
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010
2995

PAPER

NP-Hard and k-EXPSPACE-Hard Cast Puzzles∗

Chuzo IWAMOTO†a), Member, Kento SASAKI†, Kenji NISHIO††, Nonmembers, and Kenichi MORITA†, Member

SUMMARY A disentanglement puzzle consists of mechanically inter-
linked pieces, and the puzzle is solved by disentangling one piece from
another set of pieces. A cast puzzle is a type of disentanglement puzzle,
where each piece is a zinc die-casting alloy. In this paper, we consider
the generalized cast puzzle problem whose input is the layout of a finite
number of pieces (polyhedrons) in the 3-dimensional Euclidean space. For
every integer k ≥ 0, we present a polynomial-time transformation from an
arbitrary k-exponential-space Turing machine M and its input x to a cast
puzzle c1 of size k-exponential in |x| such that M accepts x if and only if c1

is solvable. Here, the layout of c1 is encoded as a string of length polyno-
mial (even if c1 has size k-exponential). Therefore, the cast puzzle problem
of size k-exponential is k-EXPSPACE-hard for every integer k ≥ 0. We
also present a polynomial-time transformation from an arbitrary instance f
of the SAT problem to a cast puzzle c2 such that f is satisfiable if and only
if c2 is solvable.
key words: computational complexity, NP-hard, k-EXPSPACE hard, cast
puzzle

1. Introduction

Disentanglement puzzles are one of the most fundamental
and popular playthings. They consist of mechanically inter-
linked pieces, and a puzzle is solved by disentangling one
piece from another set of pieces. Disentanglement puzzles
are classified into two categories, wire puzzles and cast puz-
zles.

A wire puzzle consists of two or more entangled stiff
wires. Wires may or may not be closed loops, and they have
complex shapes. Normally, wire puzzles are solved by dis-
entangling one piece from another set of pieces without cut-
ting or bending the wires. Sometimes, one of the pieces is a
looped string.

On the other hand, pieces of cast puzzles are zinc die-
casting alloys. Therefore, people who take them in hand feel
their solidness and heaviness. See the official site [1] for the
cast puzzles, produced by Hanayama Co.,Ltd. In this site,
cast puzzles are classified into six levels (i.e., Easiest, Easy,
Medium, Fairly hard, Hard, and Very hard). However, from
the point of view of a computer scientist, they should be
classified according to computational complexities (i.e., P,
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NP, PSPACE, EXPTIME, 2-EXPTIME, 2-EXPSPACE, and
so on).

We will define a cast puzzle as a set of simple poly-
hedrons. We consider the generalized cast puzzle problem
whose input is the layout of a finite number of pieces (poly-
hedrons) in the 3-dimensional Euclidean space. Since all
cast puzzles in this paper are constructed by polynomial-
time transformations, the layout of a cast puzzle is encoded
as a string of length polynomial (even if the cast puzzle has
size k-exponential).

In this paper, for every integer k ≥ 0, we present
a polynomial-time transformation from an arbitrary k-
exponential-space Turing machine M and its input x to a cast
puzzle c1 of size k-exponential in |x| such that M accepts x
if and only if c1 is solvable. Therefore, the cast puzzle prob-
lem of size k-exponential is k-EXPSPACE-hard for every
integer k ≥ 0. We also present a polynomial-time transfor-
mation from an arbitrary instance f of the SAT problem to
a cast puzzle c2 such that f is satisfiable if and only if c2 is
solvable.

Flake and Baum proved that some PSPACE-complete
problem can be reduced to the Rush hour problem (a slid-
ing block puzzle on a board) [6]. From this result, it is not
difficult to construct a PSPACE-hard cast puzzle by making
sure that the pieces cannot use the third direction. Note that
the k-EXPSPACE-hardness for a set of cast puzzles implies
the NP-hardness and PSPACE-hardness for the same set of
cast puzzles. Our NP-hard cast puzzle, transformed from
the SAT problem, can be solved by hand in n + 1 steps with
n guesses, where n is the number of variables of the SAT-
instance. On the other hand, a PSPACE-hard cast puzzle
constructed by the idea of [6] cannot be solved in polyno-
mial steps with polynomial guesses unless NP = PSPACE.

There has been a huge amount of literature on the
computational complexities of games and puzzles. For ex-
ample, Tetris [4], Solitaire [12], Minesweeper [11], (n × n)-
extension of the 15-puzzle [16], the Slither Link Puzzle [19],
and Sokoban (a transport puzzle in a maze) [5], Puyo puyo
(also known as Puyo pop) [14], and Hashiwokakero [3] are
known to be NP-hard. Uehara proved that deciding whether
a given pop-up book can be opened (or closed) is NP-
hard [18]. As for higher complexity classes, Othello [10]
is known to be PSPACE-hard; Chess [7], Shogi (Japanese
chess) [2], and Go [17] are EXPTIME-hard. More informa-
tion on games and puzzles can be found in [9].

In Sect. 2, we introduce the cast puzzle problem, where
each piece is defined as a simple polyhedron. The main re-
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sults are also given in that section. In Sects. 3 and 4, we
will show transformations from Turing machines and SAT-
instances to cast puzzles, respectively.

2. Definitions and Main Results

In our model, all pieces are defined as simple polyhedrons
in the 3-dimensional Euclidean space E3. The definitions of
polygons and polyhedrons are mostly from [15].

In E2, a polygon is defined by a finite set of segments
such that every segment extreme is shared by exactly two
edges and no subset of edges has the same property. The
segments are the edges and their extremes are the vertices
of the polygon.

In E3, a polyhedron is defined by a set of plane poly-
gons such that every edge of a polygon is shared by exactly
one other polygon (adjacent polygon) and no subset of poly-
gons has the same property. The vertices and the edges of
the polygons are the vertices and the edges of the polyhe-
dron, and the polygons are the facet of the polyhedron.

A polyhedron is said to be simple if there is no pair of
non-adjacent facets sharing a point. A simple polyhedron
partitions the space into two disjoint domains, the interior
(bounded) and the exterior (unbounded). In this paper, the
term polyhedron is used to denote the union of the boundary
and of the interior.

A cast puzzle is a finite set of simple polyhedrons,
called pieces, embedded in E3. One of the pieces is called
the target piece. The input of the cast puzzle problem is the
layout of a finite number of pieces. A cast puzzle is said to
be solvable if the target piece can be disentangled from an-
other set of pieces without deforming, whittling, or breaking
the pieces. In this paper, for any piece p, no vertex of any
other piece is in the interior of p. A vertex of a piece may
touch the surface of another piece. The surface of any piece
is frictionless.

In this paper, we assume that each vertex of any piece
of a cast puzzle has integral coordinates. Hence, a layout of
polyhedrons can be represented as a string as follows. Sup-
pose P0 is a polyhedron such that one of P0’s vertices is on
the origin of coordinates. Polyhedron P0 is represented by
a set of P0’s faces f0, f1, . . . , fm−1, where one of f0’s ver-
tices is on the origin of coordinates. Each face fi is repre-
sented by a sequence of fi’s vertices. Let 〈P0, (x1, y1, z1)〉
denote the polyhedron embedded in E3, obtained by trans-
lating P0 from (x, y, z) to (x′, y′, z′) = (x, y, z) + (x1, y1, z1)
(which describes a transformation where each point is sub-
ject to a fixed displacement (x1, y1, z1)).

For example, let P′0 be a polyhedron fitted inside a unit
cube. Set S = {〈P′0, (2i, 0, 0)〉 | 0 ≤ i ≤ h(n′) − 1} repre-
sents a sequence of h(n′) polyhedrons placed at regular in-
tervals, where n′ is an integer, and h is a function of n′. Note
that such well-regulated polyhedrons can be encoded as a
string code(S ) over {0, 1} of length O(log n′) when polyhe-
dron P′0 and function h can be encoded as strings of length
constant.

Let n be the length of the string representing the layout

of a cast puzzle. The cast puzzle is said to have size s(n) if
the convex hull of all pieces is fitted inside a cuboid of size
s1(n) × s2(n) × s3(n) such that s1(n) + s2(n) + s3(n) ≤ s(n).

Let g(0, p(n)) = p(n) and g(k, p(n)) = 2g(k−1,p(n)) for ev-
ery k ≥ 1, where p(n) is an arbitrary polynomial function. A
TM is said to be k-exponential-space bounded if, for every
accepted input x of length n, M halts with an accepting state
in g(k, p(n)) space.

The cast puzzle problem of size k-exponential is said
to be k-EXPSPACE-hard if there is a polynomial-time trans-
formation from an arbitrary k-exponential-space TM M and
its input x to a cast puzzle c1 of size k-exponential in |x|
such that M accepts x if and only if c1 is solvable. Since any
cast puzzle in this paper is constructed by a polynomial-time
transformation, the layout is encoded as a string of length
polynomial (even if the cast puzzle has size k-exponential).

Theorem 1: For every integer k ≥ 0, there is a polynomial-
time transformation from an arbitrary k-exponential-space
TM M and its input x to a cast puzzle c1 of size k-
exponential in |x| such that M accepts x if and only if c1

is solvable.

Corollary 1: For every integer k ≥ 0, the cast puzzle prob-
lem of size k-exponential is k-EXPSPACE-hard.

Theorem 2: There is a polynomial-time transformation
from an arbitrary instance f of the SAT problem to a cast
puzzle c2 such that f is satisfiable if and only if c2 is solv-
able.

The proofs of Theorems 1 and 2 are given in Sects. 3
and 4, respectively.

Flake and Baum proved that some PSPACE-complete
problem can be reduced to the Rush hour problem (a slid-
ing block puzzle on a board) [6]. From this result, it is not
difficult to construct a PSPACE-hard cast puzzle by making
sure that the pieces cannot use the third direction. On the
other hand, from Theorem 2, we can construct an NP-hard
cast puzzle, which is different from their PSPACE-hard cast
puzzle in the following sense.

Suppose that we have a polynomial amount of zinc and
two layouts of NP-hard and PSPACE-hard cast puzzles. Our
NP-hard cast puzzle can be solved by hand in n+1 steps with
n guesses, although we do not prove the NP-completeness
for our puzzles. On the other hand, their PSPACE-hard
cast puzzle cannot be solved in polynomial steps with poly-
nomial guesses unless NP = PSPACE. Here, a one-step
move of a piece of NP-hard and PSPACE-hard cast puz-
zles is defined as a continuous translation from (x, y, z) to
(x′, y′, z′) = (x, y, z) + (x1, y1, z1) such that no vertex of the
piece is the interior of any other piece during the translation
and x1, y1, z1 are integers.

3. Transformation from TMs to Cast Puzzles

In this section, we will prove Theorem 1. We show
a polynomial-time transformation from an arbitrary k-
exponential-space TM and its input to the layout of a cast
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Fig. 1 (a) A target piece. (b) Lateral view. (c) Top view.

Fig. 2 (a) A board with a cross-shaped hole. (b) A cross-section view
between C and D.

puzzle such that the TM accepts its input if and only if the
cast puzzle is solvable.

The definition of a TM is mostly from [13]. A
one-tape two-symbol TM is a system defined by M =

(Q,Σ, q0, qm−1,R), where Q = {q0, q1, . . . , qm−1} is a finite
set of states, Σ = {0, 1} is a set of tape symbols, q0 (resp.
qm−1) is the unique initial (resp. final) state, and R is a set of
transition rules, where R ⊆ ((Q−{qm−1})×Σ×Σ×Q)∪ ((Q−
{qm−1}) × {/} × {−1,+1} × Q).

Each transition rule in R is of the form [qi, a, a′, qi′ ] or
[qi, /, d, qi′ ], where qi ∈ Q − {qm−1}, qi′ ∈ Q; a, a′ ∈ Σ;
and d ∈ {−1,+1}. Rule [qi, a, a′, qi′ ] means that if M reads
symbol a in state qi, then M writes a′ and enters state qi′ .
Rule [qi, /, d, qi′ ] means that if M is in state qi, then M
moves the head to the right (resp. left) when d = +1 (resp.
d = −1) and enters state qi′ .

Let α1 = [qi, a, a′, qi′ ] and α2 = [q j, b, b′, q j′ ] be two
transition rules in R. We say that α1 and α2 overlap in do-
main if (qi = q j and a = b) or (qi = q j and (a = / or b = / )).
A rule α is said to be deterministic in R if there is no other
rule in R with which α overlaps in domain. A TM M is
called deterministic if every rule in R is deterministic. In
the rest of this paper, all TMs are one-tape two-symbol de-
terministic TMs. A TM defined in [13] is a reversible TM.
Our TM is a deterministic TM, but it does not have to be
a reversible TM. The reason why we use the definition of
[13] is to separate transition rules into those of the forms
[qi, a, a′, qi′ ] and [qi, /, d, qi′ ].

We first construct the target piece (see Fig. 1). It is
composed of a square pole of size 1 × 1 × (l + 2), two rect-
angular poles of size 1 × 2 × l, and two square poles of size
1 × 1 × l. The length l will be fixed later. The four poles of
length l are welded to the pole of length l + 2 so that they
form a single polyhedron.

Consider a 3-thick board (see Fig. 2). The board has

Fig. 3 (a) A board having four corridors, three octagonal spaces, and
one quadrilateral space. (b) A cross-section view between D and E. (c) Di-
agrammatic sketch of (a). (d) Unimportant octagonal spaces are sometimes
omitted.

a cross-shaped hole. There is a groove on the inside wall
of the hole (see Fig. 2 (b)) so that the target piece cannot be
taken out from the board. This cross-shaped hole is com-
posed of horizontal and vertical corridors. In the horizontal
corridor, the target piece can move to the right, and it can go
back to the original position. The vertical corridor connects
positions A and B. It should be noted that the target piece
cannot move to position A or B from the current position.
(Strictly speaking, this is not a cross-shaped hole because
there is a narrow gap which connects the hole to the exterior
so that the board is a polyhedron.)

Consider a board shown in Fig. 3 (a), which has four
corridors, three octagonal space, and one quadrilateral
space. Suppose that the target piece is in the right-upper oc-
tagonal space. The target piece can move to position A, take
a 90-degree turn using the octagonal space, and the target
piece can reach position C. At this position, we can take out
the target piece from the board. In the following, such octag-
onal spaces and corridors are represented as nodes and arcs
(see Fig. 3 (c)). A quadrilateral space (position C) is rep-
resented as a double circle. (Unimportant nodes are some-
times omitted as shown in Fig. 3 (d).) On this board, there is
a bridge so that the two pieces form a single polyhedron (see
Fig. 3 (b); octagonal space B and two corridors connected
to B are for this explanation only).

We illustrate the transformation from a k-exponential-
space TM M to a cast puzzle. Since M is k-exponential-
space bounded, there is a polynomial p(n) such that M uses
at most g(k, p(n)) cells on its tape, where g(0, p(n)) = p(n)
and g(k, p(n)) = 2g(k−1,p(n)) for every integer k ≥ 1. Each
tape cell ci, 1 ≤ i ≤ g(k, p(n)), is simulated by a block
shown in Figs. 4 (a) and 4 (b). The size of each block de-
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Fig. 4 (a) A block simulating a cell ci of M, from a top view. (b) The
same block from a lateral view. (c) Blocks are pierced by two L-shaped
square poles, which are welded to another square pole.

Fig. 5 (a) A block has a hole h(qi, a) for every pair of state qi ∈ Q and
symbol a ∈ Σ. (b) Solid (resp. dotted) arcs correspond to transition rules
of the form [qi, a, a′, qi′ ] (resp. [qi, /, d, qi′ ]). L-shaped square poles are
omitted in this figure.

pends only on the number of M’s states. All blocks are
arranged in a row, and they are pierced by two L-shaped
square poles, which are welded to another square pole (see
Fig. 4 (c)). These square poles form a single polyhedron. (A
groove in Fig. 4 (b) is explained later using Fig. 6.)

Let Q = {q0, q1, . . . , qm−1} be the set of M’s states,
where q0 and qm−1 are unique initial and final states, re-
spectively. Recall that tape symbols are 0 and 1 only. Each
block has 2m holes, say, h(q0, 0), h(q0, 1); h(q1, 0), h(q1, 1);
· · · ; h(qm−1, 0), h(qm−1, 1) (see Fig. 5 (a) for a four-state TM).
For every transition rule of the form [qi, a, a′, qi′ ], a, a′ ∈ Σ,
we add an arc from node h(qi, a) to h(qi′ , a′) (see solid
arcs in Fig. 5 (b)). Furthermore, for every transition rule
of the form [qi, /, d, qi′ ], d ∈ {−1,+1}, we add 2 × 2 dot-
ted arcs from nodes h(qi, 0), h(qi, 1) in the current block to
h(qi′ , 0), h(qi′ , 1) in the right (resp. left) adjacent block if
d = +1 (resp. d = −1) (see dotted arcs in Fig. 5 (b)). All
blocks are the same polyhedron except for the first and last
blocks. The first (resp. last) block does not have arcs which
is to or from the left (resp. right) adjacent block.

Figure 5 (b) is constructed according to a four-state
deterministic TM M = (Q,Σ, q0, q3,R) such that Q =

{q0, q1, q2, q3}, Σ = {0, 1}, and

R= { [q0, /,+1, q1], [q1, 0, 1, q0], [q1, 1, 0, q3],
[q2, 0, 1, q3], [q2, 1, 0, q0] }. (1)

Figure 6 illustrates a cast puzzle simulating a configu-
ration of TM M in Fig. 7 (a). It is composed of a sequence
of g(k, p(n)) blocks (see also Fig. 5 (b)), two boards 1, 2
behind them, and g(k, p(n)) sets of octagonal cylinders
S 1, S 2, · · · , S g(k,p(n)). See Fig. 6 (b) for a lateral view of an
octagonal cylinder. (Due to space limitation, Fig. 6 contains
only three blocks, say, blocks 1, 2, 3, and three sets of oc-
tagonal cylinders S 1, S 2, S 3.)

Figure 6 (b) is a lateral view from the cross section be-
tween K′ and K′′. Each of boards 1, 2 is welded to an L-
shaped square pole (see Fig. 6 (b)). The other end of the
L-shaped square pole is welded to square pole 1, which is
further welded to square poles 2, 3 and a rectangular pole.
It should be noted that boards 1, 2 are connected via two
L-shaped square poles and a rectangular pole; if board 1 is
moved to the right, then board 2 is also moved to the right
simultaneously (see (6) in Fig. 6 (a)).

On block i, there is a set of octagonal cylinders S i,
where S i contains m octagonal cylinders. Those m octagonal
cylinders are connected by a rod so that they cover all holes
in either {h(q j, 0) | 0 ≤ j ≤ m−1} or {h(qj, 1) | 0 ≤ j ≤ m−1}.
The other end of the rod is connected to rectangular solid i,
which has two (square) holes 1, 2 and one rectangular hole
(see Fig. 6 (b)). Square poles 2, 3 pierce either holes 1, 2 or
hole 2 and the rectangular hole. If square poles 2, 3 pierce
holes 1, 2, then the set of octagonal cylinders close holes
{h(q j, 1) | 0 ≤ j ≤ m− 1} (and holes {h(q j, 0) | 0 ≤ j ≤ m− 1}
are opened; see S 2 in Fig. 6 (a)), which implies the tape cell
has symbol 0. Similarly, if square poles 2, 3 pierce hole 2
and the rectangular hole, then the tape cell has symbol 1 (see
S 1, S 3). There is a gap between the left square poles 2, 3 and
the right square poles 2, 3. The gap distance is the same as
the width of each rectangular solid. Therefore, there exists
at most one set of octagonal cylinders which we can move
vertically.

The rectangular pole always pieces all rectangular
solids. We dig a ditch on every block (see Fig. 6 (c)) and
we fit the corresponding set of octagonal cylinders into the
ditch so that they cannot move in the horizontal direction.
On each board, there is a monorail which is fitted in the
groove of each block so that the block does not move in the
vertical direction.

Since the target piece has height 5 (see Fig. 1 (b)), the
top and bottom of the target piece protrude outside the block
(see Fig. 2 (b)). Therefore, the target piece must always be
between boards 1 and 2. If the target piece reaches one of the
“accepting” holes h(qm−1, 0), h(qm−1, 1), then we can take it
out from the block.

Consider a configuration of the TM M at step t (see
Fig. 7 (a)). In Fig. 6 (a), the target piece is in the hole h(q1, 0)
in the second block, and holes {h(qj, 0) | 0 ≤ j ≤ m−1} (resp.
{h(q j, 1) | 0 ≤ j ≤ m − 1}) are opened in the second block
(resp. in the first and third blocks). From Eq. (1), there is a
solid arc from hole h(q1, 0) to hole h(q0, 1) (see Figs. 6 (a)



IWAMOTO et al.: NP-HARD AND K-EXPSPACE-HARD CAST PUZZLES
2999

Fig. 6 (a) A cast puzzle simulating the configuration of a TM in Fig. 7 (a). (b) A lateral view from the
cross section between K′ and K′′. (c) A lateral view of a block and an octagonal cylinder from point C
of (b).

Fig. 7 Configurations of a TM at steps t, t + 1, and t + 2.

and 8 (a)), and there is a pair of dotted arcs from h(q0, 1) to
h(q1, 0) and h(q1, 1) in the right adjacent block, where the
hole h(q1, 0) is closed. Figure 8 (b) is the detailed drawing
of Fig. 8 (a).

(1) Suppose that the target piece is in the hole h(q1, 0).
(2) We can carry the target piece forward until it reaches
position B (see Fig. 8 (b)). At this position, we can take
a 45-degree turn. (3) During the evacuation of the target
piece, we can move the set of octagonal cylinders S 2 up-
ward. (In Fig. 8 (b), octagonal cylinder H is just moving
upward.) Since rectangular solid 2 is in the gap of square
poles 2, 3 (see Fig. 6 (a)), we can freely move S 2 vertically
(as far as the rectangular pole in the rectangular hole per-
mits). (4) After the movement of octagonal cylinders, the
hole h(q0, 1) at position C is opened, and h(q1, 0) at posi-
tion A is closed. We can carry the target piece to position C.

Fig. 8 (a) Solid arc from h(q1, 0) to h(q0, 1), and dotted arcs from h(q0, 1)
to h(q1, 0) and h(q1, 1). (b) Detailed drawing of (a).
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At this time, the edges of boards 1, 2 are on borderlines J,J′,
respectively (see Figs. 6 (a) and 8 (b)).

Currently, the target piece is in position C and the edges
of boards 1 and 2 are on borderlines J and J′, respectively.
(5) We can carry the target piece to position D by moving
board 2 to the right simultaneously. (6) Square poles 2, 3
are connected to boards 1, 2; thus the square hole 2 and
the rectangular hole of rectangular solid 2 are pierced by
square poles 2 and 3, respectively (see Fig. 6 (a)). (7) Then
we take a 90-degree turn at D, a downward movement from
D to F, and a 90-degree turn at F. Again, we carry the target
piece to position G by moving board 2 to the right. Finally,
we move board 2 to the right so that octagonal cylinders S 3

are placed in the middle between boards 1 and 2, by which
square poles 2, 3 are pulled out of rectangular solid 3. Now
the set of octagonal cylinders S 3 can move vertically, and
the target piece can also move according to the solid arc in
the third block.

The target piece cannot reach hole h(q1, 0) via dotted
arc (5′) in Fig. 8 (b) because of the following reason. In gen-
eral, the set of octagonal cylinders S i can move vertically if
and only if the distance between I and J is the same as the
distance between I′ and J′ (see Fig. 6 (a)).

Now we fix the length l of the target piece so that l is
strictly longer than the distance between I and J. For such
an l, the target piece gets stuck between the octagonal cylin-
der on h(q1, 0) and board 1 (see position G′ in Fig. 8 (b)).

Initially, the first n sets of octagonal cylinders
S 1, S 2, . . . , S n are placed according to the input string x ∈
{0, 1}n, and the remaining S n+1, S n+2, . . . are placed so that
holes h(q j, 0) are opened on every block. The target piece is
initially in the hole h(q0, 0) or h(q0, 1) in the first block. The
layout of such polyhedrons can be represented by a string of
length polynomial in n.

Since TM M is deterministic, the accepting computa-
tion is a sequence of configurations in which the last config-
uration is accepting. Such a sequence belongs to a directed
accepting tree such that (i) every node is a configuration,
and (ii) the root node is the unique accepting configuration
in the tree. Note that there is a path from every node in the
tree to the accepting node (i.e., root node). Therefore, M
accepts input x if and only if the initial configuration of M
belongs to an accepting tree. Moving the target piece in our
cast puzzle corresponds to walking round nodes in the tree.
The root node of this tree is an accepting configuration if
and only if the target piece can be taken out of a block. By
this construction, the TM M accepts x if and only if the cast
puzzle is solvable. This completes the proof of Theorem 1.

4. Transformation from SAT-Instances to Cast Puzzles

In this section, we will prove Theorem 2. We show
a polynomial-time transformation from an arbitrary in-
stance f of the 3-SAT problem (3-SAT) [8] to a cast puz-
zle such that f is satisfiable if and only if the cast puzzle is
solvable.

Let U = {x1, x2, . . . , xn} be a set of Boolean variables.

Fig. 9 (a) A polyhedron made by one square pole and four flanges.
(b) The same polyhedron from a lateral view.

Fig. 10 (a) A board with large and small holes connected by a channel.
(b) A flange is smaller than the large hole, but it is larger than the small
hole. The pole can move back and forth between large and small holes
through the channel. (c) The lateral view of the board when the pole is in
the large hole.

Boolean variables take on values 0 (false) and 1 (true). If x
is a variable in U, then x and x are literals over U. The value
of x is 1 (true) if and only if x is 0 (false). A clause over U
is a set of literals over U, such as {x1, x3, x4}. It represents
the disjunction of those literals and is satisfied by a truth
assignment if and only if at least one of its members is true
under that assignment.

An instance of 3-SAT is a collection f =

{c1, c2, . . . , cm} of clauses over U such that |ci| = 3 for
1 ≤ i ≤ m. The 3-SAT problem asks whether there ex-
ists some truth assignment for U that simultaneously satis-
fies all the clauses in f . For example, U = {x1, x2, . . . , x5},
f = {c1, c2, c3, c4}, and c1 = {x1, x3, x4}, c2 = {x1, x2, x4},
c3 = {x2, x4, x5}, c4 = {x3, x4, x5} provide an instance of 3-
SAT. For this instance, the answer is “yes”, since there is a
truth assignment (x1, x2, x3, x4, x5) = (0, 1, 0, 1, 0) satisfying
all clauses.

In order to transform the instance of 3-SAT, we define
several pieces, such as a square pole, flanges, and boards
(see Figs. 9 and 10). Flanges are horseshoe-shaped pieces
(see Fig. 9 (a)), which straddle the square pole at regular in-
tervals. Flanges are welded to the pole; namely, a pole with
flanges at regular intervals form a single polyhedron.

A board has large and small holes, which are connected
by a channel (see Fig. 10 (a)). A flange is smaller than the
large hole, but it is larger than the small hole (Fig. 10 (b)).
The pole can move back and forth between large and small
holes through the channel. (Strictly speaking, there is a nar-
row gap which connects the small hole to the exterior so that
the board is a polyhedron. Such gaps can also be found in
Figs. 12, 15, and 16.)

Suppose that a square pole with two flanges is in
the large hole, where the board is between two flanges
(Fig. 10 (c)). In this case, we can pull the pole out of the
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Fig. 11 (a) Relationship among eight assignments for a clause on three
literals. (b) We assign a small box to node 000 and large boxes to the
remaining nodes.

Fig. 12 Octagonal board with control rods simulating a clause c1 =

{x1, x3, x4}.

board, since the large hole is larger than flanges. On the
other hand, if the pole is in the small hole, we cannot pull it
out of the board.

All the possible assignments for three literals are
(0, 0, 0), (0, 0, 1), . . . , (1, 1, 1). We represent the relationship
among those eight assignments by a four-level graph shown
in Fig. 11 (a). For example, node 000 in the figure corre-
sponds to assignment (0, 0, 0).

We assign a small box to node 000, and large boxes
to the remaining nodes in the graph (see Fig. 11 (b)). Now
the board corresponding to each clause is constructed as de-
scribed in Fig. 12. The board for clause c j is called octago-
nal board c j. Note that all octagonal boards have the same
shape for all clauses c1, c2, . . . , cm.

The octagonal board has seven large holes and one
small hole at the positions where the corresponding nodes
in Fig. 11 (b) are in large boxes and a small box, respec-
tively. In Fig. 12, the small hole is called hole 000, and
large holes are called holes 001, 010, . . . , 111, which corre-
spond to nodes 001, 010, . . . , 111 in Fig. 11 (b), respectively.
Two holes in Fig. 12 are connected by a channel if the cor-
responding nodes are connected by an edge in Fig. 11 (b).

We construct a square pole with m + 1 flanges (see
Fig. 9). We get the pole through a hole of every octagonal
board such that flanges and octagonal boards appear alter-
nately. Suppose that the first clause is c1 = {x1, x3, x4}. This
clause is unsatisfied if and only if (x1, x3, x4) = (1, 0, 0).
In this sense, we get the pole through hole 100. The posi-

Fig. 13 (a) The lateral view of an octagonal board with bridges. Five
bridges appear as one, since they are overlapping in space from the lateral
view. (b) Square pole with m branches. Flanges are at the end of branches.

tion of the pole corresponds to the assignment for variables
(x1, x3, x4) = (0, 0, 0) (i.e., for literals (x1, x3, x4) = (1, 0, 0)).

Furthermore, we fix three control rods on the lateral
side of every octagonal board. The gradient and length of
each rod are the same as those of the corresponding chan-
nel (see Fig. 12). If we push or pull a rod in the direction
of the arrow, the square pole moves from a hole to another
hole through a channel. One can see that pulling (resp. push-
ing) a rod implies changing the assignment of a literal from
0 to 1 (from 1 to 0). Note that the assignment for liter-
als (x1, x3, x4) is (0, 0, 0) if and only if the pole is in the small
hole 000.

Here, it should be noted that the octagonal board of
Fig. 12 is not a single piece but eight disjoint pieces. So,
we connect the eight pieces with seven bridges so that they
form a single polyhedron (see Fig. 13 (a)). Since bridges
may disrupt the movement of the square pole, we change
the shape of the pole. The new square pole has m branches,
where each branch has a flange at the end (see Fig. 13 (b)).
The detailed drawing of the end of each branch will be given
in Fig. 21, where we will use the free-floating gadget (see
also Fig. 17).

Now, we construct a connection between literals and
clauses. For simplicity of exposition, suppose f =

{c1, c2, c3, c4} and

c1 = {x1, x3, x4}, c2 = {x1, x2, x4},
c3 = {x2, x4, x5}, c4 = {x3, x4, x5}.

Figure 14 illustrates control rods of octagonal boards c2, c3,
and c4.

Since literal x1 appears in clause c2, the control rod
for x1 is connected to the second octagonal board (see
Fig. 13 (b)). Since literal x4 appears in clauses c1, c2, and
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Fig. 14 (a) c2 = {x1, x2, x4}, (b) c3 = {x2, x4, x5}, (c) c4 = {x3, x4, x5}.

Fig. 15 (a) 24 octagonal cylinders in a doughnut-shaped hollow tube.
Control rods are in ducts. (b) Clockwise rotation.

Fig. 16 A hollow tube with a gap.

c3, the control rod for x4 is connected to the first, second,
and third octagonal boards. Connections for the remaining
literals are similar. In general, a literal xi (resp. xi) appears
in clause c j if and only if the control rod for xi (resp. xi) is
connected to the jth octagonal board, where 1 ≤ i ≤ n and
1 ≤ j ≤ m.

The value of literal xi is 1 if and only if xi is 0; in or-
der to simulate this relation, we use the gadget shown in
Fig. 15 (a). First of all, consider a hollow tube such that
one of the four faces has a gap (see Fig. 16). We connect
eight such tubes so that they form a doughnut shape (see
Fig. 15 (a)). The doughnut-shaped tube is filled with 24 oc-
tagonal cylinders leaving no space between adjacent cylin-
ders. (The value 24 has no special significance.) Two of the
24 octagonal cylinders in Fig. 15 (a) (see black cylinders) are
connected to a pair of control rods in Fig. 13 (b). The gap of
the hollow tube (Fig. 16) is the same as the width of rods.

If we rotate all octagonal cylinders two positions in a
clockwise direction (see Fig. 15 (b)), the control rods for xi

and xi are pulled and pushed, respectively. One can see that
both xi and xi do not have the same value simultaneously.
Initially, black cylinders are placed so that xi = 0 and xi = 1
for every i ∈ {1, 2, . . . , n}. Since control rods should always
be pushed and pulled vertically, we cover them with ducts
(Fig. 15 (a)).

Finally, all doughnut-shaped tubes are fixed on a plat-
form (see Fig. 17) so that the positional relationship among
them may not be changed. Consider octagonal board c1 in

Fig. 17 Octagonal board c1 can make “free-floating” moves in the
directions of x1 and x3.

Fig. 17. (See also the control rod for x4 in Fig. 12, and octag-
onal board c1 connected to x4 in Fig. 13 (b).) In Fig. 17, oc-
tagonal board c1 is connected to a rectangular solid, which is
in a hollow tube (labeled with x3). (Tubes have “stoppers” at
both ends so that the solid do not fall off the tube.) This tube
is further connected to another rectangular solid, which is in
a hollow tube (labeled with x1). This tube is connected to
a black cylinder in the doughnut-shaped hollow tube. (Note
that welded joints connect between a black cylinder and a
hollow tube; a rectangular solid and a hollow tube; a rect-
angular solid and an octagonal board.) Those two hollow
tubes are for the free-floating mechanism as follows.

It should be noted that octagonal board c1 is also con-
nected with rods x1 and x3 (see Fig. 12). If 24 cylinders
move two positions in a clockwise direction, the square pole
in Fig. 12 moves from hole 100 to the right-lower hole 101
through a channel. In this case, the two rectangular solids of
x1 and x3 in Fig. 17 do not move in the left-lower or vertical
direction, if the pole moves along the channel from hole 100
to hole 101 (this “no turn” mechanism is explained in the
following paragraphs using Figs. 18 through 21). Then, if
rod x1 in Fig. 12 is pushed, then the pole moves in the right-
upper direction from hole 101 to hole 001. This movement
is allowed by the free-floating mechanism in Fig. 17; the
rectangular solid in tube x1 is moved to the left-lower di-
rection.

If we use a square pole (see Fig. 9), we can move it
from the hole 100 to hole 010 (see Figs. 11 and 12) by
taking a left turn at the intersection of two channels (see
Fig. 18 (a)). In order to avoid such a movement, we use an
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Fig. 21 (a) A flange shown in Fig. 13 (b). (b) Detailed drawing of (a). A flange and three octagonal
poles are connected to a free-floating gadget. This figure is from a worm’s-eye view (except the branch).

Fig. 18 (a) Square pole with a flange. (b) Octagonal pole with two
ditches.

Fig. 19 (a) Octagonal pole. (b) Ditches. (c) The lateral view of the
octagonal pole with two ditches.

Fig. 20 (a) Octagonal pole after 45-degree revolution. (b) The lateral
view of (a). (c) Octagonal pole after (−45)-degree revolution. (d) The
lateral view of (c).

octagonal pole (see Figs. 18 (b) and 19 (b)).
Consider an octagonal pole of which one of the rect-

angular faces is gray colored (see Fig. 19 (a)). We dig two
ditches as pictured in Figs. 19 (b) and 19 (c). In Fig. 19 (c),
the width d of a rectangular face is the same as the width
of a channel. Gap distance s is the same as the thickness of
the octagonal board of Fig. 12. This octagonal pole with two
ditches cannot take the above left turn at the intersection of
two channels (see Fig. 18 (b)).

We use two more octagonal poles with ditches, which
are placed after 45-degree and (−45)-degree revolutions (see
Fig. 20). We connect three poles in Figs. 20 (a), 20 (c),
and 19 (b) so that they form a single octagonal pole, called
the new pole. A flange and a free-floating gadget are fixed
on the left and right ends of the new pole (see Fig. 21.)

The new pole is smaller than the small hole. If the new
pole is in a small or large hole of the octagonal board (see
Fig. 12), we can choose one of the three octagonal poles by
moving the rectangular solid in the tube in Fig. 21. There is
a “stopper” to the left of the hole so that the flange is always
between the stopper and the octagonal board, by which the
new pole always pierces the octagonal board. The height h
of any bridge is larger than the length of the new pole so that
the bridge does not disrupt the horizontal movement of the
new pole.

By the constructions, the pole with m branches in
Fig. 13 (b) can be pulled out of octagonal boards if and only
if the new pole is moved from the initial hole to a large
hole in every octagonal board c j ∈ {c1, c2, . . . , cm} simul-
taneously (if and only if there is a truth assignment for vari-
ables x1, x2, . . . , xn satisfying all clauses c1, c2, . . . , cm). This
completes the proof of Theorem 2.

5. Conclusions

In this paper, we presented a polynomial-time transforma-
tion from a k-exponential-space TM M and its input x to a
cast puzzle c1 of size k-exponential such that M accepts x
if and only if c1 is solvable. As a corollary, the cast puz-
zle problem of size k-exponential is k-EXPSPACE-hard. We
also presented a polynomial-time transformation from an in-
stance f of the SAT problem to a cast puzzle c2 such that f
is satisfiable x if and only if c2 is solvable.
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