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SUMMARY In this paper, a fast and memory-efficient VLSI architec-
ture for output probability computations of continuous Hidden Markov
Models (HMMs) is presented. These computations are the most time-
consuming part of HMM-based recognition systems. High-speed VLSI
architectures with small registers and low-power dissipation are required
for the development of mobile embedded systems with capable human in-
terfaces. We demonstrate store-based block parallel processing (StoreBPP)
for output probability computations and present a VLSI architecture that
supports it. When the number of HMM states is adequate for accu-
rate recognition, compared with conventional stream-based block parallel
processing (StreamBPP) architectures, the proposed architecture requires
fewer registers and processing elements and less processing time. The pro-
cessing elements used in the StreamBPP architecture are identical to those
used in the StoreBPP architecture. From a VLSI architectural viewpoint,
a comparison shows the efficiency of the proposed architecture through ef-
ficient use of registers for storing input feature vectors and intermediate
results during computation.
key words: speech recognition, hidden Markov model (HMM), VLSI ar-
chitecture

1. Introduction

Mobile embedded systems with sophisticated natural human
interfaces, such as speech recognition, lip reading, and ges-
ture recognition, are required for the realization of future
ubiquitous computing.

Recognition tasks can be implemented either on pro-
cessors (CPUs and DSPs) or dedicated hardware (ASICs).
Although processor-based approaches offer flexibility, real-
time recognition tasks using state-of-the-art recognition al-
gorithms exceed the performance level of current embed-
ded processors, and require modern high-performance pro-
cessors that consume far more power than dedicated hard-
ware [2]–[5]. Dedicated hardware, which is optimized for
low-power, real-time recognition tasks, is more suitable for
implementing natural human interfaces in low-power mo-
bile embedded systems. Fast and memory-efficient VLSI
architectures with small number of registers and processing
elements are required for the development of well-optimized
embedded systems with capable future human interfaces.
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VLSI architectures optimized for recognition tasks
with low power dissipation have been developed [2]–[6].
Yoshizawa et al. investigated a block-wise parallel process-
ing method for output probability computations of contin-
uous hidden Markof models (HMMs) and proposed a low
power, high-speed VLSI architecture [2]–[4]. Output prob-
ability computations are the most time-consuming part of
HMM-based recognition systems. Mathew et al. developed
low-power accelerators for the SPHINX 3 [7] speech recog-
nition system [5] and perception accelerators for embedded
systems [6].

Robust VLSI architecture for the increase of HMM
states, which requires small number of registers and pro-
cessing elements even when the number of HMM states is
increased for accurate recognition, is required for the devel-
opment of well-optimized future HMM-based recognition
systems.

In this paper, we present a fast and memory-efficient
VLSI architecture for HMM computations using a new
blockwise parallel processing method. We show store-
based block parallel processing (StoreBPP) for HMM com-
putations, and present an appropriate VLSI architecture
for its implementation. Compared with a conventional
stream-based block parallel processing (StreamBPP) archi-
tecture [2]–[4], when there are a sufficient number of HMM
states for accurate recognition, the proposed architecture re-
quires fewer registers and processing elements and less pro-
cessing time. A comparison demonstrates the efficiency of
the proposed architecture through its efficient use of regis-
ters in storing input feature vectors and intermediate results
for the computations. The processing elements used in the
StreamBPP and StoreBPP architectures are identical.

The remainder of this paper is organized as follows: the
structure of HMM-based recognition systems is described in
Sect. 2, StoreBPP and our VLSI architecture are introduced
in Sect. 3, the evaluation of the proposed architecture is de-
scribed in Sect. 4, and conclusions are presented in Sect. 5.

2. HMM-Based Recognition Systems

2.1 HMM-Based Recognition Hardware

Due to their effectiveness and efficiency for user-
independent recognition, HMMs are widely used in appli-
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Fig. 1 Basic structure of HMM-based recognition hardware.

cations such as speech recognition, lip-reading, and gesture
recognition.

Figure 1 shows the basic structure of HMM-based
recognition hardware [2]–[5]. The output probability com-
putation circuit and Viterbi scorer work together as a recog-
nition engine. The inputs to the output probability compu-
tation circuit are feature vectors of several dimensions and
model parameters of HMMs. These values are stored in
RAM and ROM respectively. The RAM, ROM and out-
put probability computation circuit interconnect via a single
bus, and memory accesses are exclusive. The output prob-
ability computation circuit outputs the results of the output
probability computation of HMMs. The Viterbi scorer out-
puts likelihood score using the Viterbi algorithm. In HMM-
based recognition systems, the most time-consuming task is
output probability computations, and the output probability
computation circuit accelerates these computations.

The output probability computation circuit has several
register arrays and processing elements (PEs) for efficient
high-speed parallel processing.

Typical application examples of our VLSI architecture
for the output probability computation circuit are speech
recognition systems such as isolated word recognition, con-
nected word recognition and continuous speech recognition,
where feature vectors are extracted from input speech sig-
nal by any other external circuit or processor outside the
recognition hardware of Fig. 1. We assume that the output
probability computation circuit computes output probabil-
ity of continuous HMMs. Model parameters of continuous
HMMs are precomputed from training samples of words,
etc. In isolated word recognition, the results of the out-
put probability computation and the likelihood score lead
to a recognition result, which is a word. In connected word
recognition and continuous speech recognition, the results
of the output probability computation and the likelihood
score are used to lead to a recognition result, which is a se-
quence of words or a sentence, by any other external circuit
or processor outside the recognition hardware of Fig. 1. Our
VLSI architecture is directly appliciable to the design of the
output probability computation circuit in the systems with-
out a major redesign of the whole hardware of Fig. 1. By

utilizing our VLSI architecture to the design of the output
probability computation circuit, further design optimization
which reduces the number of PEs in the Viterbi scorer by
introducing several registers in it is possible but it is our fu-
ture work.

2.2 Output Probability Computation of HMMs

Let O1, O2, . . . , OT be a sequence of P-dimensional input
feature vectors to HMMs, where Ot = (ot1, ot2, . . . , otP),
1 ≤ t ≤ T . T is the number of input feature vectors, and
P is the dimension of the input feature vector. For an input
feature vector Ot, the output probability of N-state left-to-
right continuous HMM at the j-th state is given by

log b j(Ot) = ω j +

P∑

p=1

σ jp(otp − μ jp)2

1 ≤ j ≤ N, 1 ≤ t ≤ T, (1)

where ω j, σ jp, and μ jp are the factors of the Gaussian prob-
ability density function.

The output probability computation circuit (Fig. 1)
computes log b j(Ot) based on Eq. (1), where all HMM pa-
rameters ω j, σ jp, and μ jp are stored in ROM, and the input
feature vectors are stored in RAM. The values of T , N, P,
and the number of HMMs V differ for each recognition sys-
tem. For a recent isolated word recognition system [2], [3],
T , N, P, and V are 86, 32, 38, and 800, respectively, and for
another word recognition system [4], T , N, P, and V are 89,
12, 16 and 100 respectively, where the number of HMMs
V of the recent system is eight times larger than that of the
other system and the number of HMM states of the recent
system is increased from 12 to 32 for accurate recognition
with the sufficient number of HMM states. For a continuous
speech recognition system [5], T , N, P, and V are approx-
imately 20, 10, 40, and 50, respectively. Different applica-
tions require different output probability computation circuit
architectures.

A flowchart of output probability computations is
shown in Fig. 2. Output probabilities are obtained by P ·
N · T · V times the partial computation of log b j(Ot) calls.
Partial computation of log bj(Ot) performs four arithmetic
operations, a subtraction, an addition, and two multiplica-
tions for Eq. (1), and computes log bj(Ot).

3. Fast and Memory-Efficient VLSI Architecture for
Output Probability Computations

3.1 Store-Based Block Parallel Processing (StoreBPP)

Block parallel processing (BPP) for output probability com-
putations was proposed as an efficient parallel process-
ing method for word HMM-based speech recognition by
Yoshizawa et al. [2]–[4]. In this method, the set of input
feature vectors is called a block, and HMM parameters are
effectively shared between different input feature vectors in
the computation. N-parallel computation is performed by
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Fig. 2 Flowchart of output probability computation.

Fig. 3 Flowchart of output probability computations using StreamBPP.

their BPP.
In this paper, we classify two types of BPP accord-

ing to input data flow: store-based block parallel process-
ing (StoreBPP) and stream-based block parallel processing
(StreamBPP). A block can be seen as a set of M(≤ T ) in-
put feature vectors, whose elements are Ot′ ’s, 1 ≤ t′ ≤ M.
M vectors in T input feature vectors are processed in block.
StoreBPP performs arithmetic operations to locally stored
input feature vectors, which are O1, O2, . . . , and OM . On
the other hand, a block can also be seen as a M × P matrix
whose elements are ot′p, 1 ≤ t′ ≤ M, 1 ≤ p ≤ P. StreamBPP
performs arithmetic operations to an input stream, which is
o11, . . . , o1P, o21, . . . , o2P, . . . , oM1, . . . , oMP.

The BPP proposed by Yoshizawa et al. [2]–[4] is clas-
sified as a StreamBPP. In this paper, we present StoreBPP
for output probability computations. M/2-parallel computa-
tions are performed by our StoreBPP.

A flowchart of the output probability computations
with the conventional StreamBPP [2]–[4] is shown in Fig. 3.
PEi represents the i-th processing element, which computes

Fig. 4 Flowchart of output probability computations using StoreBPP.

log b j(Ot) by a subtraction, an addition, and two multipli-
cations for Eq. (1). Loop B (Fig. 2) is expanded as shown
in Fig. 3, and log b1(Ot), log b2(Ot), . . . , and log bN(Ot) are
computed simultaneously with N PEs. In addition to the N-
state parallel computation, the same HMM parameters μ jp’s,
σ jp’s, and ω j’s, 1 ≤ j ≤ N, 1 ≤ p ≤ P, are used repeatedly
during Loop C in Fig. 3.

A flowchart of the output probability computation with
StoreBPP is shown in Fig. 4. The PEs in Figs. 4 and 3 are
identical. Loop C in Fig. 2 is partially expanded in Fig. 4,
and log b j(Ot′+1), log b j(Ot′+2), . . . , and log b j(Ot′+M/2) are
computed simultaneously with M/2 PEs in Loop C1. In ad-
dition to the M/2-parallel computations, log bj(Ot′+M/2+1),
log b j(Ot′+M/2+2), . . . , and log b j(Ot′+M) are also computed
with the same M/2 PEs. In this double M/2-parallel com-
putation, the same HMM parameters μ jp and σ jp are used
two times, because the parameters are independent of t. In
addition to the M/2-parallel computations, Loop D (Fig. 2)
is divided into Loops D1 and D2 (Fig. 4). The same feature
vectors Ot′+1, Ot′+2, . . . , and Ot′+M are used repeatedly dur-
ing Loop D1, because the input vectors are independent of
v.

3.2 A New VLSI Architecture for Output Probability
Computation

Our StoreBPP VLSI architecture for output probability
computations is shown in Fig. 5. The architecture consists
of five register arrays and M/2 PEs. RegO stores M in-
put feature vectors Ot′+1, Ot′+2, . . . , Ot′+M . Regμ and Regσ
store HMM parameters −μ jp, and σ jp, respectively. Regμ
has space for storing −μ jp and for prestoring −μ j p+1 before
the computation with μ j p+1 during the computation using
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Fig. 5 StoreBPP VLSI architecture.

Fig. 6 Flowchart of computations using the StoreBPP architecture.

μ jp. Regμ is two times larger than Regσ. Regω stores
HMM parameter ω j and intermediate results. Regδ stores
computed output probabilities for a Viterbi scorer. Each PE
consists of two adders and two multipliers, which are used
for computing ω j +

∑P
p σ jp(otp − μ jp)2.

Figure 6 shows the flowchart of output probability
computations using the StoreBPP architecture. The compu-
tation starts by reading M input feature vectors from RAM
and storing them to RegO in Loop C1. The HMM pa-
rameters of v-th HMM are read from ROM and stored in
Regμ, Regσ, and Regω, which are μ11, σ11, and ω1. For
the first half of the stored input feature vectors Ot′+1, Ot′+2,
. . . , and Ot′+M/2, M/2 intermediate results are simultane-

Fig. 7 StreamBPP VLSI architecture.

ously computed with the stored μ11 and σ11 by M/2 PEs,
where the HMM parameters are shared by all PEs. At the
same time, an HMM parameter μ jp+1 of v-th HMM is read
from ROM and stored in Regμ, where Regμ still holds μ11

for the next computation using μ11. Then, for the other
half of the stored input feature vectors Ot′+M/2+1, Ot′+M/2+2,
. . . , and Ot′+M , M/2 intermediate results are simultaneously
computed with the same μ11 and σ11 by M/2 PEs. At the
same time, an HMM parameter σ jp+1 of v-th HMM is read
from ROM and stored in Regσ, where the value is over-
written because the computation with σ11 has been finished.
In this double M/2-parallel computation, the stored HMM
parameters μ11 and σ11 are used two times. In the next
double M/2-parallel computation, the stored HMM param-
eters μ jp+1 and σ jp+1 are used two times. M output prob-
abilities log b j(Ot′+1), log b j(Ot′+2), . . . , and log b j(Ot′+M)
of v-th HMM are obtained by Loop A. The obtained re-
sults are copied from Regω to Regδ for starting the next out-
put probability computation, log b j+1(Ot′+1), log b j+1(Ot′+2),
. . . , log b j+1(Ot′+M). The stored results are fed to the Viterbi
scorer. The M · N output probabilities of v-th HMM are ob-
tained by Loop B. M · N · L output probabilities of HMM
v′, v′ + 1, . . . , v′ + L − 1 are obtained by Loop D1 with the
same M input feature vectors Ot′+1, Ot′+2, . . . , Ot′+M . The
M · N · L · T/M output probabilities of HMM v′, v′ + 1,
. . . , v′ + L − 1 are obtained by Loop C1, and finally the
M · N · L · T/M · V/L output probabilities of all HMMs are
obtained by Loop D2.

4. Evaluation

We compared the proposed StoreBPP and StreamBPP
(Fig. 7) VLSI architecture [2]–[4]. The StreamBPP architec-
ture consists of three register arrays and N PEs. Regμ and
Regσ store HMM parameters −μ jp and σ jp, respectively,
and Regω stores HMM parameter ω j and intermediate re-
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Fig. 8 Flowchart of computations using StreamBPP architecture.

Table 1 Register size.

Register size (bit)

StoreBPP (ours) P · M · xo + 2 · xμ + xσ + 2 · M · x f

StreamBPP N · P · xμ + N · P · xσ + N · x f

Table 2 Processing times.

Processing time (cycles)

StoreBPP (ours) �V/L�
· {P · M + (1 + 2 · P) · L · N} · �T/M�

StreamBPP V · (2 · N · P + N + P · T )

sults. The PEs in Figs. 7 and 5 are identical.
Figure 8 shows the flowchart of the computations of the

StreamBPP architecture. The computation starts by reading
all 2 · N · P + N HMM parameters of v-th HMM from ROM
and storing them to Regμ, Regσ, and Regω in Loop D. For
stream input otp, the intermediate results are computed with
stored HMM parameters by N PEs. N output probabilities
log b1(Ot), log b2(Ot), . . . , log bN(Ot) of the HMM are ob-
tained by Loop A. The obtained results are fed to a Viterbi
scorer. N · T output probabilities of v-th HMM are obtained
by Loop C with the same HMM parameters. The N · T · V
output probabilities of all HMMs are obtained by Loop D.

Table 1 shows the register size of the StoreBPP and
StreamBPP architectures, where xμ, xσ, xo, and x f represent
the bit length of μ jp, σ jp, otp, and the output of PE, respec-
tively. N, P, and M are the number of HMM states, the
dimension of input feature vector, and the number of input
feature vectors in a block, respectively.

Table 2 shows the processing time for computing
output probabilities of V HMMs with the StoreBPP and
StreamBPP architectures, where T and L are the number of
input feature vectors and the number of HMMs whose out-
put probabilities are computed with the same input feature
vectors during Loop D1 of Fig. 6, respectively.

Table 3 shows the register size, the processing time,

Table 3 Evaluation of the StreamBPP and StoreBPP performance.

Register Processing #PEs
size (bit) time (cycles)

StoreBPP (ours) 15,512 4,477,440 22
StreamBPP 20,224 4,585,600 32

and the number of PEs for computing output probabilities
of 800 HMMs, where we assume that N = 32, P = 38,
T = 86, xμ = 8, xσ = 8, x f = 24, xo = 8, and V = 800—
the same values used in a recent circuit design for isolated
word recognition [2], [3]. We also assume that M = 44 and
L = 5 for the StoreBPP architecture. The PEs used in the
StreamBPP and StoreBPP architectures are identical. Com-
pared with the StreamBPP architecture, the StoreBPP archi-
tecture has fewer registers, requires less processing time,
and has fewer PEs. From the VLSI architectural view-
point, this is because the register size and the number of
PEs of the StoreBPP architecture are independent of N, and
its PEs can repeatedly use the same input feature vectors.
The StoreBPP architecture has fewer wait cycles for read-
ing data from ROM before parallel computations—586,240
(�V/L�·(P ·M+L ·N) ·�T/M�)—than the StreamBPP system,
which has 1,971,200 (V · {2 · N · P + N}).

From a logic design viewpoint, the register arrays of
the StreamBPP and StoreBPP architectures are designed
with Flip-Flops or on-chip multi-port memories of differ-
ent sizes. Data paths are designed with identical PEs, but
in a different number. The control paths of these architec-
tures are designed, as shown in the flowcharts Figs. 8 and
6. The data path delay is the same for both the StreamBPP
and StoreBPP designs—equal to the delay time of one PE.
The delay times of control paths differ between the two, but
the control path delay is small compared with the data path
delay.

5. Conclusions

We presented StoreBPP for output probability computations
and presented a new VLSI architecture. StoreBPP performs
arithmetic operations to locally stored input feature vectors.
Compared with the conventional StreamBPP architecture,
when the number of HMM states is large enough for accu-
rate recognition, the StoreBPP architecture requires fewer
registers and PEs, and less processing time. In terms of the
VLSI architecture, a comparison shows the efficiency of the
proposed architecture. A logic design, a Viterbi scorer for
the StoreBPP architecture, and a reconfigurable architecture
for both the StreamBPP and StoreBPP architectures are our
future works.
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