although, Eve can obtain
bP by decrypting Esk[S N, bP] with sk, he/she cannot get aP
from bP and abP due to the Definitions 3 and 4. There-
fore, the proposed protocol can prevent the Denning-Sacco
attack.

5.6 Evaluation of Secure Mutual Authentication

The proposed security mechanism provides secure mutual
authentication: Mutual authentication means that both the
client and server are authenticated to each other within the
same security mechanism. Mutual authentication between C
and S is achieved, because C and S authenticate each other
with H(sk) in the step (4) and bP in the step (5), respectively.
Nobody can create the C’s response value EKS [bP,H(sk)]
without knowing the password PIN and the shared common
session key sk between C and S and the S ’s response value
Esk[S N, bP] without knowing the private key DKS of S . In
other words, it is infeasible for an attacker to masquerade
as a legal client or a legal server. Also, the proposed secu-
rity mechanism uses the Elliptic Curve Diffie-Hellman key

exchange algorithm in order to provide mutual explicit key
authentication. Then, the key is explicitly authenticated by
a mutual confirmation session key sk = abP. Therefore,
the proposed security mechanism provides secure mutual
authentication.

5.7 Evaluation of Perfect Forward Secrecy

The proposed security mechanism provides perfect forward
secrecy: In the proposed security mechanism, since the El-
liptic Curve Diffie-Hellman key exchange algorithm is used
to generate a session key sk = abP, perfect forward secrecy
is ensured because an attacker with a compromised C’s se-
cret password PIN and S ’s private key DKS are only able to
obtain the aP and bP from an earlier session. In addition,
it is also computationally infeasible to obtain the session
key abP from aP and bP, as it is a ECDLP and a ECDHP.
Therefore, the proposed security mechanism provides a per-
fect forward secrecy.

The security properties of related security mechanisms
and the proposed security mechanism are summarized in Ta-
ble 2.

6. Discussion about Computational Costs

This section discusses the computational costs of the Ellip-
tic Curve Diffie-Hellman (ECDH) key exchange in the pro-
posed security mechanism. In the proposed security mecha-
nism, the server S and the mobile client C require two scalar
multiplications of elliptic curve for ECDH key exchange,
respectively. As we all know, the computational cost of
ECDH is much lager than that of the secure hash function
or XOR operation. Nevertheless, the ECDH operation re-
quires to provide perfect forward secrecy in the proposed
security mechanism. But the ECDH computations must not
affect the use of the mobile device to which the resource was
restricted.

In the proposed security mechanism, the ECDH com-
putations do not matter to S because S has powerful com-
putation abilities. However, the ECDH computations can
influenced to the mobile device of the client C. But we be-
lieve that the mobile device can compute the ECDH compu-
tations for secure mobile commerce transactions. As we all
know, an ECC with 160-bit key length could offer roughly
the same level of security as RSA with 1024-bit modulus. In
the proposed security mechanism, one scalar multiplication
of elliptic curve (i.e. bP) can be computed by C in an off-line

YOON and YOO: A ROBUST SECURITY MECHANISM FOR MOBILE COMMERCE TRANSACTIONS
2905

manner. So the mobile device of C only needs to perform
one scalar multiplication of elliptic curve (i.e. sk = abP)
in step (3). As a result, in view of efficiency computation,
the proposed security mechanism is efficient to provide per-
fect forward secrecy since it does not involve costly digital
signature, bilinear pairings and modular exponentiations.

Some previous implementations of elliptic curve cryp-
tographic primitives on smart cards or microprocessors have
been developed [12]–[16]. Recently, Scott et al. actually
evaluate the cost of one scalar multiplication with the Philips
HiPersmart card, where the processor of HiPersmart card
offers a maximum clock of 36 MHZ and 16 K RAM mem-
ory [15], [16]. In which, G1 is a subgroup of order q on an
elliptic curve over a finite field E(Fp), where p is a 512-bit
prime and q is a 160 bit prime. Under this situation, the time
spent in scalar multiplication of elliptic curve (i.e., the time
spent in scalar multiplication of elliptic curve) is around
270 ms. It is obvious that the proposed security mecha-
nism can not only solve the security flaws of the previous
related security mechanisms for mobile commerce transac-
tions and is applied to authenticate the mobile clients with
limited computing capability.

In recent years, Wireless Application Protocol (WAP)
has been gaining increasing popularity as a platform for mo-
bile e-commerce; its security has thus become an important
issue. In order to support the desired security feature per-
fect forward secrecy, and to resist various attacks, WAP of-
fers the service of secure wireless data exchange of informa-
tion thanks to a security protocol called Wireless Transport
Layer Security (WTLS). WTLS supports the Elliptic Curve
Cryptography (ECC) for secure session key establishment,
where the client is typically a mobile device and the server
a workstation that provides access to Internet in a wireless
fashion. Therefore, we believe that the computational cost
of ECDH in the proposed security mechanism does not af-
fect serious problems for the use of the mobile device to
which the resource was restricted.

7. Conclusion

This paper showed that both Yeh-Tsai’s and Yum et al.’s se-
curity mechanisms still do not provide perfect forward se-
crecy and are susceptible to a guessing attack and Denning-
Sacco attack. In addition, we proposed a new security mech-
anism for mobile commerce transactions to overcome the
weaknesses of the previous related security mechanisms. As
a result, the proposed security mechanism not only reme-
dies the weaknesses shown in both security mechanisms, but
also greatly improves the robustness of security mechanism
through secure mutual authentication and session key agree-
ment.

Acknowledgments

We would like to thank the anonymous reviewers for their
helpful comments. This research was supported by Basic
Science Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of Edu-
cation, Science and Technology (No. 2010-0010106).

References

[1] B. Anckar and D.D. Incau, “Value creation in mobile commerce:
Findings from a consumer survey,” J. Information Technology The-
ory and Application, vol.4, no.1, pp.43–64, 2002.

[2] A. Corradi, R. Montanari, and C. Stefanelli, “Security of mobile
agents on the Internet,” Internet Research, vol.11, no.1, pp.84–95,
2001.

[3] K.Y. Lam, S.L. Chung, M. Gu, and J.G. Sun, “Lightweight secu-
rity for mobile commerce transactions,” Comput. Commun., vol.26,
pp.2052–2060, 2003.

[4] T.C. Yeh and S.C. Tsai, “Securing mobile commerce transactions,”
IEICE Trans. Commun., vol.E89-B, no.9, pp.2608–2611, Sept.
2006.

[5] D.H. Yum, J.H. Shin, and P.J. Lee, “Security analysis of Yeh-Tsai
security mechanism,” IEICE Trans. Inf. & Syst., vol.E91-D, no.5,
pp.1477–1480, May 2008.

[6] M. Steiner, G. Tsudik, and M. Waidner, “Refinement and exten-
sion of encrypted key exchange,” ACM Operating Systems Review,
vol.29, no.3, pp.22–30, 1995.

[7] B. Schneier, “Applied cryptography protocols,” in Algorithms and
Source Code in C, 2nd ed., John Wiley & Sons, 1995.

[8] A.J. Menezes, P.C. Oorschot, and S.A. Vanstone, Handbook of ap-
plied cryptograph, CRC Press, New York, 1997.

[9] Y. Ding and P. Horster, “Undetectable on-line password guessing
attacks,” ACM Operating Systems Review, vol.29, no.4, pp.77–86,
1995.

[10] D. Denning and G. Sacco, “Timestamps in key distribution systems,”
Commun. ACM, vol.24, pp.533–536, 1981.

[11] R. Housley, W. Ford, W. Polk, and D. Solo, “Internet X.509 public
key infrastructure: Certificate and CRL profile,” RFC 3280, IETF,
2002.

[12] V. Gupta, D. Stebila, and S. Fung, “Speeding up secure web trans-
actions using elliptic curve cryptography,” 11th Network and Dis-
tributed Systems Security Symposium, pp.231–239, 2004.

[13] N. Gura, A. Patel, A. Wander, H. Eberle, and S.C. Shantz, “Com-
paring elliptic curve cryptography and RSA on 8-bit CPUs,” Cryp-
tographic Hardware and Embedded Systems, pp.119–132, 2004.

[14] J.H. Han, Y.J. Kim, S.I. Jun, K.I. Chung, and C.H. Seo, “Implemen-
tation of ECC/ECDSA cryptography algorithms based on Java card,”
22nd International Conference on Distributed Computing Systems
Workshops, pp.272–276, 2002.

[15] M. Scott, N. Costigan, and W. Abdulwahab, “Implementing crypto-
graphic pairings on smartcards,” Cryptology ePrint Archive, 2006.
Available from: <http://eprint.iacr.org/2006/144.pdf>.

[16] Y.P. Liao and S.S. Wang, “A new secure password authenticated key
agreement scheme for SIP using self-certified public keys on elliptic
curves,” Comput. Commun., vol.33, no.3, pp.372–380, 2010.

2906
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

Eun-Jun Yoon received his MSc degree
in computer engineering from Kyungil Univer-
sity in 2002 and the PhD degree in computer
science from Kyungpook National University in
2006, Republic of Korea. From 2007 to 2008,
he was a full-time lecturer at Faculty of Com-
puter Information, Daegu Polytechnic College,
Republic of Korea. He is currently a 2nd BK21
contract professor at the School of Electrical En-
gineering and Computer Science, Kyungpook
National University, Republic of Korea. His

current research interests are cryptography, authentication technologies,
smart card security, network security, mobile communications security, and
steganography.

Kee-Young Yoo received his BSc degree in
education of mathematics from Kyungpook Na-
tional University in 1976 and the MSc degree
in computer engineering from Korea Advanced
Institute of Science and Technology in 1978,
South Korea. He received the PhD degree in
computer science from Rensselaer Polytechnic
Institute in 1992, New York, USA. Currently,
he is a professor at the Department of Com-
puter Engineering, Kyungpook National Univer-
sity, South Korea. His current research interests

are cryptography, authentication technologies, smart card security, network
security, DRM security, and steganography. He has published over a hun-
dred technical and scientific international journals on a variety of informa-
tion security topics.

