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PAPER

Expected-Credibility-Based Job Scheduling for Reliable Volunteer
Computing

Kan WATANABE†a), Nonmember, Masaru FUKUSHI†b), and Susumu HORIGUCHI†c), Members

SUMMARY This paper presents a proposal of an expected-credibility-
based job scheduling method for volunteer computing (VC) systems with
malicious participants who return erroneous results. Credibility-based vot-
ing is a promising approach to guaranteeing the computational correctness
of VC systems. However, it relies on a simple round-robin job scheduling
method that does not consider the jobs’ order of execution, thereby result-
ing in numerous unnecessary job allocations and performance degradation
of VC systems. To improve the performance of VC systems, the proposed
job scheduling method selects a job to be executed prior to others dynam-
ically based on two novel metrics: expected credibility and the expected
number of results for each job. Simulation of VCs shows that the proposed
method can improve the VC system performance up to 11%; It always
outperforms the original round-robin method irrespective of the value of
unknown parameters such as population and behavior of saboteurs.
key words: volunteer computing, job scheduling, sabotage-tolerance,
credibility-based voting, expected credibility

1. Introduction

Volunteer computing (VC) is an Internet-based parallel
computing paradigm that enables any Internet participant to
contribute the idle computing resources of their desktop PCs
(such as CPU cycles and storage) to efforts aimed at solv-
ing large parallel problems. Today, VC has become a large-
scale distributed computing platform. It is used to address
difficult quantitative problems in many scientific research
areas such as astronomy, biology, physics, and mathemat-
ics [1]–[7]. The most popular example is SETI@home [1],
[2], which searches massive amounts of radio telescope data
for signs of extra-terrestrial intelligence using hundreds of
thousands of desktop PCs.

In such large-scale parallel computing systems, job
scheduling is an important issue to use the huge number
of available computing resources efficiently. Numerous
job-scheduling methods have been proposed for use in VC
systems such as resource prioritization [8], redundant re-
quests [9], and analysis of volatility [10], [11]. Most previ-
ous job scheduling methods specifically examined reduction
of the overall execution time of a parallel computation, with-
out consideration of the correctness of the computational re-
sults.

It was recently pointed out in [12]–[14] that verification
of results is crucial for any VC system. Because VC enables

Manuscript received April 2, 2009.
†The authors are with the Graduate School of Information Sci-

ences, Tohoku University, Sendai-shi, 980–8579 Japan.
a) E-mail: can@ecei.tohoku.ac.jp
b) E-mail: mfukushi@ecei.tohoku.ac.jp
c) E-mail: susumu@ecei.tohoku.ac.jp

DOI: 10.1587/transinf.E93.D.306

anyone on the Internet to join a computation, participants are
not reliable. Some malicious participants (saboteurs) might
falsify the results of some computations to render the overall
computation useless. It is reported in [15] that a large frac-
tion of participants (about 35%) actually returned at least
one erroneous result in a real VC. Therefore, VC systems
should employ an efficient job-scheduling method incorpo-
rating sabotage-tolerant mechanisms to achieve high perfor-
mance and reliable computation results.

The basic mechanism for sabotage-tolerance is voting,
in which a management node replicates a job and allocates
them to several participants (workers) for a majority deci-
sion. Simple majority voting is examined deeply in [15]–
[18]. BOINC [19], [20], the most popular VC middleware,
uses m-first voting method, which collects m matching re-
sults. In these voting methods the necessary number of re-
dundant results, i.e. redundancy, is fixed in advance. Each
job requires a fixed number of results (two or more), no
matter how reliable each result is. Consequently, the per-
formance of VC systems is decreased to less than half even
if ideal job scheduling is realized through the use of some
scheduling method.

To improve these simple but inefficient voting methods,
Sarmenta [21], [22] proposed a novel voting method called
credibility-based voting [18], which enables determination
of the necessary number of redundant results for each job
dynamically. This method introduced “credibility” for each
system element, such as a worker, job and result, to repre-
sent their correctness, and attained to guarantee the compu-
tational correctness mathematically.

Although credibility-based voting [18] is a promising
approach to sabotage-tolerance of VC systems, it relies on
simple round-robin job scheduling. This simple job schedul-
ing, however, degrades the performance of VC systems be-
cause it ignores the order of execution of jobs. Different
from the simple voting methods such as m-first voting, the
necessary number of redundant results in the credibility-
based voting changes dynamically through the computation.
Therefore, the order of execution of jobs markedly affects
the total number of redundant results produced for a com-
putation.

As described in this paper, we propose an expected-
credibility-based job scheduling method to improve the
overall execution time of credibility-based voting [18]. The
key idea is to introduce novel metrics for job scheduling:
expected credibility and the expected number of results for
each job. These metrics take account of the workers execut-
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ing jobs at the moment. Different from the simple round-
robin method used in [18], the proposed method selects a
proper job dynamically based on these metrics, thereby en-
abling reduction of the overall execution time of a computa-
tion.

The remainder of this paper is organized as follows.
Section 2 describes the computational model of VC systems
and sabotage-tolerance mechanisms. In Sect. 3, we propose
the expected-credibility-based job scheduling method. Sec-
tion 4 presents a demonstration of the performance of the
proposed and the conventional job scheduling methods us-
ing Monte Carlo simulations. Finally, conclusions are dis-
cussed in Sect. 5.

2. Volunteer Computing Systems

2.1 Computational Model

A well known work-pool-based master–worker model [12],
[16], [18]–[21] is assumed as the computation model of VC
systems. This model is used in almost all VC systems prac-
tically. Details of the model are described as follows.

• A VC system consists of a management node (master)
and W different participant nodes (workers).
• A computation to be executed in the VC system is di-

vided into N independent jobs.
• At the start of the computation, all jobs are placed in a

work pool of the master.
• The master gives a job to each idle worker.
• Each worker executes an allocated job and returns the

result to the master. During their execution, no commu-
nication exists among workers because jobs are mutu-
ally independent.

Figure 1 illustrates the master-worker model of VC sys-
tems. To produce a sabotage model, a certain faulty fraction
f of the W workers are assumed to be saboteurs who might
return erroneous results. Each saboteur is assumed to return
an erroneous result with a constant probability s, which is
known as the sabotage rate [18]. The values of f and s are
unknown to the master.

The master manages the execution of a computation
and allocates unfinished jobs to idle workers. Computation
finishes when all jobs are finished. Jobs that finish with er-
roneous results are called erroneous jobs. At the end of the

Fig. 1 Computation model of VC systems.

computation, an error rate ε can be calculated as the ratio of
erroneous jobs to all jobs.

Using no sabotage-tolerance mechanisms, the error
rate increases in proportion to the number of saboteurs. Let
T be the time taken to finish all jobs of a computation: the
execution time of the computation. If all workers function
at the same speed and execute a job in a unit time, then
T is given by N/W unit times and error rate ε is given as
N × f × s/N = f × s. It might be readily apparent that ε is
proportional to the number of saboteurs and sabotage rate s.
Therefore, to reduce the error rate, some sabotage-tolerance
mechanism must be used.

2.2 Sabotage-Tolerance Mechanisms

2.2.1 Voting and Spot-Checking

The basic sabotage-tolerance methods are voting and spot-
checking.

(1) Voting: Each job is replicated and allocated to sev-
eral workers so that a master can collect several results and
compare their values. The results collected for a job are then
classified into groups (called result groups) according to the
value of the results. The master decides which result group
should be accepted as the final result of the job through vot-
ing. Two major voting methods are majority voting and m-
first voting.

• Majority voting: The result group which collects the
largest number of results is accepted as the final result.
• m-first voting: The result group which collects m

matching (the same) results first is accepted as the fi-
nal result.

By a simple principle, these voting methods are widely
used in real VC systems such as BOINC [19], [20].

(2) Spot-checking: To check whether a worker is a
saboteur or not, a master sometimes assigns a spotter job
whose correct result is already known to the master. The
master can catch the worker as a saboteur if a worker re-
turns an erroneous result for the spotter job.

When the master catches a saboteur by spot-checking,
the following two methods can be used:

• Backtracking: The master backtracks (invalidates) all
results returned by the saboteur because each might be
an erroneous one.
• Blacklisting: The master puts saboteur’s identification

information (e.g. IP address) on a blacklist to prevent
the saboteur from returning results or getting any more
jobs.

Backtracking and blacklisting can be used simultane-
ously for efficient sabotage-tolerance. However, blacklist-
ing is not always effective for VC systems. Although sabo-
teurs can be blacklisted based on their IP addresses, it is not
difficult for a saboteur to rejoin the computation as a new
worker. Requiring more reliable identification information
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such as home address will make the blacklisting more ef-
fective. However, it also diminishes volunteers’ incentive to
join the VC system. Based on this trade-off, we must con-
sider both VC systems with and without blacklisting to meet
the variant condition of real VCs.

2.2.2 Credibility-Based Voting

In these traditional voting methods such as majority voting
and m-first voting, each job requires a fixed number of re-
dundant results (at least two or more), no matter how reliable
each result is. Consequently, the performance of VC sys-
tems diminishes to less than half even if ideal job scheduling
is realized using some scheduling methods.

To improve these inefficient voting methods, Sar-
menta [18] presents a new voting method using spot-
checking, referred to as “credibility-based voting” in this pa-
per. In this method, each system element such as a worker,
result, result group, and job is assigned a credibility value
that represents its correctness. Every worker and result has
different credibility, which affect the credibility of the result
groups. A job is finished when the credibility of any result
group reaches a threshold θ. Therefore, different from the m-
first voting, the necessary number of results to finish a job
is not fixed and is generally smaller than that of the m-first
voting.

Furthermore, this method can guarantee that the mathe-
matical expectation of the error rate is below an arbitrary ac-
ceptable error rate εacc by setting two conditions: (1) thresh-
old θ = 1 − εacc, and (2) unknown parameter f satisfies
f ≤ fmax, where fmax is the upper limit of f and is a known
value. This condition implies that the number of saboteurs
in W workers is, at most, fmax × W. Because of these two
major advantages, for this study, we use credibility-based
voting as a sabotage-tolerance mechanism to reduce the er-
ror rate and guarantee the computational correctness.

2.3 Job Scheduling Problem

A sabotage-tolerance mechanism generally requires some
extra execution time (overhead) because of a redundant
computation. For example, when each job is replicated
and allocated to m workers for a voting, it increases the
overall execution time by m times compared to the case of
non-redundant computation. Similarly, spot-checking with
the spot-check rate q [18] increases the execution time by
1/(1 − q) times.

In basic voting methods, the necessary number of re-
sults for each job is fixed in advance (e.g. m matching re-
sults are required in m-first voting). In this case, the order of
execution of jobs does not affect the total number of results
produced for a computation. Even if the order of execution
of jobs is changed, the overall execution time remains un-
changed.

In contrast, with credibility-based voting, the neces-
sary number of results for each job is not fixed in advance
because it depends on the credibility of each result. The

credibility of results changes as the computation proceeds,
depending on the result of spot-checking. In this case, the
order of execution of jobs directly affects the total number of
results. Therefore, in credibility-based voting, job schedul-
ing method have a considerable impact on the overhead and
the execution time of the computation.

In the sabotage-tolerant VC systems using credibility-
based voting, the job scheduling problem is summarized as
follows:

select a job that should be allocated to an idle
worker prior to other jobs for reducing execution
time T to the greatest extent possible, while guar-
anteeing the computational correctness as ε ≤
εacc for any given εacc.

Basic job scheduling methods for credibility-based vot-
ing are the random and round-robin methods [18]. The ran-
dom method selects a job at random and the round-robin
method selects a job in a static order, e.g. the order of a job’s
ID assigned by the master. Although these job scheduling
methods are simple, they are not efficient because they do
not take account of a job’s progress.

3. Expected-Credibility-Based Job Scheduling
Method

3.1 Outline of the Proposed Method

We propose a new job scheduling method for credibility-
based voting [18] that can consider the progress of each job
to reduce the overhead and execution time T . We define two
novel metrics for each job: the expected credibility and the
expected number of results. Using these two metrics, the
proposed scheduling method can select a proper job to be
executed prior to others, thereby achieving a reduction in
the execution time of a computation.

The proposed method employs spot-checking with a
constant rate q and backtracking, as in credibility-based vot-
ing [18].

3.2 Definitions of Credibility

Credibility is defined for each system element to represent
their correctness [18]. The credibility of a worker w (de-
noted by CW (w)) is determined by how many times w sur-
vives spot-checking (how many times w returns the correct
result for spotter jobs). When blacklisting is used, if w sur-
vives spot-checking k times, CW (w) is given by Eq. (1).

CW (w) =

{
1 − fmax, if k = 0
1 − fmax

(1− fmax)×ke , otherwise.
(1)

Therein, e is Napier’s constant. CW (w) is given by Eq. (2)
when blacklisting is not used.

CW (w) =

{
1 − fmax, if k = 0
1 − fmax

k , otherwise.
(2)
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The credibility of a result r produced by worker w (de-
noted by CR(r)) is equal to CW (w).

CR(r) = CW (w). (3)

The results collected for a job are grouped into several
result groups, G1, . . . ,Gg, each of which includes all results
having the same value. The credibility of a result group Ga

(denoted by CG(Ga)) is given by the following Eq. (4):

CG(Ga) =
PT (Ga)

∏
i�a PF(Gi)∏g

i=1 PF(Gi) +
∑g

n=1 PT (Gn)
∏

i�n PF(Gi)
, (4)

in which the following are used.

PT (Ga) =
∏

r∈Ga
CR(r), (5)

PF(Ga) =
∏

r∈Ga
(1 −CR(r)). (6)

Therein, PT (Ga) (PF(Ga)) is the probability that all results
in Ga are correct (incorrect). In Eq. (4), CG(Ga) represents
the conditional probability that the results in Ga are correct
and those in all other groups are incorrect, for a given com-
bination of the results groups.

The credibility of a job j (denoted by CJ( j)) is equal
to CG(Gx), where Gx is a result group that has a maximum
credibility among all result groups for job j.

CJ( j) = CG(Gx) = max
1≤a≤g

CG(Ga). (7)

When CJ( j) reaches threshold θ (= 1 − εacc), the result
of the group Gx is accepted as the final result of job j; then
job j is finished.

3.3 Expected-Credibility-Based Job Scheduling

3.3.1 Definitions of Expected Credibility

To select a job for prior execution, it is important to consider
the progress of each job. The simple metric to represent the
progress might be the credibility of the job because a job
is finished when the credibility of the job reaches threshold
θ. However, this metric is insufficient to grasp the proper
progress because there might be several workers who are
engaged simultaneously in the execution of the job. Con-
sider the case in which job j is allocated to several workers,
as shown in Fig. 2. According to Eq. (7), CJ( j) is calculated
from the credibility of returned results. In the calculation,
the workers who are currently executing job j are not exam-
ined (w1, . . . ,wd in Fig. 2). Those workers will return their
results, which affect CJ( j); therefore, the consideration of
such workers is necessary to grasp the proper progress of
jobs.

Based on the idea described above, we define two new
metrics for each job: the expected number of results and the
expected credibility. Presuming that job j has several results
which can be grouped into G1, . . . ,Gg and presuming that
there exist d workers (w1, . . . ,wd) who are executing job j
as shown in Fig. 2, then the expected number of results and
the expected credibility of job j, denoted by ENR( j) and
ECJ( j) respectively, are defined as follows.

Fig. 2 Calculation of ECJ( j) and ENR( j).

• The expected number of results (ENR)
ENR( j) is defined as

ENR( j) =
g∑

i=1

|Gi| + d, (8)

where |Gi| represents the number of results in Gi.
The metric ENR( j) represents the number of results of
job j when all d workers return their results for job j.

• Expected credibility (ECJ)
ECJ( j) is defined as

ECJ( j) = max
1≤a≤g

C
′
G(Ga), (9)

where

C
′
G(Ga) = (10)

P
′
T (Ga)

∏
i�a P

′
F(Gi)∏g

i=1 P
′
F(Gi) +

∑g
n=1 P

′
T (Gn)

∏
i�n P

′
F(Gi)

,

P
′
T (Ga) = (11){

PT (Ga), if a � x
PT (Ga) ×∏d

i=1 CW (wi), if a = x,

P
′
F(Ga) = (12){

PF(Ga), if a � x
PF(Ga) ×∏d

i=1 (1 −CW (wi)), if a = x.

In those equations, P
′
T (Ga) (P

′
F(Ga)) is the probability

that all results in Ga and all d workers are correct (in-
correct).
The metric ECJ( j) predicts the credibility of job j sup-
posing that all d workers return the same result, which
joins the result group Gx, where Gx is the result group
which has a maximum credibility in all groups.

3.3.2 Job Scheduling Algorithm

Using metrics ECJ and ENR, we propose a new job schedul-
ing method called “expected-credibility-based job schedul-
ing”. Figure 3 shows the algorithm of the expected-
credibility-based job scheduling. First, all idle workers are
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Fig. 3 Expected-credibility-based job scheduling algorithm.

stored in a worker queue (line 1 in Fig. 3) and all unfinished
jobs are grouped based on the value of ENR (line 2). Let S i

be the set of unfinished jobs of which ENR are equal to i. As
long as the worker queue is not empty, the master extracts
a worker from the queue and allocates a job to the worker
(lines 7–23). When a worker w is extracted from the queue
(line 9), by the spot-checking mechanism, a spotter job is
allocated to w with spot-check rate q. One unfinished job is
allocated to w if a spotter job is not allocated. In this case,
the master selects job j, which has a minimum ECJ( j) in S i

(line 12). Once job j is allocated to w, then ECJ( j), S i, and
S i+1 are updated immediately to reflect the allocation of job
j in the subsequent scheduling (lines 14–16).

Using this scheduling method, jobs in S i are selected
prior to those in S i+1, and among S i, a job having the min-
imum ECJ is selected prior to others. That is, jobs are se-
lected in the ascending order of ENR and ECJ .

This scheduling policy arises from the careful observa-
tion that there exist many unnecessary job allocations to sat-
isfy a job’s termination condition: i.e. CJ( j) ≥ 1− εacc. This
occurs because CJ changes dynamically during a computa-
tion. In fact, CJ( j) changes when the master (1) collects new
results for job j, or (2) collects results for a spotter job from
the workers which have returned results for job j. Regarding
the second case, when a worker w survives spot-checking,
CW (w) and CR(r) increase as in Eqs. (1)–(3), which in turn
increases the job’s credibility CJ( j). Because spot-checking
is executed with a constant rate q, CJ( j) tends to continue
to increase during the computation, which implies that job j
might satisfy the termination condition with no new results.
Meanwhile, using a job scheduling mechanism, the master
continues to allocate the unfinished job j and collects new
results so that CJ( j) satisfies the termination condition. If
CJ( j) exceeds the threshold without the newly collected re-
sults, then the new results will turn out to be unnecessary for
job j. In such a case, such additional job allocations can be
said to be “unnecessary job allocations”.

The key factor to reduce the overall execution time is
how to save such unnecessary job allocations. It is, however,
difficult to find during a computation which results will be
unnecessary at the end of the computation because the cred-
ibility of jobs changes dynamically depending on the unpre-
dictable results of jobs returned for normal and spotter jobs.
Note that jobs which have lower credibility and fewer re-
sults require more results to increase the credibility; that is,
to save unnecessary job allocations, a job which has lower
ECJ and ENR should be selected prior to others during job
scheduling. If jobs are selected in the ascending order of
ECJ without considering the number of results, the jobs for
which erroneous results have been returned will be selected
many times since the presence of erroneous results makes
it more difficult to increase the jobs’ credibility . Such job
scheduling will cause performance degradation because of
unnecessary job allocations, as verified in our performance
evaluation presented in Sect. 4.2.2. Therefore, as described
above, the proposed job scheduling method selects jobs in
the ascending order of ENR and ECJ .

3.4 Scheduling Cost

Next, the scheduling cost is analyzed for both the round-
robin and our proposed methods. In VC systems, schedul-
ing is the repetitive process of allocating jobs and receiving
results. As described in this paper, the scheduling cost is de-
fined as the time (worker’s waiting time) to select one job for
a worker when the master receives a result from the worker.

Let tc be the time required for the master to calculate
a credibility of one job, CJ; also, te is the time to calculate
the ENR of one job. The scheduling cost at time step t (t-th
unit time) is denoted as Cost(t). The scheduling cost varies
according to when it is calculated. Therefore, we calculate
Cost(t), and then average of Cost(t) for both methods.

In the round-robin method [18], when the master re-
ceives a result for a normal job j, the master simply calcu-
lates only CJ( j) in tc to check whether it reaches the thresh-
old or not. If the master receives a result for a spotter job,
the result will affect CJ of several jobs because of backtrack-
ing or updating of the credibility. The number of jobs which
need the update of the credibility at time step t is, at most,
t because the number of results produced by w is, at most, t
even if w can return a result in every time step. The schedul-
ing cost for the round-robin method, i.e. Costorig(t), is cal-
culated as

Costorig(t) = tc((1 − q) + qt). (13)

Time step t changes from 1 to T , where T is the overall
execution time of the computation represented in unit times.
The average of Costorig(t), i.e. E(Costorig) is given as

E(Costorig) =
1
T

T∑
t=1

Costorig(t)

= tc

(
(1 − q) +

q(T + 1)
2

)
. (14)
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Because the round-robin method is the simplest scheduling
method, this cost is the minimum required for credibility-
based voting.

In the proposed method, when the master receives a
result for a normal job j, the master calculates ECJ( j) and
ENR( j) in addition to CJ( j). ECJ( j) and ENR( j) must also
be updated when a normal job j is allocated to a worker (as
shown in lines 13–16 in Fig. 3). Therefore, for each alloca-
tion of a normal job (probability 1−q), the master calculates
ECJ( j) and ENR( j) twice. If the master receives a result for
a spotter job, the master calculates ECJ and ENR in addition
to CJ for, at most, t jobs as described above. The scheduling
cost for the proposed method, i.e. Costprop(t), is calculated
as

Costprop(t) = (1 − q)(tc + 2(tc + te)) + qt(tc + (tc + te))

= Costorig(t)

+ (tc + te)(2(1 − q) + qt). (15)

By definition, the time to calculate ECJ is almost identical
as tc (the time to calculate CJ).

The average of Costprop(t), i.e. E(Costprop), is given as
the following.

E(Costprop) =
1
T

T∑
t=1

Costprop(t)

= 2 × tc

(
(1 − q) +

q(T + 1)
2

)

+ tc(1 − q)

+ te

(
2(1 − q) +

q(T + 1)
2

)
. (16)

The value of q is between 0 and 1 and T >> 1 (sev-
eral orders of magnitude). Therefore, the second term in
Eq. (16) is negligibly small compared to the first. The third
term in Eq. (16) is also negligibly small compared to the
first because calculation of ENR involves the simple addi-
tion shown in Eq. (8), then te is negligibly small. Therefore,
E(Costprop) can be represented as follows.

E(Costprop) ≈ 2 × E(Costorig). (17)

From Eqs. (14) and (17), it is apparent that the scheduling
costs of both methods are negligibly small compared to the
execution time of a job in general VC systems (e.g. several
hours in [1]), because tc, the calculation cost of one credi-
bility, is a very small value (on the order of microseconds).
Furthermore, both scheduling costs (for a single worker) are
independent of the system scale, such as the number of jobs
and the number of workers. Consequently, both methods
will work well in large-scale VC systems, without a consid-
erable increase in the workers’ waiting time.

4. Performance Evaluation

4.1 Simulation Conditions

In this section, we evaluate the effectiveness of the proposed

Table 1 Simulation parameters.

# of jobs (N) 10000
# of workers (W) 100

spot check rate (q) 0.1, 0.2
acceptable error rate (εacc) 0.01

faulty fraction ( f ) 0 ∼ fmax (0.4)
sabotage rate (s) 0 ∼ 1

defection rate (pdown) 0 ∼ 0.4

job scheduling method through the simulation of VCs. Exe-
cution times T of VCs are evaluated as the average of 10000
simulation results for five different job scheduling meth-
ods: the proposed method, random, round-robin [18], and
two variants of the proposed method. The variants of the
proposed method are used as a reference against the pro-
posed method. Those methods select jobs using either ENR
or ECJ . They are called, respectively, “ENR method” and
“ECJ method”.

• ENR method: This method selects a job that has a min-
imum ENR in all unfinished jobs. A round-robin selec-
tion is used if some jobs have the same ENR.
• ECJ method: This method selects a job that has a min-

imum ECJ in all unfinished jobs.

The parameters used in our simulation are shown in Ta-
ble 1. Because some parameters are unknown to the master
and are uncontrollable, such as f and s, we use variant val-
ues for such parameters to simulate various cases of VCs.
The upper limit of f , i.e. fmax, is set to 0.4 reflecting the
result of an experiment in a real VC environment [15].

We make two existing assumptions as in [18] for
fair evaluations between different job-scheduling methods.
First, all workers have the same processing speed. There-
fore, jobs are distributed equally among the workers and a
job is executed in a unit time. Second, a saboteur knows
when it is caught by spot-checking in a system without
blacklisting. After having been caught, the saboteur imme-
diately rejoins to the system as a new worker.

In addition to these existing assumptions, we assume
workers’ defection to model real workers’ unexpected be-
havior; that is, workers join and leave the system freely in
real VCs. We assume that a worker leaves the system with
probability pdown, which is called the defection rate, and that
a worker rejoins the system with probability pup in every
turn of the computation. The value of pup is set correspond-
ing to pdown so that 80% of workers are participating in the
system, on average. For instance, when pdown = 0.1, pup is
set to 0.4. A job allocated to a worker is discarded when the
worker leaves the system.

4.2 Simulation Results

4.2.1 In Cases with Blacklisting

Simulation results for VC systems with blacklisting are
shown in Figs. 4–7.

Figure 4 shows execution time T as a function of f
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Fig. 4 Execution time vs. faulty fraction f for s = 0.1, q = 0.1, and
pdown = 0.0 (with blacklisting).

Fig. 5 Execution time vs. faulty fraction f for s = 0.1, q = 0.1, and
pdown = 0.1 (with blacklisting).

Fig. 6 Execution time vs. defection rate pdown for s = 0.1, q = 0.1, and
f = 0.4 (with blacklisting).

for pdown = 0. As f increases, the execution time of each
method increases because the erroneous results returned
from saboteurs increase proportionally to f .

The proposed method outperforms the round-robin
method for any f . Although the actual value of f is un-
known to the master before the computation, the proposed

Fig. 7 Execution time vs. sabotage rate s for f = 0.4, q = 0.1, and
pdown = 0.0 (with blacklisting).

method can improve the execution time even if no saboteur
exists: f = 0. This is true because different jobs have differ-
ent credibility by the effect of spot-checking. Our proposed
method performs well in this situation.

In addition, the performance curve of the ECJ method
is close to that of the proposed method, whereas the curve of
the ENR method is close to that of the round-robin method.
The job scheduling method based only on the number of
results, the ENR method, does not improve the execution
time markedly because the credibility of jobs is different
even though those jobs have the same ENR. To improve
the execution time efficiently, a job scheduling method must
take account of the job’s credibility, as the proposed method
does.

Figure 5 displays execution time T as a function of
f for pdown = 0.1. Compared to the case of pdown = 0
(in Fig. 4), the execution time of each method increases be-
cause the number of results collected in a unit time decreases
as a result of workers’ defection. The difference between
the proposed method and the round-robin method increases
compared to the case of pdown = 0.

We evaluate execution time T for various values of de-
fection rate pdown to verify the effect of workers’ defection
on each scheduling method. Figure 6 portrays the execu-
tion time T as a function of defection rate pdown. As pdown

increases, workers leave and rejoin the system more fre-
quently, the execution time of each method increases (e.g.
the execution time T for each method at pdown = 0.4 is more
than twice that at pdown = 0). The proposed method outper-
forms the round-robin method for any pdown.

Figure 7 portrays the execution time T as a function
of sabotage rate s. The execution time of each method in-
creases at first at a sabotage rate s of 0.2, then retains almost
identical values for larger s. This is true because, when s is
large, all saboteurs are caught until the end of the compu-
tation and all results produced by the saboteurs are invali-
dated, whether erroneous or not.

The proposed method outperforms the round-robin
method for any s, even if saboteurs never return erroneous
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Fig. 8 Execution time vs. faulty fraction f for s = 0.1, q = 0.2, and
pdown = 0.0 (without blacklisting).

Fig. 9 Execution time vs. defection rate pdown for s = 0.1, q = 0.2, and
f = 0.4 (without blacklisting).

results (s = 0). Although the actual value of s is also un-
known to the master like f , the proposed method can im-
prove the execution time irrespective of the value s, i.e., the
behavior of saboteurs.

As shown in Figs. 4–7, the proposed method always
outperforms the round-robin method, irrespective of the un-
known parameters f , s and pdown. This very important fea-
ture indicates that the proposed method is applicable to VC
systems of various environments.

4.2.2 In Cases without Blacklisting

Simulation results for VC systems without blacklisting are
shown in Figs. 8 to 10.

Figure 8 shows execution time T as a function of f .
The proposed method outperforms the round-robin method
for any f , just as in the cases with blacklisting. Particularly,
when f = 0.4, the difference between the proposed method
and the round-robin method is about 11%.

Figure 8 also shows that the difference between the
ENR method and the round-robin method is large, differ-
ent from cases with blacklisting (Fig. 4). In cases without
blacklisting, the saboteurs can rejoin the system and pro-

Fig. 10 Execution time vs. sabotage rate s for f = 0.4, q = 0.1, and
pdown = 0.0 (without blacklisting).

duce erroneous results permanently, so that more results are
invalidated by backtracking and each job’s ENR becomes
widely disproportionate. This result indicates that consider-
ation of ENR becomes an important reason to select jobs in
cases without blacklisting.

Figure 9 depicts execution time T as a function of de-
fection rate pdown. The proposed method outperforms the
round-robin method for any pdown, as in cases with black-
listing.

Figure 10 shows execution time T as a function of sab-
otage rate s. In cases without blacklisting, the sabotage rate
s affects the execution time, different from cases with black-
listing. This is true because the sabotage rate s is the ratio
of erroneous results to all results produced using a sabo-
teur. In cases without blacklisting, although a saboteur will
be caught, the saboteur rejoins the system and produces er-
roneous results permanently. Some of produced erroneous
results are retained in the system until the end of the com-
putation, making it more difficult to increase the jobs’ credi-
bility. The number of these erroneous results is proportional
to s. For that reason, the execution time increases as s in-
creases in cases without blacklisting.

Figure 10 also shows that the ECJ method takes a
longer execution time than other methods when s is small.
This is true because the ECJ method does not take account
of the number of results for each job. By selecting a job
in the ascending order of ECJ , a job having erroneous re-
sults is selected prior to other jobs because the credibility
of such a job is smaller, as shown in Eqs. (4)–(7). On the
other hand, when erroneous results are invalidated by back-
tracking, the credibility of such jobs becomes considerably
larger; some results of the job will turn out to be unneces-
sary. Particularly, when s is small, it is difficult to catch
saboteurs and invalidate erroneous results. Consequently,
jobs having erroneous results are selected repeatedly and the
number of unnecessary job allocations increases. For that
reason, the ECJ method requires a longer execution time
than other methods, as shown in Fig. 10.

By selecting jobs in the ascending order of ENR, a job
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having numerous results is not selected in job scheduling
even if the job has erroneous results. In this case, the un-
necessary job allocations do not become numerous, as with
the ECJ method. Therefore, the proposed method, which
selects jobs in the ascending order of ENR at first and then
selects a job based on ECJ , shows better performance for
any s.

5. Conclusion

As described in this paper, we proposed expected-
credibility-based job scheduling for credibility-based vot-
ing [18] to improve the performance of the original round-
robin job scheduling, and to achieve high performance and
reliable computations in VC systems. The proposed job
scheduling method selects jobs to save unnecessary job allo-
cations based on two novel metrics: the expected credibility
and the expected number of results. Simulation results de-
scribed herein show that the proposed method reduces the
execution time compared to the round-robin method, irre-
spective of the value of unknown parameters such as the
population of saboteurs, the sabotage rate, and the defection
rate.
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