
3116
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

LETTER

The Software Reliability Model Using Hybrid Model of Fractals
and ARIMA

Yong CAO†a), Student Member and Qingxin ZHU†, Nonmember

SUMMARY The software reliability is the ability of the software to
perform its required function under stated conditions for a stated period of
time. In this paper, a hybrid methodology that combines both ARIMA and
fractal models is proposed to take advantage of unique strength of ARIMA
and fractal in linear and nonlinear modeling. Based on the experiments
performed on the software reliability data obtained from literatures, it is
observed that our method is effective through comparison with other meth-
ods and a new idea for the research of the software failure mechanism is
presented.
key words: software reliability forecasting, fractal, ARIMA models, soft-
ware failures

1. Introduction

Software reliability is going to become a highly visible and
important field. Therefore, software reliability forecasting
is a problem of increasing importance for many critical ap-
plications and failure analysis is an important part of the
research of software reliability. An underlying assumption
of these models is that software failures occur randomly in
time. It was mainly treated as random and statistical prob-
lem.

Recently, along with the development of prediction
theory, support vector machines and artificial neural net-
works have been applied in forecasting software reliabil-
ity [1], [2]. Some forecasting techniques have been devel-
oped, each one with its particular advantages and disad-
vantages compared to other approaches. This motivates
the study of hybrid model combining different techniques
and their respective strengths. Different forecasting mod-
els can complement each other in capturing patterns of data
sets, and both theatrical and empirical studies have con-
cluded that a combination of forecast outperforms individ-
ual forecasting models [3], [4], [7]. Terui and Dijk [4] pre-
sented a linear and nonlinear time series model for fore-
casting the US monthly employment rate and production
indices. Their results demonstrated that the combined fore-
casts out-performed the individual forecasts.

Time series data often contain both linear and nonlin-
ear patterns. The ARIMA (autoregressive integrated mov-
ing average processes) models are the most general class
of models for forecasting a time series which can be sta-
tionarized by transformations such as differencing and log-

Manuscript received June 4, 2010.
Manuscript revised June 29, 2010.
†The authors are with University of Electronic Science and

Technology of China, China.
a) E-mail: cn caoyong@126.com

DOI: 10.1587/transinf.E93.D.3116

ging. When modeling linear and stationary time series, the
researcher frequently chooses ARIMA models because of
their high performance and robustness. Fractal model has
good performance in nonlinear patterns which brought good
effect [5]. A hybrid ARIMA and fractal model is capable of
exploiting the their strengths respectively.

2. Hybrid Model in Prediction of Software Failure

2.1 Fractal Model

The term fractal, which means broken or irregular frag-
ments. Fractals are mathematical or natural objects that are
made of parts similar to the whole in certain ways. It be-
longs to geometrical category. Time series also follow the
laws of fractal geometry. According to [5] self-similarity
exists in time series and we may investigate the relationship
between software failures and fractal. Cao and Zhu have
applied it to forecasting software failures and provided soft-
ware prediction model based on fractal. Please see [5] for a
detailed exposition.

2.2 Run Test

The runs test can be used to decide if a data set is from a
stationary random process. A run is defined as a series of
positive values or negative values. The number of positive
or negative values is the length of the run. In a stationary
random data set, the probability that the ith value Yi is larger
or smaller than the mean value follows a binomial distribu-
tion, which forms the basis of the runs test. The first step in
the runs test is to compute the sequential differences Yi − Y .
Positive values indicate the difference values greater than or
Equal to 0 and negative values indicate the difference values
less than 0. Let N1 = (the number of positive values) and
N2 = (the number of negative values). N = N1 + N2 and UN

represents the total number of runs. We adopt hypothesis
test to decide if the time series is stationary.

Hypothesize: H0 : {yt, t = 1, 2, . . . ,N} is stationary
random series. When the significance level is 5% and N1 ≤
15 and N2 ≤ 15, given the upper limit rU and the lower limit
rL and if UN ≥ rU or UN ≤ rL, we reject H0. Otherwise H0

is accepted.
If N1 > 15 or N2 > 15, UN follows the normal distribu-

tion N(μ, σ2), where μ = 2N1N2
N + 1 and σ = 2N1N2(2N1N2−1)

N2(N−1)

1
2 .

Let Z = UN−μ
σ

and N follows N(0, 1). At the 5% significance
level, when |Z| ≤ 1.96 the initial hypothesis is accepted.

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

LETTER
3117

2.3 ARIMA Model

Introduced by Box and Jenkins, the ARIMA model has been
one of the most popular approaches to forecasting. In an
ARIMA model, the future value of a variable is supposed
to be a linear combination of past values and past errors,
expressed as follows:

yt =

p∑
i=1

φiyt−i −
q∑

j=1

θ jεt− j + εt (1)

where yt is the actual value and εt is the random error at
time t; φi and θ j are the coefficients; p and q are integers that
are often referred to as autoregressive and moving average
polynomials, respectively.

The autoregressive part AR(p) models a time series as a
linear function of p previous observations in order to predict
the current one. The moving average part MA(q) determines
the moving average of the series with a time window of size
q. Finally, the ARIMA process (p, d, q) is based on a series
that has been differentiated d times, with p autoregressive
terms and q moving average terms.

2.4 The Hybrid Model

The software failures can not easily be captured. Therefore,
a hybrid strategy that has both linear and nonlinear modeling
abilities is a good alternative for forecasting software fail-
ures. Both the ARIMA and the fractal models have differ-
ent capabilities to capture data characteristics in linear and
nonlinear domains, so the hybrid model proposed in this in-
vestigation is composed of the ARIMA component and the
fractal component. Thus, the hybrid model can model lin-
ear and nonlinear patterns with improved overall forecasting
performance. We compute the logarithms of the time series
to make the curve of series smooth and stationary. The hy-
brid model (Et) composed of linear and nonlinear compo-
nents can be represented as follows:

ln(Et) = ln(At) + ln(Ft) (2)

where At is the linear part and Ft is the nonlinear part of
the hybrid model. Both At and Ft are estimated from the
data set. F̂t is the forecasting value of Ft and we estimate it
through fractal model. Let εt represent the residual at time t
as obtained from the fractal model. Then

εt = ln(Et) − ln(F̂t) (3)

The residuals are modeled by the ARIMA and can be
represented as follows:

εt = f (εt−1, εt−2, . . . , εt−n) + Δt (4)

where f is a linear function modeled by the ARIMA and Δt

is the random error. Therefore, the combined forecast is

Êt = (F̂t)exp(ε̂t) = (F̂t)(Ât) (5)

where ε̂t is the forecasting value of Eq. (4) and Ât is the fore-
casting value of At.

In this investigation, at first we adopt fractal model to
forecast failure time, and for the sake of accuracy we com-
pute the difference of the logarithm of the forecasting time
minus the logarithm of actual time to obtain a series of dif-
ferences. We apply run-test method to the difference series
to check the stationary of the series. Basically the ARIMA
model has three phases: model identification, parameter es-
timation, and diagnostic checking. We adopt autocorrelation
and partial autocorrelation analysis to select an appropriate
model from AR(p), MA(p), ARMA(p, q) and ARIMA(p,
d, q). After the model is selected we use BIC (Bayesian
Information Criterion) to determine the order of the model.
Please see [6] for a detailed exposition.
Algorithm 1:

Initialization: Suppose the size of slide window m, l = 1, the
size of training set n, A is a array of corresponding failure
time of the ith failure, D is a array of the error series, F is a
array of forecasting value of fractal model and E is a array
of forecasting value of hybrid model;

for i = l to m + l − 1 {

B(i) = log(A(i));
C(i) = log(i);}
for i = m + l − 1 to n{
(1) According to Eq. (5) in literature [5] and

method of linear regression, compute the slope of linear
regression in the slide window b = d = 1

k and constant
a = log(s) = −dlog(C);

(2) Make a prediction Prediction F̂ti of next
point out of the slide window using the above a and b;

(3) Add F̂ti to F;
(4) Add the practical failure time ti of the next

point to A;
(5) Compute the error ln(ti) − ln(F̂ti);
(6) Add the error to D;
l + +;
B(m + l − 1) = log(A(m + l − 1));
C(m + l − 1) = log(m + l − 1);}

Repeat
Repeat steps (1), (2), (3), (4), (5), (6) to com-

pute the nonlinear part of prediction F̂t of point m + l − 1
using fractal model;

Determine the stationarity of the error series
D;

Identify the model of ARIMA;
Determine the order of model;
Compute the linear part of prediction Ât using

ARIMA model and error series D;
Make a total prediction Êt = (Ât)(F̂t) and add

Êt to E;
l + +;
B(m + l − 1) = log(A(m + l − 1));
C(m + l − 1) = log(m + l − 1);}

3118
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.11 NOVEMBER 2010

Table 1 The NTDS set of software failure time series, and from left to
right the time in each cell denotes the cumulate time of the ith software
failure, i = 1, 2,

9 21 32 36 43 45 50
58 63 70 71 77 78 87
91 92 92 95 98 104 105

116 149 156 247 249 250 337
384 396 405 540 798 814 849

Fig. 1 Prediction errors of different models of Musa’s data set 1. HMFE
stands for hybrid model forecasting errors, AKFE stands for adaptive
Kalman filter model forecasting errors, and FE stands for fractal model
forecasting errors. Sliding-window size m = 5 and ARIMA(0, 0, 1).

Until test over
End

3. Experiments

The forecasting algorithm and a one-step-ahead forecasting
policy are applied in four examples. The software failure
data are obtained from Musa’s data set 1 (Table A.1 in liter-
ature [5]), Musa’s data set 2 (Table A.2 in [5]), Musa’s data
set 3 (Table A.3 in [5]) and NTDS data set (Table 1). The
performance of the proposed model is compared with nor-
mal distribution [5], Kalman filter [5], adaptive Kalman fil-
ter [5], ARIMA [5], and the SVMs model with simulated an-
nealing algorithms (SVMSA) [7] forecasting methods. The
experimental results are shown in Fig. 1, Fig. 2, Fig. 3, Ta-
ble 2 and Table 3. In Fig. 1 85% of the forecasting errors
using hybrid model are less than 2%; in Fig. 2 85% of the
forecasting errors using hybrid model are less than 4%; in
Fig. 3 80% of the forecasting error using hybrid model are
less than 6%. They are all better than ARIMA, Adaptive
Kalman filter and SVMSA etc. Obviously our method is ef-
fective. In the investigation, the values of Mean Absolute

Error MAE = 1
n

n∑
i=1

abs Ti−Ti

Ti
and Normal Root Mean Square

Error NRMS E =

√√√ n∑
i=1

(Ti−Ti)2

n∑
i=1

T 2
i

, where Ti is the ith actual fail-

ure time and Ti is prediction time (Table 2). Mean Absolute

Error of Interval Time MAEIT = 1
n

n∑
i=1

abs(di−di)
di

, where n is

the number of prediction periods, di is actual value of period
i and di is prediction value (Table 3).

Fig. 2 Prediction errors of different models of Musa’s data set 2. HMFE
stands for hybrid model forecasting errors, AKFE stands for adaptive
Kalman filter model forecasting errors, AFE stands for ARIMA model fore-
casting errors and FE stands for fractal model forecasting errors. Sliding-
window size m = 3 and ARIMA(1, 0, 1).

Fig. 3 Prediction errors of different models of NTDS data set. HMFE
stands for hybrid model forecasting errors, AKFE stands for adaptive
Kalman filter model forecasting errors, AFE stands for ARIMA model fore-
casting errors, and FE stands for fractal model forecasting errors. Sliding-
window size m = 3 and ARIMA(1, 1, 1).

Table 2 Prediction results of different models of Musa’s data set 1, 2
and NTDS. AK stands for adaptive Kalman filter, HM stands for Hybrid
Model.

Error HM Fractal ARIMA AK
Musa 1 MAE 0.0181 0.0271 0.0432 0.0425

NRMSE 0.0255 0.0312 0.0493 0.0481
Musa 2 MAE 0.0437 0.0574 0.0718 0.0635

NRMSE 0.0528 0.0645 0.0824 0.0702
NTDS MAE 0.0492 0.0625 0.1019 0.0947

NRMSE 0.0741 0.0939 0.1349 0.1203

4. Conclusion

This paper proposed a model of obtaining more accurate
predictions by combining fractal and ARIMA. A com-
parison is made between this approach and other methods
for predicting the failure time using actual data sets from

LETTER
3119

Table 3 Prediction results of different models of Musa’s data set 3. HM
stands for Hybrid Model, ND stands for normal distribution and AK stands
for adaptive Kalman filter [5], and SVMSA stands for hybrid model of
support vector machines model with simulated annealing algorithms [7]
(Sliding-window size m = 9 and ARIMA(1, 0, 1)).

NO. Actual data HM ND AK SVMSA
45 11.0129 9.5366 10.4177 19.3881 8.6740
46 10.8621 10.0356 11.4835 11.0904 9.2696
47 9.4372 9.9433 11.3140 9.7274 9.6609
48 6.6644 8.7454 9.7977 7.4402 9.4989
49 9.2294 10.1812 6.8764 4.2686 8.7925
50 8.9671 8.2677 9.5838 11.5589 9.0692
51 10.3534 9.5343 9.3004 7.9377 9.0610
52 10.0998 9.6446 10.7603 10.8762 9.3121
53 12.6078 10.2708 10.4852 8.9795 9.7436
54 7.1546 10.9855 13.1355 14.3821 10.0480
55 10.0033 11.3601 7.3952 3.6967 8.9747
56 9.8601 10.4659 10.4011 12.6137 9.8184
57 7.8675 8.7745 10.2433 8.8370 9.5530
58 10.5757 9.5072 8.1421 5.6897 9.2308
59 10.9294 10.2460 10.9974 12.8783 9.9859
60 10.6604 9.8674 11.3641 10.2797 10.2270
61 12.4972 11.7273 11.0736 9.4502 10.3990
62 11.3745 11.8501 13.0074 13.3468 10.8770
63 11.9158 11.6475 11.8162 9.4337 11.1470
64 9.575 11.4602 12.3801 11.3776 11.5190
65 10.4504 10.8593 9.9147 7.0159 10.9720
66 10.5866 11.0874 10.8297 10.3937 10.9530
67 12.7201 10.8477 10.9673 9.8073 11.1490
68 12.5982 11.8802 13.2073 14.0040 11.9540
69 12.0859 12.0526 13.0723 11.4408 12.3210
70 12.2766 12.3860 12.5277 10.6270 12.3980
71 11.9602 12.1034 12.7219 11.4427 12.1320
72 12.0246 12.3699 12.384 10.7036 12.0280
73 9.2873 11.2508 12.4459 11.1151 12.1270
74 12.495 11.4711 9.5809 6.5952 11.9460
75 14.5569 12.5541 12.9403 15.4497 12.4000
76 13.3279 12.8742 15.0996 15.6550 13.0730
77 8.9464 12.3863 13.8044 11.2419 12.9730
78 14.7824 12.3358 9.2257 5.5249 12.7810
79 14.8969 13.8570 15.3558 22.4572 13.5250
80 12.1399 13.5477 15.4692 13.8009 13.7040
81 9.7981 12.5751 12.5737 9.0674 13.2390
82 12.0907 11.6188 10.1218 7.2440 13.3320
83 13.0977 12.8023 12.5184 13.6803 12.9130
84 13.368 13.2046 13.5683 13.0569 13.1180
85 12.7206 12.6442 13.8459 12.5528 13.2160
86 14.192 12.7211 13.1633 11.1382 12.9030
87 11.3704 13.1078 14.6987 14.5875 13.4450
88 12.2021 12.1477 11.7469 8.3918 12.9540
89 12.2793 12.3524 12.6114 12.0519 12.6530
90 11.3667 12.0399 12.6876 11.4003 12.4040
91 11.3923 11.8972 11.7316 9.7078 12.3910
92 14.4113 12.0733 11.7545 10.5370 12.3660
93 8.3333 12.4852 14.9045 16.8667 13.0150
94 8.0709 11.6589 8.5791 4.4545 12.0830
95 12.2021 11.4320 8.3040 7.1640 11.5120
96 12.7831 12.3609 12.6137 16.0111 12.0470
97 13.1585 12.7458 13.2161 12.3861 12.6030
98 12.753 12.6001 13.6036 12.5033 12.7040
99 10.3533 12.3128 13.1763 11.4137 12.4240

100 12.4897 12.7059 10.6746 7.7609 12.1110
MAEIT 0 0.1074 0.1734 0.2578 0.1198

literature. The superior forecasting ability of the proposed
model is due to the following two causes. First, good self-
similarity exists in software failure time series. Second,
good linearity exists in the residual series which actual fail-
ure data minus prediction data using fractal. In the future,
some other factors which affect the software reliability can
be considered in the model to predict software reliability to
improve forecasting accuracy.

References

[1] F.E.H. Tay and L. Cao, “Modified support vector machines in financial
time series forecasting,” Neurocomputing, vol.48, pp.847–861, 2002.

[2] Y.S. Su and C.Y. Huang, “Neural-network-based approaches for soft-
ware reliability estimation using dynamic weighted combinational
models,” J. Systems and Software., vol.80, no.4, pp.606–615, April
2006.

[3] M.J. Lawerence, R.H. Edmundson, and M.J. O’Connor, “The accu-
racy of combining judgemental and stastical forecasts,” Manage. Sci.,
vol.32, pp.1521–1532, 1986.

[4] N. Terui and K.D. Herman, “Combined forecasts from linear and
nonlinear time series models,” International Journal of Forecasting,
vol.18, pp.421–438, 2002.

[5] Y. Cao and Q. Zhu, “The software reliability model based on fractals,”
IEICE Trans. Inf. & Syst., vol.E93-D, no.2, pp.376–379, Feb. 2010.

[6] R.H. Shumway and D.S. Stoffer, Time Series Analysis and Its Appli-
cations: with R Examples, 2nd ed., Springer, 2006.

[7] P.-F. Pai and W.-C. Hong, “Software reliability forecasting by support
vector machines with simulated annealing algorithms,” J. Systems and
Software, vol.79, pp.747–755, 2006.

