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SUMMARY While volunteer computing (VC) systems reach the most
powerful computing platforms, they still have the problem of guaranteeing
computational correctness, due to the inherent unreliability of volunteer
participants. Spot-checking technique, which checks each participant by
allocating spotter jobs, is a promising approach to the validation of com-
putation results. The current spot-checking is based on the implicit as-
sumption that participants never distinguish spotter jobs from normal ones;
however generating such spotter jobs is still an open problem. Hence, in the
real VC environment where the implicit assumption does not always hold,
spot-checking-based methods such as well-known credibility-based voting
become almost impossible to guarantee the computational correctness. In
this paper, we generalize spot-checking by introducing the idea of imper-
fect checking. This generalization allows to guarantee the computational
correctness under the situation that spot-checking is not fully-reliable and
participants may distinguish spotter jobs. Moreover, we develop a gener-
alized formula of the credibility, which enables credibility-based voting to
utilize check-by-voting technique. Simulation results show that check-by-
voting improves the performance of credibility-based voting, while guar-
anteeing the same level of computational correctness.
key words: spot-checking, sabotage-tolerance, credibility-based mecha-
nisms, volunteer computing

1. Introduction

Volunteer computing (VC) is a type of Internet based par-
allel computing paradigm, which allows any participants on
the Internet to contribute their idle computing resources to-
wards solving large parallel problems. By making it easy
for anyone on the Internet to join a computation, VC makes
it possible to build very large and high performance global
computing environment with a very low cost. However, VC
still have the problem of guaranteeing computational cor-
rectness [1], [2]. Since VC allows anyone to join a compu-
tation, participant nodes are not always reliable as in well-
controlled grid computing systems. Malicious participants
(called saboteurs) may sabotage job execution by returning
erroneous results. Therefore, VC systems must alleviate the
effect of sabotaging.

Two basic categories of the sabotage-tolerance tech-
niques for VCs are voting and checking. In the voting tech-
nique, a job is replicated and allocated to several participants
for a redundant computation. Examples of the voting tech-
niques include majority and m-first votings, in which a fixed
number of results and m matching results are collected to
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decide the final result, respectively. Since majority voting is
simple but inefficient [3], the most popular VC middle-ware
BOINC [4] employs m-first voting.

In the checking technique, a spotter job which is dif-
ferent from a normal computational job is used to check
worker’s behavior directly. Worker is judged credible or not
by verifying the result of a spotter job; hence, the correct
result for each spotter job must be known in advance. Ex-
amples of the checking techniques include quiz [5] and spot-
checking [6]. In quiz, returned results are simply neglected
if the worker fails a checking. In addition to this, spot-
checking allows to guarantee the computational correctness
mathematically based on the total number of checking each
worker survives.

Combining the advantages of m-first voting and spot-
checking, Sarmenta [6] proposed a novel sabotage-tolerance
method, referred to as credibility-based voting in this paper.
This method estimates the credibility of results using the
function of spot-checking and allows to guarantee correct-
ness of voted results keeping the degree of redundancy as
low as possible. Thus, this method is promising for reliable
and high-performance VCs.

In spot-checking-based sabotage-tolerance methods,
such as credibility-based voting [6], the results of checking
are utilized in the estimation of sabotaging frequency. Those
methods work well as long as the saboteurs never distin-
guish spotter jobs; that is, they implicitly assume that the
results of spot-checking are fully-reliable. However, gener-
ating such indistinguishable spotter jobs is still an open and
tough problem because it requires a huge number of reli-
able nodes or computation time [5] to prepare a number of
various spotter jobs and the correct results, which is imprac-
tical in real VC systems. The result of spot-checking can not
be fully-reliable in real VCs. Saboteurs may return correct
results only for spotter jobs, while sabotaging normal jobs
to disturb the computation. This makes the spot-checking-
based methods useless for guaranteeing the computational
correctness of VCs.

In this paper, we introduce the idea of generalized spot-
checking to guarantee the computational correctness under
the situation that the result of spot-checking is not fully-
reliable. This is a feature that no previous methods have
considered. The main contribution of our work are the
following. (1) We develop a generalized formula of the
credibility by introducing the probability c that represents
the accuracy of spot-checking. This generalization allows
credibility-based voting to guarantee the computational cor-
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rectness even if saboteurs distinguish spotter jobs. Through
simulations, we verify the accuracy of the generalized for-
mula. (2) We enable to apply check-by-voting method to
credibility-based voting to improve the performance of VCs,
while guaranteeing the computational correctness. This ap-
plication has become possible because of our generalized
formula. Through simulations, we compare the performance
of VCs with and without check-by-voting.

The rest of this paper is organized as follows. Sec-
tion 2 shows the computational model of VC systems and
sabotage-tolerance mechanisms. Section 3 proposes gener-
alized spot-checking and check-by-voting techniques. Sec-
tion 4 verifies the accuracy of generalized spot-checking and
the improvements of performance of VCs with check-by-
voting. Finally, conclusions are discussed in Sect. 5.

2. Volunteer Computing Systems

2.1 Computational Model

A well known work-pool-based master-worker model [4],
[6] is assumed as the computation model of VC systems.
This model is used in almost all VC systems practically. De-
tails of the model are described as follows.

• A VC system consists of a management node (master)
and W different participant nodes (workers).
• A computation to be executed in the VC system is di-

vided into N independent jobs.
• At the start of the computation, all jobs are placed in a

work pool of the master.
• The master gives a job to each idle worker.
• Each worker executes the allocated job and returns the

result to the master. During their execution, no commu-
nication exists among workers because jobs are mutu-
ally independent.

Figure 1 illustrates the master-worker model of VC sys-
tems. To produce a sabotage model, a certain faulty fraction
f of the W workers are assumed to be saboteurs who may
return erroneous results. Each saboteur attempts to return
an erroneous result with a constant probability s, which is
known as the sabotage rate [6]. Note that if a saboteur dis-
tinguishes spotter job, the saboteur may give up sabotaging
to avoid detection by checking. The values of f and s are

Fig. 1 Computation model of VC systems.

unknown to the master.
The master manages the execution of a computation

and allocates unfinished jobs to idle workers. Computation
finishes when all jobs are finished. Jobs that finish with er-
roneous results are called erroneous jobs. At the end of the
computation, an error rate ε can be calculated as the ratio of
erroneous jobs to all jobs.

Using no sabotage-tolerance mechanisms, the error
rate increases in proportion to the number of saboteurs. Let
T be the time taken to finish all jobs of a computation, i.e.
computation time. If all workers function at the same speed
and execute a job in a unit time, then T is given by �N/W�
unit times and error rate ε is given by N× f × s/N = f × s. It
is clear that ε is proportional to the fraction f and sabotage
rate s. Therefore, to reduce the error rate, some sabotage-
tolerance mechanism must be used.

2.2 Sabotage-Tolerance Mechanisms

2.2.1 Voting and Checking

The basic sabotage-tolerance mechanisms are voting and
checking.

(1) Voting: Each job is replicated and allocated to sev-
eral workers so that a master can collect several results and
compare their values. The results collected for a job are
then classified into groups (called result groups) according
to the value of the results. The master decides which re-
sult group should be accepted as the final result of the job
through voting. Two major voting methods are majority and
m-first votings.

• Majority voting: The result group which collects the
largest number of results is accepted as the final result.
• m-first voting: The result group which collects m

matching results first is accepted as the final result.

By a simple principle, these voting methods are widely used
in real VC systems such as BOINC [4].

(2) Checking: To check whether a worker is a saboteur
or not, a master allocates a spotter job whose correct result
is already known to the master. The master can catch the
worker as a saboteur if a worker returns an erroneous result
for the spotter job. Two major checking methods are quiz [5]
and spot-checking [6].

• Quiz: Spotter jobs are inserted into a package of nor-
mal jobs and are allocated to a worker. If the worker
survives all spotter jobs in the package, the results of
jobs in the package are accepted.
• Spot-checking: A spotter job is allocated to a worker

directly. When the worker survives the checking, the
number of checking is counted up. If the worker sur-
vives checking enough times, all the results returned by
the worker are accepted.

When the master catches a saboteur by a checking, the
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following two methods can be used:

• Backtracking: The master backtracks (invalidates) all
results returned by the saboteur because each may be
an erroneous one.
• Blacklisting: The master puts saboteur’s identification

information (e.g. IP address) on a blacklist to prevent
the saboteur from returning results or getting any more
jobs.

Backtracking and blacklisting can be used simultane-
ously for efficient sabotage-tolerance.

2.2.2 Credibility-Based Voting

In traditional voting methods such as m-first voting, each job
requires a fixed number of matching results (at least two or
more), no matter how reliable each result is. Consequently,
the performance of VC systems diminishes to less than half.
Using only spot-checking is also inefficient, since it requires
the executions of huge number of spotter jobs, which wastes
the computational resources of workers.

To improve these inefficiency, Sarmenta [6] proposed
a new sabotage-tolerance method (called “credibility-based
voting”), by combining m-first voting and spot-checking. In
this method, each system element such as worker, result,
result group, and job is assigned a credibility value that rep-
resents its correctness. Every worker and result has different
credibility, which affects the credibility of the result groups.
A job is finished when the credibility of any result group
of the job reaches a threshold θ. Therefore, the necessary
number of matching results to finish a job is not fixed and is
generally smaller than that of the m-first voting.

Furthermore, based on spot-checking, this method can
guarantee that the mathematical expectation of the error rate
is below an arbitrary acceptable error rate εacc by setting two
conditions: (1) threshold θ = 1 − εacc, and (2) unknown pa-
rameter f satisfies f ≤ fmax, where fmax is the upper limit
of f and is a known value. This condition implies that the
number of saboteurs in W workers is, at most, � fmax × W�.
For spot-checking, each worker gets a spotter job with prob-
ability q, which is known as spot-check rate.

In credibility-based voting, the definitions of the cred-
ibility are as follows [6], [9]. Since parameters s and f are
unknown to the master, the credibility of a worker w, CW (w),
is given as the lower bound of the probability that a result re-
turned by w is correct. The master calculates CW (w) based
on the number of checking w survives under the assumption
that w never distinguish spotter jobs. If worker w survives
spot-checking k times, CW (w) is given by Eq. (1)

CW (w) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − fmax, if k = 0,

1 − fmax

(1 − fmax) × ke
, otherwise

(1)

where e is Napier’s constant.
The credibility of a result r produced by worker w

is equal to CW (w). The credibility of a result group Ga,

CG(Ga), is given as the conditional probability that the re-
sults in Ga is correct and all other results are erroneous ones.
Thus, the result group which contains more results tends to
have larger credibility. The credibility of a job j, CJ( j), is
defined to be CG(Gx), where Gx has a maximum credibility
in all result groups of job j. When the credibility of job j
reaches the threshold θ, the result group Gx is accepted as
the final result of job j, and job j is finished.

3. Generalized Spot-Checking and Check-by-Voting

3.1 Motivation and Key Idea

Although spot-checking-based mechanism is a promising
approach for the sabotage-tolerance of VC systems, it still
has some practical issues, e.g. generating spotter jobs.
Therefore, the current VC systems such as BOINC [4]
mainly employ a simple but inefficient voting method. The
goal of our work is realizing high performance and reli-
able VC systems by a practicable and efficient sabotage-
tolerance method.

In the current spot-checking-based mechanisms such
as credibility-based voting [6], it is implicitly assumed that
the allocation of spotter jobs is never distinguished by sabo-
teurs. Especially, in credibility-based voting, the credibility
of a worker is calculated based on this assumption as shown
in Eq. (1). However, generating such spotter jobs is still an
open problem because generating many kinds of spotter jobs
requires more job executions on reliable nodes, which in
turn degrades the performance of the system. If there is a
small repertoire of spotter jobs, a saboteur may distinguish
spotter jobs easily because the same spotter job is repeatedly
allocated to the saboteur. In this case, credibility-based vot-
ing becomes almost impossible to guarantee the reliability
condition ε ≤ εacc because a saboteur can slip through spot-
checking and gain higher credibility illegally by returning
correct results only for spotter jobs.

The key idea of solving the aforementioned problem
is generalization of spot-checking technique by introducing
the idea of imperfect checking. We define a new parameter
c, which represents the accuracy of spot-checking. This gen-
eralization allows to use imperfect spot-checking for spot-
checking-based mechanisms, while maintaining the features
of those methods (i.e. guaranteeing the computational cor-
rectness in credibility-based voting).

In the generalized spot-checking, a checking can de-
tect an attempt of sabotaging by a saboteur with probability
c. However, the actual value of c for each spot-checking
is unknown to the master like the sabotage rate s and the
fraction f . One way to solve this problem is using the lower
bound of the probability, cmin, as is done for f [6]. The value
of cmin is proportional to the number of spotter jobs a master
can prepare for the computation. If saboteurs never distin-
guish spotter jobs, the generalized spot-checking sets cmin to
1 and works as well as the original (perfect) spot-checking.
On the other hand, cmin is set to a value smaller than 1 if the
spot-checking is imperfect, i.e. the master can not prepare a
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variety of spotter jobs.
From the next section, we describe two methods ap-

plying the proposed generalized spot-checking technique to
credibility-based voting. First, we give a new calculation
formula of the credibility using probability c to guarantee
the reliability condition ε ≤ εacc even when spotter jobs
are distinguished by saboteurs. Next, we propose a new
checking technique, which utilizes the result of each vot-
ing as an imperfect checking to improve the performance of
credibility-based voting.

3.2 Calculating Formula of Credibility

If a master uses generalized spot-checking and blacklisting,
the master can calculate the credibility of worker w who sur-
vives spot-checking k times as follows. Let ci (i = 1, . . . , k)
be the accuracy of i-th spot-checking, that is, w can not dis-
tinguish i-th spot-checking as a spotter job with probability
ci. In this situation, w distinguishes the i-th spot-checking
and return a correct result with probability 1 − ci. On the
other hand, even if w does not distinguish, w returns a cor-
rect result with probability 1 − s because the job may be
spotter one. Thus, the probability that w survives i-th spot-
checking is (1 − ci) + ci(1 − s) = 1 − s × ci. Here, cmin is a
lower bound of ci (cmin ≤ ci for i = 1, . . . , k).

Since parameters s and f are unknown to the master,
the credibility of w, i.e. CWgen (w), is given as the lower bound
of the probability that w returns a correct result for any s
and f . To calculate CWgen (w), we define εresult(s, f , k) as the
probability that an arbitrary result returned by a worker who
survives k spot-checking is erroneous one, under the situa-
tion that (1 − f ) × W non-saboteurs always return correct
results and f × W saboteurs return erroneous results with
probability s.

When k = 0, the upper bound of εresult(s, f , k) is given
by Eq. (2) since 0 ≤ s ≤ 1 and 0 ≤ f ≤ fmax.

εresult(s, f , 0) = s × f

≤ f

≤ fmax. (2)

When k � 0, the upper bound of εresult(s, f , k) is given
as follows. The probability that a saboteur survives all
k spot-checking is

∏k
i=1(1 − s × ci). Since w is either a

non-saboteur or a saboteur who survives k spot-checking,
εresult(s, f , k) is given by Eq. (3).

εresult(s, f , k)= s× f ×∏k
i=1(1−s × ci)

(1− f ) + f ×∏k
i=1(1−s × ci)

. (3)

In Eq. (3), 0 ≤ f and 0 ≤ (1 − s × ci) for all i; then,
εresult(s, f , k) satisfies Eq. (4).

εresult(s, f , k) ≤ s × f ×∏k
i=1(1 − s × ci)

(1 − f )
. (4)

In Eq. (4), (1 − s × ci) ≤ (1 − s × cmin) for all i; then,
εresult(s, f , k) satisfies Eq. (5).

εresult(s, f , k) ≤ f
1 − f

× s(1 − s × cmin)k. (5)

In Eq. (5), Eq. (6) is satisfied since 0 ≤ f ≤ fmax.

εresult(s, f , k) ≤ εresult(s, fmax, k). (6)

Also, Eq. (7) is satisfied since s(1− s×cmin)k has a maximum

point at s = 1
cmin(1+k) . Here,

( k
1+k )k

1+k is strictly and asymptoti-

cally bounded from above by 1
ke , where e is Napier’s con-

stant [9].

s(1 − s × cmin)k ≤ 1
cmin(1 + k)

(
1 − 1

1 + k

)k

=
1

cmin(1 + k)

(
k

1 + k

)k

≤ 1
kecmin

(7)

From Eq. (7), Eq. (8) is satisfied between 0 ≤ s ≤ 1.

s(1−s × cmin)k ≤ min

(
1,max

(
1

kecmin
, (1−cmin)k

))
. (8)

Finally, we obtain the upper bound of εresult(s, f , k) as Eq. (9)
when k � 0 from Eqs. (5), (6) and (8).

εresult(s, f , k)

≤ fmax

1 − fmax
×min

(
1,max

(
1

kecmin
, (1−cmin)k

))
. (9)

From Eqs. (2) and (9), CWgen (w) is given by Eq. (10) as the
lower bound of the probability that a result returned by w is
correct for any s and f .

CWgen (w) = (10)⎧⎪⎪⎪⎨⎪⎪⎪⎩
1− fmax, if k=0,

1− fmax

1− fmax
×min

(
1,max

(
1

kecmin
, (1−cmin)k

))
, otherwise.

When the master uses imperfect spot-checking, the re-
liability condition ε ≤ εacc can be guaranteed by using
Eq. (10) instead of Eq. (1).

In the derivation of Eq. (10), we suppose that if a sabo-
teur distinguishes a spotter job, then it returns a correct re-
sult. This is quite natural behavior to avoid being caught
by the master. On the other hand, against this assumption,
some saboteurs may return erroneous results even if it dis-
tinguishes spotter jobs. Even in such situation, Eq. (10) is
applicable because it is derived based on the upper bound
of the probability of surviving spot-checking (1 − scmin in
Eq. (5)). Returning erroneous results for distinguished spot-
ter jobs reduces the probability of surviving spot-checking
but does not affect the upper bound.

3.3 Check-by-Voting

While the generalization of spot-checking allows the master
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to use imperfect checking, it also allows the master to uti-
lize a technique, referred to as check-by-voting in this pa-
per. The idea of check-by-voting is common to all voting
methods and summarized as follows. When a job is fin-
ished through a voting, a result in the majority result group
of the job is correct with a certain probability P. Here, by
supposing that the finished job is a spotter one, the worker
who returns the majority result can be assumed to survive
a checking (with accuracy c = P). On the other hand, the
worker who returns the minority result can be assumed as a
saboteur.

Although the idea of check-by-voting is well-known,
adapting the idea to credibility-based voting has a serious
problem to guarantee the computational correctness. That
is, the result of check-by-voting is imperfect; an erroneous
result becomes the majority with probability 1−P. A check-
by-voting is an imperfect checking with accuracy P.

Since the generalization of spot-checking allows to use
imperfect checking, we can use check-by-voting while guar-
anteeing the condition ε ≤ εacc. Although the actual value
of the probability P is unknown, the lower bound of P is
guaranteed in credibility-based voting (i.e. θ ≤ P). In the
case of check-by-voting, a saboteur survives a voting with
probability 1− sP. Hence, εresult(s, f , k) for check-by-voting
is given by

εresult(s, f , k) = s × f × (1 − sP)k

(1 − f ) + f × (1 − sP)k
. (11)

Equation (11) is the same as Eq. (3) in the sense that the
probability of surviving spot-checking is (1 − sP) instead
of (1 − sci). Other equations and the upper bound of
εresult(s, f , k) can be derived in the same way for spot-
checking except that P is bounded by θ. Thus, the credibility
of a worker who survives check-by-voting k times is given
by Eq. (12) by setting cmin = θ in Eq. (10).

CWcheck−by−voting (w) = (12)⎧⎪⎪⎪⎨⎪⎪⎪⎩
1− fmax, if k = 0,

1− fmax

1− fmax
×min

(
1,max

(
1

keθ
, (1−θ)k

))
, otherwise.

Using check-by-voting, the performance of credibility-
based voting can be improved by two reasons. The first rea-
son is that check-by-voting increases the number of check-
ing each worker gets. Since the results from non-saboteurs
tend to be majority ones, those workers can gain higher cred-
ibility, resulting in reduction of redundant job executions
and the computation time. The second one is that check-by-
voting allows the master to check workers without allocating
spotter jobs. Since spotter jobs are extra ones, the decrease
of allocating spotter jobs leads to smaller computation time.

Figure 2 shows the algorithm of check-by-voting. In
this algorithm, the states of “used” and “not used” are de-
fined for each result, whereas the states of “finished” and
“unfinished” are defined for each job. The state of result
represents whether the result is already used for evaluating
worker’s credibility in check-by-voting. To avoid duplicate

Fig. 2 Check-by-voting algorithm.

evaluation, only when the result is not used, the worker who
returns the majority result can gain the credibility.

In this algorithm, when a master collects a result of
job j from a worker, the master calls procedure check-by-
voting( j). First, the master calculates the credibility of job j
and marks j as finished if the credibility reaches the thresh-
old θ (lines 7–8). Let r j(wi) be the result of job j returned by
worker wi. When wi returns r j(wi), r j(wi) is marked as “not
used” for check-by-voting.

For all results of j (r j(w1), r j(w2), . . . ), the master re-
peats the checking process (lines 9–22). If r j(wi) is the
majority result of job j, the master assumes that worker wi

survives a spot-checking and increases the credibility of wi

(lines 11–13). On the other hand, if r j(wi) is minority, the
master blacklists wi and invalidate all results returned by wi

(lines 15–16). Let S (wi) be the set of jobs allocated to wi.
Since both updating credibility of wi and invalidating results
returned by wi affect the credibility of jobs in S (wi), the mas-
ter adds them into queue Q to for rechecking (lines 18–19).
Since the check-by-voting assumes each job allocation as
one spot-checking, the master marks the used result in the
check-by-voting to avoid duplicate evaluation of worker’s
credibility (line 20). After checking all results of j, there
may be some jobs in queue Q (line 25). As long as the queue
is not empty, the master repeats check-by-voting recursively
(lines 28–29).

Spot-checking and check-by-voting can be used simul-
taneously. In this case, the value of cmin in Eq. (10) is set
to the smaller value, either the lower bound of c or θ. The
value of k is the total number of spot-checking and check-
by-voting a worker survives.
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4. Performance Evaluation

4.1 Simulation Conditions

In this section, we evaluate the accuracy of proposed for-
mula Eq. (10) and the effectiveness of proposed check-by-
voting method through the simulation of VCs. First, in
Sect. 4.2.1, we compare error rates ε of credibility-based
voting using the original formula Eq. (1) with those using
the proposed formula Eq. (10). Error rates ε are evaluated
using the round-robin job scheduling method since it is orig-
inally employed in [6]. Then, in Sect. 4.2.2, we evaluate
the performance of credibility-based voting with check-by-
voting in terms of error rates ε and computation times T . Be-
cause computation time is highly dependent on job schedul-
ing algorithm, we employ three job scheduling algorithms:
the round-robin, the random and the ENR + ECJ [8] meth-
ods. The ENR+ECJ method [8] is known as an efficient job
scheduling method for credibility-based voting. Error rates
ε and computation times T are evaluated as the average of
1000 simulation results.

The parameters used in our simulation are shown in
Table 1. Because some parameters such as f and s are un-
known to the master and are uncontrollable, we use variant
values for such parameters to simulate various cases of VCs.
The upper limit of f , i.e. fmax, is set to 0.35 reflecting the
result of an experiment in a real VC environment [1]. Be-

Table 1 Simulation parameters.

# of jobs (N) 10000
# of workers (W) 100
faulty fraction ( f ) 0 ∼ fmax

upper limit of f ( fmax) 0.35
sabotage rate (s) 0 ∼ 1

checking accuracy (c) 0 ∼ 1
lower limit of c (cmin) 0 ∼ 1

acceptable error rate (εacc) 0.01, 0.05
spot-check rate (q) 0.1

(a) εacc = 0.05 (b) εacc = 0.01

Fig. 3 Error-rate ε vs. sabotage rate s for f = 0.35 and c = 0.1 (round-robin).

cause the optimal value of q depends on f and s [7], q is
set to 0.1 as in [6]. In addition, we employ the blacklist-
ing and the backtracking methods and assume that the back-
tracking method invalidates all results of jobs returned by
the detected saboteur even if the jobs are finished.

The simulator developed for this experiment follows
that in [6]. At the start of each iteration of simulation, we
create a list of W worker entries and randomly select f ×W
workers to be saboteurs. We then simulate a computation
done by these workers by going through the list in round-
robin manner. In each unit time, a worker contacts the mas-
ter to return a result (for the job it received in the previous
turn) and to get a new job. This assumes that all workers run
at the same speed.

4.2 Simulation Results

4.2.1 Error Rates of Original and Proposed Formula

Figure 3 shows error rate ε as a function of s. This figure
clearly shows that the error rates of credibility-based voting
with the original formula exceed the required rate εacc when
s becomes large. Since the value of s is unknown to the
master, this result indicates that the credibility-based voting
with the original formula can not guarantee the condition
ε ≤ εacc. This is true because the original formula assumes
that the spotter jobs are never distinguished by saboteurs,
while saboteurs in the simulator sometimes (c = 0.1 in this
case) distinguish them as in real VCs and gain improper
credibility. On the other hand, the error rate with the pro-
posed formula at cmin = 0.1 is less than εacc for any s. This
result indicates that the proposed formula enables the master
to calculate proper credibility of workers even if saboteurs
distinguish spotter jobs.

This figure shows that, when the condition cmin ≤ c
is not satisfied, the error rate may exceed εacc even if the
proposed formula is used. For example, in Fig. 3 (a), the
error rates in some cases exceed εacc = 0.05 when cmin =

0.9, 0.7, 0.5 and 0.3. This is true because the master gives
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(a) εacc = 0.05 (b) εacc = 0.01

Fig. 4 Error-rate ε vs. faulty fraction s f for s = 0.5 and c = 0.1 (round-robin).

(a) Error-rate ε (b) Computation time T

Fig. 5 Computation time T and error-rate ε vs. sabotage rate s for εacc = 0.01, f = 0.35 and c =
cmin = 0.8.

the credibility to workers based on cmin as shown in Eq. (10),
under the assumption that the unknown parameter c satisfies
cmin ≤ c. As shown in this figure, the error rate tends to
increase as cmin increases. Thus, when the lower bound of
c can not be estimated, it seems that cmin should be set to
smaller value to guarantee ε ≤ εacc for any situations.

Figure 4 shows error rate ε as a function of f . This fig-
ure also shows that the error rates with the original formula
may exceed εacc. Since error rate is proportional to the num-
ber of saboteurs f ×W and f is unknown to the master, the
condition ε ≤ εacc should be satisfied for any f . Here, the
error rate of VCs with the proposed formula at cmin = 0.1
satisfies ε ≤ εacc for any f , even if f = fmax. From Figs. 3
and 4, it is shown that the credibility-based voting with the
proposed formula can guarantee ε ≤ εacc for any s and f as
long as the condition cmin ≤ c is satisfied.

4.2.2 Improvement with Check-by-Voting

Figure 5 shows computation time T and error rate ε as a

function of s in cases with check-by-voting and without
check-by-voting. Figure 5 (a) shows that the error rates of
all methods are less than εacc for any s. This means, even
if check-by-voting is used, credibility-based voting with
the proposed formula guarantees the reliability condition
ε ≤ εacc. Figure 5 (b) shows that the computation times of
VCs with check-by-voting are decreased compared to those
without check-by-voting. This is true because workers can
gain higher credibility by check-by-voting in addition to the
spot-checking with rate q. For example, when s = 1, the
minimal computation time of VCs without check-by-voting
is 255 (ENR+ECJ), while that with check-by-voting is 180
(round-robin). Note that the ENR + ECJ method is the
fastest scheduling method in credibility-based voting with-
out check-by-voting. This result indicates that using check-
by-voting is more effective to improve the computation time
than devising a new job scheduling method without check-
by-voting.

Figure 6 shows error rate ε and computation time T
as a function of f in cases with check-by-voting and with-
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(a) Error-rate ε (b) Computation time T

Fig. 6 Computation time T and error-rate ε vs. faulty fraction f for εacc = 0.01, s = 0.05 and c =
cmin = 0.8.

(a) Error-rate ε (b) Computation time T

Fig. 7 Computation time T and error-rate ε vs. cmin for εacc = 0.01, f = 0.35, s = 0.05 and c = 0.1.

out check-by-voting. As f increases, the error rate of each
method increases because the number of erroneous results
returned by saboteurs increases proportionally to f . How-
ever, as shown in Fig. 6 (a), the error rates of all methods
are less than εacc as long as f is less than fmax = 0.35.
Figure 6 (b) shows that the computation times of VCs with
check-by-voting are decreased compared to those without
check-by-voting even if f = 0, that is, there are no sabo-
teurs. From Figs. 5 and 6, it is shown that check-by-voting
can decrease the computation time, while guaranteeing the
condition ε ≤ εacc for any s and f .

Figure 7 shows error rate ε and computation time T as
a function of cmin in cases with check-by-voting and without
check-by-voting. This figure also shows that the condition
ε ≤ εacc is satisfied for all methods, as long as the condition
cmin ≤ c = 0.1 is satisfied. Only when the condition cmin ≤ c
is not satisfied, error rate can exceed εacc (e.g. cmin = 1).

As shown in Figs. 3 and 7 (a), the error rate tends to
increase as cmin increases. This is true because the credibil-
ity of a worker given by a master is proportional to cmin as

shown in Eq. (10). When the master gives a saboteur larger
credibility, it increases the chance of accepting erroneous
results produced by the saboteur.

Figure 7 (b) shows that, as cmin increases, the compu-
tation time decreases. This is true because larger credibility
(given by larger cmin) reduces the mean number of results to
finish a job, resulting in smaller computation time to finish
all jobs. This result indicates that, by setting cmin larger as
much as possible (ideally cmin = c), we can minimize the
computation time while guaranteeing the condition ε ≤ εacc.
However, estimating the lower bound of c is a difficult prob-
lem because the actual value of c differs between saboteurs
and depends on several factors such as the frequency and
the number of spot-checking. Thus, we simply conclude in
this paper that; by setting cmin to very small value to satisfy
cmin ≤ c, we can guarantee the condition ε ≤ εacc even if c
is unknown. The optimization of the parameter cmin is re-
quired for the computation time minimization, and will be
discussed in other papers.
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5. Conclusion

In this paper, we generalize spot-checking by introduc-
ing probability c, i.e. the accuracy of spot-checking. This
generalization allows to use imperfect checking for spot-
checking-based mechanisms such as credibility-based vot-
ing. First, we develop a generalized formula of the credibil-
ity considering the probability c to guarantee the computa-
tional correctness even if spotter jobs may be distinguished.
The simulation results show that credibility-based voting
with the proposed formula always hold the required reliabil-
ity condition ε ≤ εacc. Next, we propose check-by-voting,
which utilize the result of each voting as an imperfect check-
ing to improve the performance of credibility-based voting.
The simulation results show that check-by-voting method
can improve the performance of VC systems, while guaran-
teeing the condition ε ≤ εacc for any parameters s and f .
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