
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010
3027

PAPER

P2P-Based Approach to Finding Replica Server Locations for
Alleviating Flash Crowds

Masato ASAHARA†a), Nonmember, Kenji KONO†, Member, Toshinori KOJIMA†,
and Ai HAYAKAWA†, Nonmembers

SUMMARY Many services rely on the Internet to provide their cus-
tomers with immediate access to information. To provide a stable service
to a large number of customers, a service provider needs to monitor de-
mand fluctuations and adjust the number and the location of replica servers
around the world. Unfortunately, flash crowds make it quite difficult to de-
termine good number and locations of replica servers because they must be
repositioned very quickly to respond to rapidly changing demands. We are
developing ExaPeer, an infrastructure for dynamically repositioning replica
servers on the Internet on the basis of demand fluctuations. In this pa-
per we introduce ExaPeer Server Reposition (EPSR), a mechanism that
quickly finds appropriate number and locations of replica servers. EPSR is
designed to be lightweight and responsive to flash crowds. EPSR enables
us to position replica servers so that no server becomes overloaded. Even
though no dedicated server collects global information such as the distribu-
tion of clients or the load of all servers over the Internet, the peer-to-peer
approach enables EPSR to find number and locations of replica servers
quickly enough to respond to flash crowds. Simulation results demonstrate
that EPSR locates high-demand areas, estimates their scale correctly and
determines appropriate number and locations of replica servers even if the
demand for a service increases/decreases rapidly.
key words: replica server repositioning, distributed hash tables, network
coordinates

1. Introduction

The Internet has taken an important place in everyday life.
Many services rely on it to provide their customers with im-
mediate access to information. To provide a stable service to
a large number of customers, a service provider usually po-
sitions replica servers (or mirror servers) around the world.
Heretofore, service providers have analyzed access logs and
statically positioned their servers to the areas where there
has been a high level of demand. However, it is difficult to
statically determine the number and the location of replica
servers because the demand for a service often fluctuates
drastically in a very short term. Flash crowds [1], [2] exem-
plify this. In flash crowds, a web server suddenly receives an
avalanche of client accesses. Jung et al. [1] reported that the
demand for a service increased five to ten times in a period
of 40 seconds to 15 minutes.

We are developing ExaPeer, an infrastructure for dy-
namically repositioning replica servers on the basis of de-
mand fluctuations. Conceptually, ExaPeer is similar to
cloud computing [3]; ExaPeer consists of hundreds or thou-

Manuscript received May 29, 2009.
Manuscript revised July 17, 2010.
†The authors are with the Department of Information and Com-

puter Science, Keio University, Yokohama-shi, 223–8522 Japan.
a) E-mail: exapeer@sslab.ics.keio.ac.jp

DOI: 10.1587/transinf.E93.D.3027

sands of trusted machines all over the Internet, which are
lent to service providers to provide their services. Service
providers run their replica servers on ExaPeer. Unlike the
existing cloud computing environments (such as Amazon
EC2 [4]), ExaPeer automatically positions replica servers in
high-demand areas without any user support.

In this paper we introduce ExaPeer Server Reposition
(EPSR), a mechanism for dynamically and quickly select-
ing appropriate machines for replica servers. Even if the
demand for a service fluctuates rapidly, EPSR automatically
locates high-demand areas, estimates the demand scale, and
selects appropriate machines in the high-demand areas for
running replica servers. EPSR takes a P2P-based approach
to quickly respond to rapidly increasing demands; it does
not rely on global information. Instead, each machine par-
ticipating in ExaPeer autonomously detects demand fluctu-
ations and launches a replica server, if necessary, on the ma-
chine itself.

By taking a P2P-based approach, ExaPeer can repo-
sition replica servers into high-demand areas to meet short-
term demand fluctuations as well as long-term ones. Central
server approaches [5]–[9] rely on global information, which
must be collected from all over the Internet. This process
of collecting global information hinders quick response to
rapidly changing demands because the global information
must be collected at least every 40 seconds to be responsive
to flash crowds (as mentioned earlier, the demand for a ser-
vice increased five to ten times in a period of 40 seconds to
15 minutes). P2P-based approaches enable us to respond to
short-term demand fluctuations because they use only local
information which can be collected quickly from adjacent
machines. Unlike traditional P2P-based approaches [10]–
[14], EPSR dynamically positions replica servers into high-
demand areas and enables clients to get a service from a near
replica server.

EPSR extends our previous mechanism [15], [16]. Our
previous mechanism focuses on locating high-demand ar-
eas and lacks the ability of estimating the number of replica
servers required to deal with flash crowds. As a result, the
previous mechanism alone cannot alleviate flash crowds be-
cause it fails to launch the appropriate number of replica
servers. EPSR estimates the number of required replica
servers for each high-demand area and positions the appro-
priate number of them into the areas.

Simulation results demonstrate that EPSR is suitable
for dealing with flash crowds. In our simulation, EPSR de-

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers



3028
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

(a) ExaPeer hosts the catalog site and the
weather info. site concurrently.

(b) The demand for the catalog site increases.
(c) ExaPeer increases the replica servers in the
high-demand area.

(d) The demand for the catalog site decreases. (e) ExaPeer stops the wasteful replica servers.

Fig. 1 ExaPeer behavior. ExaPeer detects demand fluctuations and selects the machines in a high-
demand area without any user support. In ExaPeer a client gets a demanded service from the near
replica server.

tects demand increase and locates high-demand areas in 25
seconds. And then, it correctly estimates the number of re-
quired replica servers and positions the appropriate number
of them into high-demand areas; no replica server becomes
overloaded but all replica servers handle the moderate num-
ber of client accesses.

The rest of the paper is organized as follows. Section 2
overviews ExaPeer. Section 3 discusses EPSR design is-
sues. Section 4 summarizes our previous method. Section 5
describes our proposal in this paper. Section 6 shows the
simulation results. Section 7 describes related work, and
Sect. 8 concludes the paper.

2. ExaPeer

The goal of ExaPeer is to allow service providers to provide
their services continuously even if the demand for a service
increases unpredictably and drastically like flash crowds.
ExaPeer consists of hundreds or thousands of trusted ma-
chines on the Internet, and it runs replica servers for each
service on the machines. To deal with unpredictable and
drastic demand increase, ExaPeer dynamically and quickly
repositions replica servers on the basis of demand fluctua-
tions for each service.

Without ExaPeer, a service provider must statically de-
termine the number and the location of replica servers. To
position replica servers in a high-demand area, a service
provider has to estimate the scale and the location of the
current demand from the access logs of the running servers.
But this estimation is ineffective because the demand on the

Internet often fluctuates drastically in a short term; as de-
scribed in Sect. 1, in flash crowds the number of clients sud-
denly increases five to ten times in several tens or hundreds
of seconds. If the scale and the location of the actual de-
mand is different from the estimated demand, replica servers
do not work effectively. In the worst case replica servers be-
come overloaded. To avoid becoming overloaded, a service
provider positions superfluous replica servers, which costs
the service provider.

To solve the problem of static positioning, ExaPeer dy-
namically repositions replica servers; without user analy-
sis of the demand distribution, ExaPeer automatically and
transparently repositions replica servers into current high-
demand areas. ExaPeer is effective for flash crowds because
it takes a lightweight approach. ExaPeer does not need to
collect the load of all servers or the access pattern of all
clients to reposition replica servers.

Figure 1 illustrates the behavior of ExaPeer. To use
ExaPeer, a service provider registers its service with Exa-
Peer. In this example, ExaPeer hosts a catalog site and
a weather information site concurrently (Fig. 1 (a)). When
the demand for the catalog site increases (Fig. 1 (b)), Exa-
Peer selects more machines near the clients for the catalog
site and runs replica servers on them (Fig. 1 (c)). A client
gets the service from a near replica server directly, i.e., af-
ter a client finds the near replica server it establishes a di-
rect connection to it. When the demand for the catalog site
decreases (Fig. 1 (d)), ExaPeer immediately detects the de-
crease and stops unnecessary replica servers for the catalog
site (Fig. 1 (e)).



ASAHARA et al.: P2P-BASED APPROACH TO FINDING REPLICA SERVER LOCATIONS FOR ALLEVIATING FLASH CROWDS
3029

In this paper we focus on ExaPeer Server Reposition
(EPSR), a mechanism for adjusting the number and the lo-
cation of replica servers to meet the demand. We are also
developing other mechanisms of ExaPeer such as those for
updating and keeping the consistency of the replicas [17].
These are out of the scope of this paper.

3. EPSR Design Issues

EPSR is a mechanism for finding replica server locations in
ExaPeer to meet drastic as well as gradual demand fluctu-
ations. To efficiently deal with drastic fluctuations such as
flash crowds, EPSR must address the following issues.

Lightweight Detection of Demand Fluctuations:
To deal with short-term fluctuations, EPSR must re-

spond quickly to demand fluctuations. Thus, EPSR must be
lightweight even if the detection accuracy becomes slightly
lowered; otherwise, a short-term fluctuation could not be de-
tected. For example, we cannot take a centralized server
approach. If we take this approach, the dedicated server
must collect the global information of the current demand
distribution. Global information of the demand consists of
the client information derived from the access logs of the
present replica servers. The size of the global information
becomes swollen because the rate of client accesses is dras-
tically increased in flash crowds. Since replica servers are
distributed on the Internet, collecting the global information
will take tens or hundreds of seconds. Thus, it is difficult to
collect the global information frequently enough to identify
a short-term fluctuation.

Conventional approaches to dynamic replica server
reposition rely on global information of demands such as
several kilobytes or megabytes of access logs from all over
the Internet [5]–[9]. For example, if we want to detect flash
crowds with Globule [7], a dedicated server has to collect
client access logs from hundreds or thousands of Internet
servers at least each tens seconds because Jung et al. [1] re-
ported that in flash crowds a demand increases five times in
a period of 40 seconds. Thus, it would not be a good idea for
a centralized server to collect and analyze access logs from
the entire network. Actually, several proposed mechanisms
that intend to alleviate flash crowds [10]–[14] do not depend
on global information of demands. We discuss the differ-
ence between EPSR and these proposed mechanisms [10]–
[14] in Sect. 7.

Topologically-aware Detection of High-demand Areas:
To effectively position replica servers into high-

demand areas, EPSR takes a physical network topology into
consideration. By leveraging the topological knowledge,
EPSR positions replica servers so that the network traffic
can be reduced. If a replica server is placed on a machine
closer to clients, the network traffic is reduced because the
distance over which messages are relayed is shorter. In ad-
dition, if a replica server is placed where many access paths
from clients cross, it can naturally host many requests with-

out having to relay them to other hosts.
Capacity- and Load-aware Adjustment of the Number of
Replica Servers:

To increase or decrease the number of replica servers,
it is necessary to take the capacity and the current load of
a machine into consideration. If the capacities of machines
are lower or the load of machines are higher, the more ma-
chines should be selected for replica servers. If the capac-
ities of machines are higher or the load of machines are
lower, the fewer machines should be selected to reduce the
running cost of replica servers.

To host multiple services concurrently, a machine
should take the load of each replica server into considera-
tion. If a machine is in overlapping high-demand areas for
multiple services, it may host replica servers for each ser-
vice concurrently. When a machine hosts multiple replica
servers, it must control the load of each replica server so
that it would not become overloaded.

Transparent Access to Repositioned Servers:
To quickly distribute the demand to repositioned

replica servers, EPSR must enable a client to access trans-
parently to a new replica server. If the demand for a cer-
tain service fluctuates during a short period, EPSR reposi-
tions a large number of replica servers within a short pe-
riod. Therefore, EPSR cannot use the traditional DNS-RR
(round-robin) for finding replica servers because the delay
involved in updating the DNS database is too large to meet
the time constraint. To ensure a transparent access to repo-
sitioned servers, ExaPeer must include a mechanism for
quickly finding repositioned replica servers.

4. Locating High-Demand Areas

EPSR has three steps to find replica server locations for each
service. First, EPSR constructs a topologically-aware over-
lay network. Second, to locate high-demand areas, EPSR
selects marker machines, which represent high-demand ar-
eas. Finally, to position replica servers within a high-
demand area, EPSR selects candidate machines for replica
servers around marker machines.

In this section we summarize the method of construct-
ing a topologically-aware overlay network and locating a
high-demand area, which is part of EPSR. The detail of this
method is described in [15], [16].

4.1 Constructing a Topologically-Aware Overlay Network

To monitor the location of clients, EPSR constructs a
topologically-aware overlay that combines GNP [18] and
CAN [19]. GNP models the Internet as a d-dimensional
space and assigns a d-dimensional coordinate to each ma-
chine so that the Euclidean distance between any pair of
coordinates approximates the RTT between the machines.
CAN, a well-known DHT, assigns each machine a virtual d-
dimensional coordinate and divides the d-dimensional space
into zones. A machine with a coordinate corresponding



3030
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

Fig. 2 Locating high-demand areas on the basis of the degree of access
path convergence (APC degree). M becomes a marker machine.

to zone X stores (key K, value V) pairs if the coordinate
(h0(K), · · · , hd−1(K)), where hi is a hash function, is inside
zone X. If key K is given, CAN guarantees that a machine
managing key K is reached in (d/4)(N1/d) hops on average,
where N denotes the number of machines in CAN.

To build a topologically-aware overlay, EPSR first cal-
culates a GNP coordinate for each machine. The coordinate
is used in turn to construct the CAN. Thus, adjacent ma-
chines on the constructed overlay are physically closer than
other machines because the Euclidean distance between the
coordinates approximates the distance in the physical net-
work.

When a service is registered with ExaPeer, EPSR se-
lects a machine, called a root, to host the service. The root
machine is selected in accordance with the CAN protocol; a
machine with a coordinate corresponding to the same zone
to which the coordinate calculated from the service name
corresponds is selected.

4.2 Locating High-Demand Areas

To locate a high-demand area, EPSR selects machines called
markers which represent the locations of high-demand ar-
eas. If the machines around the markers host replica servers,
the replica servers are within the high-demand areas.

To select marker machines, EPSR uses the degree of
access path convergence (APC). An access path is a net-
work path on the overlay along which a query is relayed
from a client to a root machine. The APC degree is the
number of access paths that cross the machine of interest.
Figure 2 shows an example of access paths and APC de-
grees (for convenience of explanation, a two-dimensional
CAN is used). In this figure, ExaPeer hosts service S . Ini-
tially, EPSR selects machine S as a root machine. Client W
sends out a query for service S , which is relayed according
to the CAN protocol until it reaches the root. Clients X, Y ,
and Z also send out the queries. When a machine relays a

query message for service S , it increments the APC degree
for service S . As shown in Fig. 2, the APC degree for ser-
vice S becomes four on machine M. To locate high-demand
areas for each service, each machine maintains APC degree
for each service, since ExaPeer hosts multiple services at the
same time.

Each machine participating in ExaPeer determines au-
tonomously whether to be a marker machine. If APC degree
is increasing, a machine determines the demand around it is
increasing and becomes a marker. ExaPeer can use statis-
tical methods, e.g. trend estimation, to determine whether
APC degree is increasing or decreasing. To simplify the
evaluation of EPSR, the current prototype of ExaPeer uses a
simple threshold method.

5. Selecting Candidates for Replica Servers

5.1 Basic Mechanism

A marker machine indicates that a high-demand area is
around itself but does not suggest the scale of the demand;
i.e., the number of required replica servers. If ExaPeer po-
sitions replica servers naively on every marker, the number
of replica servers is not always sufficient to meet the de-
mand because one marker is selected in each high-demand
area regardless of the scale of the demand. In our simula-
tion (the detail is described in Sect. 6), more than 25% of all
machines become overloaded even if the adjacent machines
are still lightly loaded.

The reason why this naive approach does not work well
is that APC degree does not reflect the load and the capacity
of a machine. The APC degree tends to increase if the ma-
chine is closer to a high-demand area. But it does not reflect
the capacity of each machine. For example, if the capacity
of a marker machine is substantial, the replica server on the
marker can host all accesses from the near clients. If the
capacity is not enough, the marker machine should launch
other replica servers around itself.

To correctly adjust the number of replica servers to
meet the current demand, we use load indicator which re-
flects the current load of a replica server. Load indicator
indicates the current load of a replica server generated by its
clients. The current prototype of ExaPeer uses the number
of network connections as load indicator. The reason why
we choose the number of network connections is that some
commercial products (e.g., LocalDirector [20], BIG-IP [21])
employ the number of connections as load indicator. If you
want to define load indicator more precisely, you can use
other indicators as load indicator, e.g. CPU, memory or net-
work bandwidth usages.

To alleviate flash crowds, EPSR takes an autonomous
approach to adjusting the number of replica servers. EPSR
allows a machine to autonomously determine whether to in-
crease replica servers around itself by monitoring its load
indicators. Since ExaPeer constructs a topologically-aware
structured overlay, client accesses intend to be converged on
the same machine if they are close to each other. Thus, if



ASAHARA et al.: P2P-BASED APPROACH TO FINDING REPLICA SERVER LOCATIONS FOR ALLEVIATING FLASH CROWDS
3031

(a) Machine M handles all client requests and becomes overloaded.
(b) Machine M requests machine R, whose APC degree is the highest
among the neighbors of M, to host a replica server.

Fig. 3 EPSR increases the number of replica servers on the basis of the load indicators and the APC
degrees.

EPSR increases replica servers around a heavy-loaded ma-
chine, client accesses can be naturally distributed to them.
EPSR increases replica servers by the following process.
Initially, a marker machine hosts a replica server. When
the load indicator of the replica server becomes higher, the
machine requests its neighbor machine to launch a replica
server. Then, the machine forwards excessive client queries
to the neighbor replica server until its own load indicator
becomes lower than its capacity.

EPSR ensures that no replica server becomes over-
loaded. As described above, a heavy-loaded machine re-
quests its neighbor machine to launch a replica server. If the
machine which received the launch request has no capacity,
the machine forwards the message to one of its neighbor ma-
chines. To prevent the forwarded request from looping in-
finitely, the request is forwarded in the same direction from
the machine who sent the launch request to the machine who
received the request for the first time.

To allow a client to connect to a near replica server,
EPSR starts a new replica server on the machine where
many client queries converge. EPSR uses APC degree to se-
lect a machine on which a replica server is launched. Since a
machine with higher APC degree relays more client queries
than other neighbor machines, the replica server would host
many clients.

Positioning a replica server on a high APC degree ma-
chine also allows a client to find a lightly-loaded replica
server. Since a high APC degree machine is on many access
paths from the clients, the replica server on such a machine
is found by many clients.

Figure 3 illustrates an example where EPSR selects
candidate machines for replica servers. M is a marker ma-
chine which represents the high-demand area consisting of
clients W, X, Y and Z. Since M becomes overloaded if it
deals with all the clients (M’s capacity is lower than three

clients in this example), M selects a neighbor machine R
whose APC degree is the highest of all the neighbor ma-
chines (Fig. 3 (a)). R hosts a replica server and services
clients W, X and Y (Fig. 3 (b)). If the neighbor machine
requested to boot a replica server is already heavy-loaded,
it forwards the request to its neighbor. In Fig. 3 (b), if R has
been already heavy-loaded, R forwards the request to a ma-
chine W.

To reduce superfluous replica servers, a machine stops
a replica server if no client connects to the replica server dur-
ing some period. To avoid the oscillation of replica server
locations, a machine runs a replica server for a while even if
no connection is established.

5.2 Improving EPSR Mechanism

Although the basic mechanism of EPSR selects appropriate
candidate machines in many cases, it occasionally does not
work well. There are three situations in which EPSR selects
candidates inappropriately. In the following, we describe
the techniques to alleviate these situations.

5.2.1 Preference to High-Demanded Replica Servers

When a machine hosting multiple replica servers is heavy-
loaded, it requests its neighbor to launch the most lightly-
loaded replica server. Since EPSR allows a client to
connect to a near replica server, a highly-loaded replica
server would be closer to its clients than a lightly-loaded
one. Thus, to make a highly-loaded replica server service
more clients, EPSR increases a lightly-loaded replica server
around the machine and allocates more machine resources to
the highly-loaded replica server. In this way, lightly-loaded
replica servers, i.e., replica servers which would be dis-
tant from a high-demand area, would be repositioned more



3032
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

Fig. 4 Without dummy queries, the number of replica servers will incor-
rectly decrease. Since R hosts clients V , W and X instead of the replica
server on M, the APC degree of M becomes lower and M will stop the
replica server on it. Then, the load of replica server R becomes overloaded
if clients Y and Z connect to R.

closer to a high-demand area.

5.2.2 Dummy Query

EPSR increases replica servers around a heavy-loaded
replica server and distributes client queries to them. Af-
ter clients are distributed to the replica servers, the loads
of the replica servers decrease. In this situation, a machine
may misjudge that its replica server becomes unnecessary
because the load indicator of the replica server decreases.
As shown in Fig. 4, replica server R is launched by marker
machine M to offload the load of the replica server on M.
As shown in the figure, M handles the accesses from clients
Y and Z after launching R. In this situation, M will stop the
replica server since the APC degree of M is low. This is not
desirable because M is still near the high-demand area.

To solve this problem, when a machine hosting replica
servers receives a client request, it sends the marker a
dummy query, which only contains the coordinate of the ser-
vice. A dummy query is forwarded on the basis of CAN
protocol until it reaches a marker to increment the APC de-
grees along the access path. As a result, EPSR keeps replica
servers alive in a high-demand area. Dummy query is de-
signed so that it increases the load of a machine as less as
possible; a dummy query is small and only increments APC
degrees.

5.2.3 Dummy Connection

If the enormous number of clients send queries to the same
service simultaneously, a machine mistakenly accepts those
queries to become overloaded. This is because there is some

delay in the load of a replica server being raised. When
a client sends a query to a replica server, the load of the
replica server is not raised until a network connection is es-
tablished. If many clients send queries at the same time, the
replica server accepts those queries because the current ca-
pacity appears to be sufficient to accept the clients. If those
clients do establish network connections, the machine be-
comes overloaded.

To solve this problem, EPSR adds a dummy connec-
tion to a replica server when the replica server accepts a
new client query. Dummy connection adds virtual load to
a replica server, and the load of the replica server is raised
virtually. Thus, the machine correctly determines whether
to accept subsequent client queries. Dummy connection is
removed after the client established its connection to the
replica server.

6. Experiments

6.1 Evaluation Methodology

To evaluate the effectiveness of EPSR, we built an ExaPeer
prototype on Overlay Weaver [22], a toolkit that enables a
structured overlay network to be easily constructed and em-
ulated. We tested EPSR under different load fluctuation con-
ditions and measured three key indicators.

• Number of running replica servers, which shows how
well EPSR selects candidate machines for replica
servers on the basis of client demand. If the number
of replica servers changes with fluctuations in demand,
we can say that EPSR increases or decreases candidates
for replica servers on the basis of demand fluctuation.
• RTT between an accessing client and the accessed

replica server, which shows how well EPSR se-
lects candidate machines for replica servers near high-
demand areas. The lower the RTT is, the physically
closer the machines are to the high-demand areas.
• Number of network connections, which shows the load

of a machine. If the number of network connections is
below machine’s capacity, EPSR increases the number
of replica servers to meet the demand. If the minimum
number of network connections is not too low, there are
no wasteful servers.

To confirm the behavior of EPSR in a realistic environ-
ment, we emulate the Internet environment by introducing
Internet topology. In our experiments, we use Transit-Stub
(TS) model of the Internet that has a two-level hierarchy of
routing domains, i.e., transit domains interconnecting lower-
level stub domains [23]. To generate a transit-stub topology,
we use the GT-ITM topology generator. To generate the
topology, we assign the parameters as follows: 228 transit
domains, 5 transit nodes per transit domain, 4 stub domains
attached to each transit node, and 2 nodes in each stub do-
main. We select about 3000 nodes with unique GNP coor-
dinates from about 10,000 nodes. EPSR checks the APC



ASAHARA et al.: P2P-BASED APPROACH TO FINDING REPLICA SERVER LOCATIONS FOR ALLEVIATING FLASH CROWDS
3033

Fig. 5 The number of clients on service A and B.

degrees and the load indicators of a machine every 30 sec-
onds. These parameters are derived from the fact that the
access rate increased in 40 seconds to 15 minutes in flash
crowds [1].

6.2 Simulation Results

EPSR locates high-demand areas and adjusts the number
of replica servers to meet the demand even if the demand
fluctuates. To confirm this feature, we simulate a localized,
high-demand area, in which the RTTs between the clients
are less than 4000 msec. A client sends a query to get a ser-
vice every one minute. To confirm that EPSR can support
multiple services simultaneously, we set ExaPeer to host
two services A and B at the same time. The demand for ser-
vice A fluctuates but the demand for service B is constant,
as shown in Fig. 5. In this simulation, a machine becomes
a marker if APC degree is more than 300 and a machine
ceases to be a marker if APC degree is less than 200. We
set the size of the sliding window for APC degree to 300
seconds. We assume that all machine can accept less than
30 connections, i.e., the initial capacity of each machine is
30 connections. We compare EPSR with the following three
strategies.

• Root only, which is only the root machine services all
the queries.
• Marker only (previous method), which launches

replica servers only on marker machines. Note that
marker only is our previous method [15], [16].
• Globule, which selects machines with Globule

method [7], [24], [25]. Globule relies on global infor-
mation such as access logs of all servers. This global
information enables Globule to select nearly optimal
machines for replica servers. If RTTs with EPSR are
close to those with Globule, EPSR positions replica
servers at the nearly optimal location. Due to the cost
of collecting the global information and its centralized
approach, Globule is not suitable for responding to
rapid fluctuations in demand like flash crowds. Since
our simulation generates rapidly-fluctuating demands,
we calculate the locations for replica servers in off-line.

Fig. 6 The number of replica servers positioned by EPSR when ExaPeer
provides two services at the same time.

6.2.1 Number of Running Replica Servers

Figure 6 shows the number of replica servers. The x-axis is
elapsed time and the y-axis is the number of replica servers
in logarithm scale. This result represents that EPSR in-
creases or decreases the number of replica servers on the
basis of demand fluctuations. The number of replica servers
for service A fluctuates with the demands for the service in-
creased or decreased. In the second period of this simula-
tion, the number of clients increases ten times larger than
that of the first period as shown in Fig. 5. To deal with
this heavy demand, EPSR begins to increase the number
of replica servers after 25 seconds. Then, EPSR have in-
creased the number of replica servers for service A from
7 to 299 in 166 seconds. After about 300 seconds passed,
EPSR stops lightly-loaded replica servers and the number
of replica servers decreases to 90. In the third period, the
number of replica servers for service A is lower than that for
service B. This is because the number of clients for service
A is lower than that for service B during the third period.

From Fig. 6, we can see that EPSR adjusts the num-
ber of replica servers for each service. When the number of
clients on service A increases from 60 to 600 (from the first
to the second period), the number of replica servers for ser-
vice A also increases from 7 to 299. In the second period, the
number of replica servers for service B is slightly larger than
that in the other periods. This is because the machines host-
ing the replica servers for service B becomes highly-loaded
due to the increased demand for service A; when a machine
hosting two or more services has a smaller capacity, it re-
quests its adjacent machines to launch a replica server.

6.2.2 RTT between an Accessing Client and the Accessed
Replica Server

To confirm that EPSR positions replica servers near a high-
demand area, we compare the RTTs with root only, Globule
and EPSR. Figure 7 shows the cumulative probabilities of
RTTs. Figure 7 (a), (b) and (c) show the RTTs in the first,
second and third period, respectively.

EPSR increases replica servers near the high-demand
area under flash crowds. In the second period, the RTTs



3034
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

(a) 1st period

(b) 2nd period

(c) 3rd period

Fig. 7 The cumulative probability of RTTs when ExaPeer provides two
services at the same time.

for service A with EPSR are better than those with Glob-
ule. With EPSR, the RTTs for 90% of all client accesses are
less than 1180 msec, while those with Globule are less than
1500 msec. This is because EPSR increases the number of
replica servers in high-demand areas so that no machine be-
comes overloaded. With EPSR, since many machines in the
high-demand area launch replica servers for service A, 44%
of all client accesses are handled by the machine nearest the
client. With Globule, the RTTs for service A are worse than
those in other periods. The RTTs for 90% of all accesses for
service A are less than 1500 msec, while those in the first
period are less than 790 msec. This is because Globule for-

Fig. 8 The distributions of the number of network connections on ma-
chines when ExaPeer provides two services at the same time.

wards some client queries to the machines slightly far from
the high-demand area when the machine is overloaded.

EPSR also positions replica servers near the high-
demand area under the normal conditions. In the first pe-
riod, with EPSR, the RTTs for 90% of all client accesses for
service A and B are less than 3300 msec, while those with
root only are less than 4900 msec. In the third period, with
EPSR, those for service A and B are less than 2250 msec and
2540 msec, respectively. On the other hand, with root only,
those for service A and B are less than 4900 msec. With
Globule, the RTTs for 90% of all client accesses are about
quarter of those with EPSR. This is because Globule posi-
tions replica servers at nearly optimal locations with global
information.

6.2.3 Number of Network Connections

To confirm that EPSR prevents a machine from becoming
overloaded, we compare the distributions of the number of
network connections. Figure 8 shows the box-and-whisker
plots of the number of network connections during each
period. As shown in Fig. 8, EPSR increases the number
of replica servers so that no machine becomes overloaded;
the number of network connections of all machines is be-
low the capacity limit 30. On the other hand, marker only
(prev. method) fails to increase them. In particular, the num-
ber of overloaded machines increases with the number of
clients increased. In the second period of the simulation (the
heaviest workload), more than 25% of the machines exceed
their capacity limits.

EPSR also reduces wasteful replica servers. With
EPSR, in the first and the third period, the number of net-
work connections are more than zero. This is because EPSR
stops the replica server with no connection when the scale of
demand is low. In the second period, the number of lightly-
loaded replica servers increases. This is because EPSR po-
sitions more replica servers not to fail under flash crowds.
On the other hand, Globule makes many wasteful replica
servers in the first and the third period. This is because
Globule positions replica servers to meet the highest scale
of demand in the second period.



ASAHARA et al.: P2P-BASED APPROACH TO FINDING REPLICA SERVER LOCATIONS FOR ALLEVIATING FLASH CROWDS
3035

Fig. 9 The cumulative probability of RTTs with and without dummy
queries.

6.2.4 Effectiveness of Dummy Queries/Connections

To confirm that dummy query and dummy connection con-
tribute to selecting machines to launch replica servers, we
compared the performance of EPSR with and without these
techniques. Since dummy query and dummy connection are
effective in heavier conditions, we change some parameters
of the simulation. In this simulation, we run 8 services con-
currently. A machine becomes a marker if APC degree is
more than 300 and a machine ceases to be a marker if APC
degree is less than 150. The initial capacity of each machine
is 50 connections.

As described in Sect. 5.2.2, dummy queries contribute
to keeping replica servers in a high-demand area and avoids
placing replica servers outside the high-demand area. This
is because dummy queries prevent a machine from mis-
judging the demand to be lowered around it. Figure 9
shows the cumulative probabilities of RTTs with and with-
out dummy queries (dummy connection is turned on in
both cases). For 90% of all client accesses, the RTTs with
dummy queries were less than 3220 msec, while those with-
out dummy queries were less than 3950 msec. This result
demonstrates dummy query contributes to avoiding placing
replica servers distant from clients.

Dummy connections contribute to keeping the number
of network connections under the capacity limit of each ma-
chine, because they prevent a machine from underestimat-
ing the number of network connections in a rush of client
accesses. Figure 10 shows the cumulative probabilities of
network connections with and without dummy connections
(dummy query is turned on in both cases). With dummy
connections, EPSR keeps the network connections of each
machine under the capacity limit (50 network connections).
Without dummy connections, 2.5% of all machines received
client requests more than their capacity limits.

Figure 10 also shows that dummy connection reduces
the number of replica servers that are processing the small
number of connections. Without dummy connections, 40%
of all machines handled less than 7 connections, while with
dummy connections all machines handled more than 10

Fig. 10 The cumulative probability of network connections of machines
with and without dummy connections. Note that the machines with no
replica server are uncounted.

connections. This is another effect of dummy connection.
When there is a rush in client queries, dummy connections
help the queries to be distributed uniformly among replica
servers. With dummy connections, the machines request
replica servers to be launched before handling the rush of
client queries. When the queries actually arrive, they are dis-
tributed among replica servers that have been just launched.
On the other hand, if dummy connection is not used, most
of the queries are handled by overloaded machines and some
remaining ones are handled by newly launched servers. This
is because replica servers are launched after some machines
start handling overwhelming client queries.

7. Related Work

Various types of replica placement strategies have been pro-
posed. Many researchers are developing algorithms for web
document placement. The algorithms are classified into two
types, static and dynamic. Khan and Ahmad [26] compared
ten static heuristics-based replication techniques. These
techniques statically decide the locations of website con-
tents so as to minimize the average access time perceived
by end users. These static positioning algorithms do not
consider repositioning replica servers dynamically.

Dynamic algorithms for replica repositioning are also
developed. Some dynamic repositioning algorithms are
based on simple greedy algorithms. The HotSpot algorithm
proposed in [6] positions replicas with high accuracy even
though it collects imperfect information about client work-
load characteristic. Tse [9] proposed the repositioning algo-
rithm which reduces the computing cost to O(log N), where
N denotes the number of machines. Globule [24], [25] with
HotZone algorithm [7] enables us to dynamically position
replicas so that the latency between a client and the replica
is minimized.

These dynamic repositioning algorithms estimate the
number and the location of replicas with high accuracy.
However, they are not suitable for dealing with flash crowds
because they do not address one of the EPSR design issues,
lightweight detection of demand fluctuations; they depend



3036
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

on global information of client demands all over the In-
ternet. For example, Globule collects demand information
such as the access frequency and the location of clients from
the logs of all the Globule servers all over the Internet. Glob-
ule assumes that these pieces of information are collected
every several hours.

There are several replica placement strategies with
peer-to-peer techniques to alleviate the symptoms associ-
ated with flash crowds. However, these strategies do not
address all EPSR design issues described in Sect. 3. Back-
slash [10] makes a replica of the web content on pre-placed
machines. Backslash positions a replica along the client ac-
cess paths on its structured overlay network. Unlike EPSR,
Backslash does not consider client locations on the physical
network; clients often connect to distant machines to get a
replica. In addition, Backslash does not consider machine’s
capacity when positioning a replica.

Replica Enumeration (RE) [14] enables us to distribute
client accesses uniformly to replicas in flash crowds. With
RE, a client gets the replica from the closest machine. RE
modifies a look-up algorithm of a distributed hash table to
consider the distance between a replica and a client. How-
ever, RE does not automatically adjust the number of repli-
cas on the basis of demand fluctuations. Thus, unlike EPSR,
RE cannot detect flash crowds and reposition replicas to al-
leviate the flash crowds.

FCAN [11] takes a hybrid approach that combines
client-server and peer-to-peer architectures. Once a flash
crowd occurs, the original server requests cache proxy
servers to form a P2P overlay and to process all the requests
instead of the original server. In flash crowds, a cache proxy
server finds a replica through the P2P overlay and serves the
replica to a client. Unlike EPSR, FCAN does not increase
replicas in a topologically-aware fashion.

To deal with short-term fluctuations of demands, most
Content Distribution Networks (CDNs) take the cache-
based approach. Akamai [27] and other commercial CDNs
use DNS redirection to reroute client requests to local clus-
ters of machines by building detailed maps of the Internet
through a combination of BGP feeds and their own measure-
ments. When a client accesses to the cluster, these systems
cache a content on the cluster from the original server. Thus,
these systems do not adjust the location of replicas. EPSR is
different from these systems in that it locates a high-demand
area and proactively adjusts the number and the location of
replica servers.

CoralCDN [13] is a peer-to-peer content distribution
network. CoralCDN relies on a hierarchical structure, called
“distributed sloppy hashtables,” to reduce the load on web
servers. In CoralCDN, the node relays client queries to one
of the nodes which has the cache of the requested content. If
client queries are relayed more than the predefined thresh-
old, CoralCDN concludes a high-demand area is near and
generates a new cache of the content. CoralCDN does not
consider machine capacity when creating a cache or routing
a client query, while EPSR takes machine capacity into ac-
count when determining the location of replicas and routing

a client query.
Flashback [12] addresses flash crowds by distributing

the cache of the web contents on clients and sharing them
between clients. With Flashback, a client gets the requested
content from other clients instead of the original server.
Thus, the load of the server is lowered even with flash
crowds. EPSR is different from Flashback in two points.
First, Flashback does not take the location of the clients into
account. Second, it does not consider machine capacities
when the caches are distributed.

Freenet [28] and Winny [29] are P2P file sharing sys-
tems based on dynamic cache location. These systems
are completely different from EPSR because they construct
overlay networks independent of the underlying physical
network. Although Freenet and Winny position a cache on
a machine close to a client on the overlay networks, they do
not always position a cache on a machine close to a client
on the underlying physical network. Unlike them, EPSR
positions replica servers on a machine close to a client on
the underlying physical network as well as on the overlay
network. This is because EPSR constructs a topologically-
aware overlay.

8. Conclusion

In this paper we introduce EPSR, which dynamically and
quickly selects candidate machines for replica servers on
the basis of demand fluctuations. EPSR dynamically lo-
cates a high-demand area in which replica servers should be
placed, estimates the scale of the demand, and adjusts the
number of replica servers to meet the demand. To deal with
short-term demand fluctuations such as flash crowds, EPSR
takes a peer-to-peer approach which enables EPSR to imme-
diately locate a high-demand area with low data traffic. To
avoid overloading replica servers, EPSR adjusts the number
and the location of replica servers on the basis of the scale
of each high-demand area. EPSR introduces two heuristics:
APC degree and load indicator. APC degree enables each
machine to locate a high-demand area autonomously. Load
indicator enables each machine to determine whether to in-
crease replica servers in the high-demand area.

Simulation results demonstrate that EPSR positions
replica servers in a high-demand area. The results also
show that EPSR increases or decreases the number of replica
servers on the basis of demand fluctuations. With EPSR,
all of the machines do not become overloaded. For future
work, we plan to evaluate EPSR on the Internet using Plan-
etLab [30].

References

[1] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds and
denial of service attacks: Characterization and implications for
CDNs and web sites,” Proc. ACM Int’l World Wide Web Conf.,
pp.293–304, 2002.

[2] S. Lorenz, “Is your web site ready for the flash crowd?,” 2000.
http://www.serverworldmagazine.com/sunserver/2000/11/
flash.shtml



ASAHARA et al.: P2P-BASED APPROACH TO FINDING REPLICA SERVER LOCATIONS FOR ALLEVIATING FLASH CROWDS
3037

[3] A. Weiss, “Computing in the clouds,” ACM netWorker, vol.11, no.4,
pp.16–25, 2007.

[4] Amazon.com, “Amazon Elastic Compute Cloud,”
http://aws.amazon.com/ec2

[5] M. Karlsson and C. Karamanolis, “Choosing replica placement
heuristics for wide-area systems,” Proc. IEEE Int’l Conf. Distributed
Computing Systems, pp.350–359, 2004.

[6] L. Qiu, V.N. Padmanabhan, and G.M. Voelker, “On the placement of
web server replicas,” Proc. IEEE INFOCOM, pp.1587–1596, 2001.

[7] M. Szymaniak, G. Pierre, and M. van Steen, “Latency-driven replica
placement,” Proc. IEEE/IPSJ Symp. Applications and the Internet,
pp.399–405, 2005.

[8] X. Tang and J. Xu, “QoS-aware replica placement for content distri-
bution,” IEEE Trans. Parallel Distrib. Syst., vol.16, no.10, pp.921–
932, 2005.

[9] S.S.H. Tse, “Approximate algorithms for document placement in
distributed web servers,” IEEE Trans. Parallel Distrib. Syst., vol.16,
no.6, pp.489–496, 2005.

[10] T. Stading, P. Maniatis, and M. Baker, “Peer-to-peer caching
schemes to address flash crowds,” Proc. Int’l Workshop on Peer-To-
Peer Systems, pp.203–213, 2002.

[11] C. Pan, M. Atajanov, M.B. Hossain, T. Shimokawa, and N. Yoshida,
“FCAN: Flash crowds alleviation network using adaptive P2P over-
lay of cache proxies,” IEICE Trans. Commun., vol.E89-B, no.4,
pp.1119–1126, April 2006.

[12] M. Deshpande, A. Amit, M. Chang, N. Venkatasubramanian, and S.
Mehrotra, “Flashback: A peer-to-peerweb server for flash crowds,”
Proc. IEEE Int’l Conf. Distributed Computing Systems, 2007.

[13] M.J. Freedman, E. Freudenthal, and D. Mazières, “Democratiz-
ing content publication with coral,” Proc. USENIX Symp. NSDI,
pp.239–252, 2004.

[14] M. Waldvogel, P. Hurley, and D. Bauer, “Dynamic replica manage-
ment in distributed hash tables,” Research Report RZ–3502, IBM,
2003.

[15] M. Asahara, A. Shimada, H. Yamada, and K. Kono, “Finding can-
didate spots for replica servers based on demand fluctuation,” Proc.
IEEE Int’l Conf. Parallel and Distributed Systems, 2007.

[16] M. Asahara, A. Shimada, H. Yamada, and K. Kono, “Strategy for
selecting replica server spots on the basis of demand fluctuation,”
IPSJ Trans. Advanced Computing Systems, vol.1, no.1, pp.160–173,
2008.

[17] A. Hayakawa, M. Asahara, K. Kono, and T. Kojima, “Efficient con-
sistency algorithm by speculating the location of the contents on
peer-to-peer distributed servers,” IPSJ Tech. Report (2008-OS-109),
pp.125–132, 2008.

[18] T.S. Eugene Ng and H. Zhang, “Predicting Internet network dis-
tance with coordinates-based approaches,” Proc. IEEE INFOCOM,
pp.170–179, 2002.

[19] S. Ratnasamy, P. Francis, M. Handley, R.M. Karp, and S. Shenker,
“A scalable content-addressable network,” Proc. ACM SIGCOMM,
pp.161–172, 2001.

[20] Cisco Systems, 2002. http://www.cisco.com/
[21] F5 Networks, 2002. http://www.f5labs.com/
[22] K. Shudo, Y. Tanaka, and S. Sekiguchi, “Overlay weaver: An over-

lay construction toolkit,” IPSJ Trans. Advanced Computing Sys-
tems, vol.46, no.SIG 4 (ACS 9), pp.33–44, 2005.

[23] E.W. Zegura, K.L. Calvert, and S. Bhattacharjee, “How to model an
internetwork,” Proc. IEEE INFOCOM, pp.594–602, 1996.

[24] G. Pierre and M. van Steen, “Globule: A platform for self-
replicating web documents,” Proc. Protocols for Multimedia Sys-
tems, Lect. Notes Comput. Sci., vol.2213, pp.1–11, Springer, 2001.

[25] G. Pierre and M. van Steen, “Globule: A collaborative content de-
livery network.,” IEEE Commun. Mag., vol.44, no.8, pp.127–133,
2006.

[26] S.U. Khan and I. Ahmad, “Comparison and analysis of ten static
heuristics-based Internet data replication techniques,” J. Parallel
Distrib. Comput., vol.68, no.2, pp.113–136, 2008.

[27] J. Dilley, B.M. Maggs, J. Parikh, H. Prokop, R.K. Sitaraman, and
W.E. Weihl, “Globally distributed content delivery,” IEEE Internet
Comput., vol.6, no.5, pp.50–58, 2002.

[28] I. Clarke, “A distributed decentralised information storage and re-
trieval system,” tech. rep., University of Edinburgh, 1999.

[29] I. Kaneko, The Technology of Winny, ASCII CORPORATION,
2005.

[30] A.C. Bavier, M. Bowman, B.N. Chun, D.E. Culler, S. Karlin, S.
Muir, L.L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak,
“Operating systems support for planetary-scale network services,”
Proc. USENIX Symp. Networked Systems Design and Implementa-
tion, pp.253–266, 2004.

Masato Asahara received his B.E. degree
from Univ. of Electrocommunications in 2005
and M.E. degree from Keio Univ. in 2007, re-
spectively. He was a Ph.D. student in Keio Univ.
from 2007 to 2010. Since 2010 he works for
Service Platforms Research Labs., NEC Corp.
His research interests include Peer-to-Peer sys-
tems, distributed systems, middleware and op-
erating systems. He is a member of the IPSJ,
IEEE/CS, ACM and USENIX.

Kenji Kono received the BSc degree in
1993, MSc degree in 1995, and Ph.D. degree in
2000, all in computer science from the Univer-
sity of Tokyo. He is an associate professor of the
Department of Information and Computer Sci-
ence at Keio Univ. His research interests include
operating systems, system software, and Inter-
net security. He is a member of the IEEE/CS,
ACM and USENIX.

Toshinori Kojima received his B.E. and
M.E. degrees from Keio Univ. in 2008 and in
2010, respectively. Since 2010 he works for
Research and Development Headquarters, NTT
DATA CORPORATION. His research inter-
ests include network coordinates and distributed
hash tables.

Ai Hayakawa received her B.E. and M.E.
degrees from Keio Univ. in 2008 and in 2010,
respectively. Since 2010 she works for Nomura
Research Institute, Ltd. Her research interests
include Peer-to-Peer systems and content distri-
bution networks.


