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SUMMARY This paper proposes approaches to perform HW/SW
(Hardware/Software) partition and parallelization of computing-intensive
tasks of the H.264 HiP (High Profile) decoding algorithm on an embedded
coarse-grained reconfigurable multimedia system, called REMUS (REcon-
figurable MUltimedia System). Several techniques, such as MB (Macro-
Block) based parallelization, unfixed sub-block operation etc., are utilized
to speed up the decoding process, satisfying the requirements of real-time
and high quality H.264 applications. Tests show that the execution perfor-
mance of MC (Motion Compensation), deblocking, and IDCT-IQ (Inverse
Discrete Cosine Transform–Inverse Quantization) on REMUS is improved
by 60%, 73%, 88.5% in the typical case and 60%, 69%, 88.5% in the worst
case, respectively compared with that on XPP PACT (a commercial recon-
figurable processor). Compared with ASIC solutions, the performance of
MC is improved by 70%, 74% in the typical and in the worst case, respec-
tively, while those of Deblocking remain the same. As for IDCT IQ, the
performance is improved by 17% no matter in the typical or worst case. Re-
lying on the proposed techniques, 1080p@30 fps of H.264 HiP@ Level 4
decoding could be achieved on REMUS when utilizing a 200 MHz working
frequency.
key words: H.264, reconfigurable multimedia system, parallelization com-
putation, hardware/software partition

1. Introduction

With the development of the Internet and wireless devices,
interactive multimedia processing and high performance
mobile computing are becoming more and more important.
Currently, multi-standards (e.g. JPEG, MPEG-2, MPEG-4,
H.263, H.264, etc.) exist in the media processing market,
among which H.264, aiming at high-quality video content
and a low bit rate, requires much more computation than
most existing standards [1], [2]. It is impossible to meet
the real-time requirements when performing H.264 HiP
1080p@30 fps decoding purely by GPP [3] (General Pur-
pose Processor) and PDSP (Programmable Digital Signal
Processor) [4]. To address this issue, GPPs and PDSPs are
usually incorporated with hardware accelerators (i.e. ASIC
modules) to speed up the computing-intensive tasks. How-
ever, the diversification and continuous evolution of mul-
timedia algorithm standards and the seamless transition be-
tween various media processing algorithms pose higher flex-
ibility requirements for this approach. Hardware design is
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characterized by a long design cycle and high cost, making
it extremely difficult for hardware solutions to keep up with
the evolution of applications. A novel approach, reconfig-
urable computing, has recently become the premier focus of
both the academy and the industry, relying on its good trade-
off property between GPPs’ high flexibility and ASICs’ high
energy efficiency. Coarse-grained reconfigurable proces-
sors (XPP PACT [5], Morphosys [6], and ADRES [7]) have
proved to be efficient solutions to speed up media processing
applications.

A high concentration of computational complexity is
a prominent feature of multimedia algorithms, whose tasks
always consume the majority of execution time. In the
H.264 HiP decoding algorithm, the tasks of MC, De-
blocking, Intra prediction, IDCT-IQ, and entropy decod-
ing, such as CAVLC (Context-Adaptive Variable Length
Coding) and CABAC (Context-Adaptive Arithmetic Binary
Coding), consume most of the execution time, in which MC,
Deblocking, and IDCT-IQ together account for 76% of the
total execution time, as illustrated in Fig. 1. These three
tasks share the following properties in media processing al-
gorithms: MB-based operations, an intrinsic regular depen-
dence mechanism in inner MBs (all the data in one MB fol-
low the same computing regulation), and an independence
mechanism in different MBs (the data in different MBs is
unrelated, but the operations of different MBs are almost
identical). All of these features are suitable for reconfig-
urable computing, where functions are dynamically config-
ured into a PEA (Processing Element Array) at run-time and
carried out in parallel.

Current reconfigurable approaches, some [5], [6], [8]
only focus on speeding up the computing-intensive tasks
rather than speeding up the entire algorithm, while some
only focus on reducing the power consumption by optimiz-
ing memory access scheme [9]. Normally, a typical task
in reconfigurable computing can be divided into three sub-
tasks: configuration, data I/O, and calculation. According
to the statistics of this paper, the calculation sub-task only
accounts for a minor portion of the whole task, as illus-
trated in Fig. 2. Furthermore, algorithm parallelism has not
been analyzed and verified fully, either in these reconfig-
urable architectures or in ASIC solutions. For MC, XPP
PACT, platform-MC [10], and ASIC-MC [11] all use a fixed
block size (either 4 × 4 or 8 × 8) as the basic processing
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unit, rather than a variable block size that can adapt to dif-
ferent block size partitions. Consequently, these platforms
suffer from significant pressure of memory access. More-
over, sub-block parallelism is not available when utilizing
a fixed size method.

For Deblocking, although sub-block parallelism is
widely used on platforms such as XPP PACT and ASIC-
Deblocking [16], the efficiency is heavily limited by data de-
pendency residing in sub-blocks. For IDCT-IQ, XPP PACT
and ASSP-IDCT [17] only focus on the parallelism of intra-
blocks, while little attention is given to the parallelism of
inter-blocks.

In this paper, parallelization of computing-intensive
tasks of H.264 HiP decoding algorithms is implemented on
REMUS. The proposed parallelization methods include:
variable size block partition, unfixed sub-block operation,

Fig. 1 Distribution of algorithms’ computational complexity in H.264
HiP decoding (foreman).

Fig. 2 Timing chart of different sub-tasks on a reconfigurable system.

Table 1 Comparison of characteristics of reconfigurable systems.

and sub-block parallelization for MC, MB-based paral-
lelization for Deblocking and inter-blocks parallelization for
IDCT, etc. The proposed methods fully exploit the paral-
lelism of the computing-intensive algorithms, reduce redun-
dant data transmission and memory access, and therefore
greatly enhance execution efficiency. REMUS is a reconfig-
urable multi-processor SoC designed by our research group;
it consists of two major components: a host processor (im-
plemented by ARM1176JZ), which is in charge of the rel-
atively complex judgment of branch and procedure control,
and a PEA, which serves as a coprocessor responsible for
intensive and regular calculation. Table 1 shows a compar-
ison of some key characteristics between REMUS and the
other popular reconfigurable systems. Tests show that, with
the methods proposed in this paper, the performance of MC
is improved by 60%, Deblocking by 73%, and IDCT-IQ by
88.5% in the typical case and by 60%, 69% and 88.5% in
the worst case, compared with those of XPP PACT. Com-
pared with some ASIC solutions [11], [16], [17], the perfor-
mance of MC is improved by 70% in the typical case and
74% in the worst case, IDCT by 17% (both in the typical
and worst case), while those of Deblocking are nearly the
same. Relying on all these improvements, real-time decod-
ing (1920× 1080@30 fps) of H.264 HiP@ Level 4 could be
realized on REMUS when exploiting a 200 MHz working
frequency.

This paper analyzes the parallel characteristics of the
typical H.264 algorithm, proposes optimization methods
in Sect. 2, followed by verification of these methods on
REMUS in Sect. 3. Conclusions are discussed in Sect. 4.



GENG et al.: PARALLELIZATION OF COMPUTING-INTENSIVE TASKS OF THE H.264 HIGH PROFILE DECODING ALGORITHM
3225

2. Analysis and Optimization of Several Typical
Algorithms

2.1 MC

(1) Parallelism Analysis of MC

In order to achieve high decoding quality and a low bit rate,
MC in H.264 adopts more flexible and efficient technolo-
gies, such as TSVBS (tree structure variable block size),
SPI (sub-pixel interpolation), and MRF (multiple reference
frames) [2], [18]. However, these three technologies in-
crease the complexity of computing, memory access, and
control logic in the implementation of the H.264 decoder,
which makes MC a major bottleneck in real-time mobile or
high-resolution video applications. H.264 allows four basic
MB partition modes and four different sub-block combina-
tion modes, as shown in Fig. 3 (a). As for the sub-pixel
interpolation, the 6-tap filter is used for interpolating half-
pixels of luma and the average of two integer/half-pixels
for quarter-pixels of luma, while the bilinear interpolation
filter is used for eighth-pixels of chroma [18]. The 6-tap
filter requires that a total of (M + 5) × (N + 5) bytes of
reference data must be loaded for interpolation of quarter-
pixels in an M × N block of luma in the worst case, as
shown in Fig. 3 (b). The memory bandwidth becomes the
main problem for TSVBS and SPI. Because 4 × 4 is the
minimum partition granularity of MBs, many designs take
4 × 4 as the basic unit to support eight different kinds of
sub-block size. However, this method causes serious over-
head on memory access bandwidth: the smaller the partition
basis, the more redundant the reference data. Provided to
predict a luminance block of 8× 8 size, the reference data is
(8+ 5)× (8+ 5) = 169 bytes at the very least. If the calcula-
tion is based on the unit of 4 × 4 block, the reference data is
(4+5)×(4+5)×4 = 324 bytes, with repetitive reference data
as much as 155 bytes. Similarly, if the block size is 16 × 16,
the number of reference data and repetitive data is 441 bytes
and 855 bytes, respectively, with the repetitive data nearly
two times the valid data. If the reference data can be read
according to the partition size of MB, the efficiency will be
improved greatly.

Generally speaking, the process of MC can be par-
titioned into two parts: computing the reference address
and interpolation. The first part contains many judgments
of branch and irregular computation, which is very diffi-
cult to schedule. The second part has the characteristics
of intensive and regular calculation and relative data inde-
pendency, making parallelism possible, discussed below in
more detail:

(a) Regularity of calculation: Despite the tiny differ-
ence in interpolation of different fractional positions, the
calculations are all based on the 6-tap filter. Furthermore,
the steps of calculation are the same in each sub-block.

(b) Relative independency of data: In H.264, differ-
ent sub-blocks may have different reference frames, so the

Fig. 3 (a) MB partition model, (b) 4 × 4 block and reference frame,
(c) Luma 16 × 16 execute order.

calculation is independent among sub-blocks. Furthermore,
even in one sub-block, the filtering of one row is indepen-
dent from another. The same is true in column filtering.

(2) Optimization Methods of MC

According to the analysis in part (1), in the MC algorithm,
the part of irregular computation can be implemented by
software for efficient scheduling and the part of intensive
computation can be implemented by hardware for accelera-
tion. For the acceleration part, the technologies of variable
block size, inter-block parallelism, and pipeline can be ap-
plied to improve efficiency and reduce memory access.

First, because the fixed block size (4× 4 or 8× 8) lacks
flexibility, the method of variable block size will be taken to
improve the utilization of data.

Second, the steps of calculation are fixed when the
FPP (Fraction-Position Prediction) and the size of blocks
are fixed. However, the calculation order of sub-blocks can
be adjusted to improve efficiency, for example, putting sub-
blocks owning same FPP together, not necessarily strictly
following the order of the MB partition. In Fig. 3 (c), the
original order of execution is from 1 to 7, but the FPPs of
block0 and block3 are the same, so we can put the operation
of block0 and block3 together. Through this method, the
more complex of calculation (same FPPs of different sub-
blocks), the faster of implement.

Third, for the reason that the calculation of different
rows/columns is independent, the technology of pipeline can
also be employed to improve efficiency significantly.

2.2 Deblocking

(1) Parallelism Analysis of Deblocking

In H.264, the Deblocking filter [19] is used to decrease
blocking artifacts at block boundaries, which is caused by
block-based IDCT in intra- and inter-frame prediction error
coding, coarse IQ, and MC prediction filter. The high com-
putation complexity caused by the high self-adaptive char-
acteristic of the Deblocking algorithm makes it difficult to
be implemented to meet the requirements of real-time. The
coexistence of conditional checking and intensive calcula-
tion is a typical characteristic of Deblocking. Almost every
pixel has to be loaded from memory for conditional check-
ing, which leads to a massive memory access bandwidth and
consumes a large number of clock cycles.

Although a lot of uncertainty exists, the operation of
the Deblocking process can be divided into two steps: BS
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Fig. 4 (a) RP order, (b) SBP order, (c) FGP order.

(Boundary Strength; to determine the filter strength) selec-
tion and filter implementation. For one sub-block, the order
of the Deblocking filter is determined by data dependency.
For example, the left boundary data updated by the filter
will be used in the operation of right boundary filter, and the
upper boundary data will be used for the lower boundary. As
for one MB, horizontal filtering of vertical edges from left to
right is performed first, followed by vertical filtering of the
horizontal edges from top to bottom. Figure 4 (a) presents
vertical and horizontal boundaries in one MB; the operation
of the vertical/horizontal boundaries of every 4 × 4 block in
each MB is the same. The parallelism is difficult to explore
on the sub-block level because every boundary is interde-
pendent. But on the MB level, parallel methods are found as
follows:

(a) The operation of each sub-block is identical so that
they can be executed in parallel. But the correlation of data
determines the order of filtering. In addition, memory access
should also be taken into consideration.

(b) The vertical boundaries of vertically neighboring
sub-blocks are uncorrelated, and the horizontal boundaries
of horizontally adjacent sub-blocks are uncorrelated, too.
For example, as shown in Fig. 4 (a), the left boundary of sub-
block I-1 is uncorrelated to the left boundary of sub-block
II-3, and the top boundary of sub-block I-4 is uncorrelated to
the top boundary of sub-block III-7. So the parallelism can
be used when filtering the vertical or horizontal boundaries.

(c) The steps of the filtering operation are the same for
each boundary of the rows because data are uncorrelated be-
tween different rows. The same characteristic also exists in
the filtering operation of columns.

(2) Optimization Methods of Deblocking

From the parallelism analysis of part (1), several different
optimization methods can be considered:

(a) RP (Ranks Parallelism technology): Filtering of
both vertical boundaries and horizontal boundaries can be
pipelined. As shown in Fig. 4 (a), filtering of vertical bound-
aries (from a to d) is performed first, followed by that of
horizontal boundaries (e to h).

(b) SBP (Sub-Block Parallelism technology): In the
4:2:0 video format, 48 edges must be filtered (including both
luma and chroma). The filter order determines the efficiency
and memory access. The order complies with what is shown
in Fig. 4 (b) so as to maximize the utilization of memory.

(c) FGP (Fine-Grained Parallelism technology): Verti-
cal edges can be filtered based on the unit of row at first;

Fig. 5 (a) IDCT DFG for row, (b) IDCT DFG for column.

horizontal edges are filtered similarly in pipeline, as shown
in Fig. 4 (c). Compared to methods (a) and (b), method (c)
maximizes the utilization of parallelism of MB.

2.3 IDCT-IQ

(1) Parallelism Analysis of IDCT-IQ

IDCT-IQ has been used in many applications because of
its simple architecture and low data-bit requirement. The
whole operation (IDCT-IQ) can be divided into two parts:
IQ first, then IDCT.

The integer DCT only refers to integer arithmetic, such
as addition, subtraction, and shift, indicating low calculation
strength. The basic unit of IDCT transform is 4×4 sub-block
or 8 × 8. Taking IDCT 4 × 4 as an example, the calculation
can be described in Eq. (1):

Y=CXCT =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

X

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 2 1 1
1 1 −1 −2
1 −1 −1 2
1 −2 1 −1

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1)

The whole transforming can be realized in two steps:
row transforming (M = CX), then column transforming
(Y = MCT ). The IDCT of each row/column is the same, but
independent from other rows/columns; furthermore, differ-
ent sub-blocks can be disposed in parallel. These character-
istics make it possible to improve the computing efficiency.

(2) Optimization Methods of IDCT IQ

Based on the analysis of part (1), two methods can be used
to realize parallelism in IDCT-IQ:

(a) Taking the transform of a 4 × 4 block as an exam-
ple, the total operation can be divided into two parts: row
transforming first, then column transforming. The same cal-
culation steps are carried out among all rows, as shown in
Fig. 5 (a), and among all columns, as shown in Fig. 5 (b).

(b) The sixteen 4 × 4 blocks in an MB can be disposed
at the same time in parallel. So the total efficiency can be
improved greatly.

Based on the aforementioned analysis, although some
differences exist among these algorithms (MC, Deblocking,
IQ-IDCT), there are still some common aspects:

1) Relative independency between complex judgment
and intensive calculation

2) Intensive and regular calculation
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3) Relative independency of data
These characteristics fit well in the parallel operation and
pipeline technology.

3. Parallelization on REMUS

3.1 Experimental Environment

These typical algorithms (MC, Deblocking, IDCT-IQ) were
implemented on REMUS. Figure 6 (a) shows the architec-
ture of REMUS, including one host processor, two PEAs,
an EnD (Entropy Decoder), and some assistant modules,
such as interrupt controller, DMA (Direct Memory Access)
controller, and AXI2AXI (Advanced Extensible Interface)
bus bridge. Host processor, implemented by ARM1176JZ,
is a typical embedded RISC to carry out control-intensive
tasks. PEA is a powerful dynamic reconfigurable array,
where several different algorithms can be mapped into PEAs
concurrently and carried out independently to achieve high
performance. EnD is a configurable stream decoder, which
enables high performance on entropy decoding such as
CAVLC and CABAC.

The PEA consists of 256 PEs (Processing Elements)
organized as 4 PE8 × 8s, routers which can be restructured
through the context interface and data-path. PE8 × 8 is the
basic unit, consisting of four parts: DBI (Data Buffering
Interface), FCI (Fast Configuring Interface), PEs and TRs
(Temp Registers). Figure 6 (b) only shows one PE8× 8 unit.
The other three units have the same architecture as this one.

DBI is a flexible data exchange unit with asymmetric
FIFOs, which can prepare data from off-chip and on-chip
memories, as well as temp- data registers. FCI, controlled
by host processor, DMA, and PEs, takes charge of con-
trol flow. Context information used to configure FCI sup-
ports different kinds of applications, which can be updated

Fig. 6 (a) Architecture of REMUS, (b) PE array 8 × 8 simple diagram, (c) PE and PE’s function.

dynamically. Fast configuration techniques are adopted in
FCI for data parallelization, including Context Pre-fetching,
Context Prediction, and Partial Configuration. PE adopts the
generic ALU architecture and serves as the basic calculation
unit controlled by the context to realize different functions
which are listed in Fig. 6 (c). Routers transmit data between
different PE rows, point-to-point. TR, which has the same
number with the PE output registers, can collect the process-
ing results of PEs in the same row and feed the reserved data
into the input of PEs in the same column. TR also plays an
important role to combine four PE8×8s into one PEA16×16.
Horizontal scaling uses the shared TR array technology. As
shown in Fig. 6 (b), the left-up PE8 × 8 unit combines with
the right-up one by sharing 4 columns of temp registers.
Vertical expansion is simple, which uses a group of mul-
tiplexers (from the bottom router) to determine whether the
PE’s outputs are traveling circularly or straightly to the next
unit. By adopting these two kinds of scaling approaches,
REMUS processor can realize extension easily.

Flexibility of the PEA, as a primary characteristic, can
be observed in three ways: First, the function of the PEA
can be changed by dynamically switching contexts. Sec-
ond, PEs can perform the calculation in collaboration with
others or individually. Third, four sets of PE8×8 can be dy-
namically combined together according to the requirement
of data calculation so as to achieve algorithm-level paral-
lelism. For example, for some relatively complex algorithms
(such as Deblocking and MC), one PE8×8 is not big enough
to accommodate the calculation. Therefore, two or more
PE8× 8s can be combined together accordingly to carry out
this complex algorithm.

3.2 Implementing Algorithms on REMUS

Among above algorithms (MC, Deblocking, IDCT-IQ)
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Fig. 7 (a) 6-tap filter DFG, (b) 6-tap filter mapping pic, (c) bilinear filter
DFG, (d) bilinear filter mapping.

analysis, MC is the most typical algorithm because of its
inherent characteristics, such as intensive calculation, high
complexity and flexible control logic. Because of the limi-
tation of space, only MC is taken as an example to illustrate
the implementation procedures on REMUS according to the
analysis in Sect. 2.

The first step is the HW/SW partition. The process of
MC can be partitioned into two parts: computing the refer-
ence address and interpolation. The PEA is only suitable for
the intensive and regular calculation, so the PEA can exe-
cute interpolation and the host processor can execute com-
putation of the reference addresses.

The second step is to map interpolation (luma) onto
PEA. In this process, there are several strategies: First, in
order to make full use of pipeline technology, it is neces-
sary to break down the calculation of the algorithm into rel-
ative independent steps and partition the PEA. As shown in
Fig. 7 (a) and (b), the operation of the 6-tap filter can be di-
vided into 6 stages. Each stage occupies one cycle. Second,
it can take advantage of the sub-blocks parallelism because
of the independence among sub-blocks. Take Fig. 3 (c) as
an example: the operation of block0 and block1 is indepen-
dent, so it can calculate the prediction values of these two
blocks at the same time on the PEA. The PEA16 × 16s are
divided into two parts: the left side (16 × 8) completes the
calculation of block0, while the right side (16 × 8) com-
pletes block1. Figure 8 (b) and (c) shows calculations of
block0 and block1. With the technology of pipeline, we can
get the value in 15 cycles (block0) and 14 cycles (block1).
Third, the calculation order of sub-blocks can be adjusted.
For example, the original execution orders of Fig. 3 (c) is
from 1 to 7, but the FPPs of block0 and block3 are the same,
and the sequence can be arranged as follows: calculate the
value of block1 by the left side (16 × 8) of the PEA at first,
then block2 by dynamic configuration of the PEA. At the
same time, on the right side (16 × 8) of the PEA, block0
and block3 can be calculated together. So the calculation
value of MB, can be determined in 56 cycles (only calcu-
lation parts), adding the time of inner memory access (the
time of input/output data), configuration and switch context

Fig. 8 (a) PEA16 × 16, (b) 6-tap filter + average, (c) 6-tap filter.

of the PEA (12 cycles), the execution time is 96 cycles. It re-
duces 18 cycles compare to original order. Furthermore, the
more complex of the same FPPs in different sub-blocks, the
more time can be reduced. For example, if the FPP of block0
and block3 is (1/4, 2/4), changing the calculation order of
sub-blocks can reduce 1/3 time.

The third step is to map the bilinear filter (chroma) onto
PEA as follows: First, as with mapping luma on the PEA,
the calculation can be reasonably divided into 5 relatively
independent stages, as shown in Fig. 7 (c) and (d). Sec-
ond, on the level of MB, for different chroma sub-blocks,
the steps of calculation are similar. Making full use of
PEA16 × 16, the PEA16 × 16 can be divided into 4 parts—
four PE8 × 8s, with every part implementing the calculation
of one sub-block. Furthermore, in order to achieve a higher
efficiency, the 5 stages can be divided into 2 contexts: one
context for the first 4 stages and the other context for the
last stage. So the calculation values of the MB (chroma-Cb
and chroma-Cr) can be determined in 12 cycles (calculation
part).

To summarize, adding the time of inner memory access
(the time of input/output data), calculation and switching
context of the PEA (12 cycles), and utilizing the technology
of parallelism and dynamic switch context text technology,
in 4:2:0 format, the execution time of MB is 62 cycles at
best (not the situation of examples), 168 cycles at typical,
and 286 cycles at worst.

3.3 Implementing Results

Table 2 shows the MB execution results of the computing-
intensive algorithms (MC, Deblocking and IDCT-IQ) on
REMUS in the typical and worst case which are obtained
by running decades of H.264 HiP 1080p’s standard test se-
quences (note that all of the experimental cases are in YUV
4:2:0 formats). The dynamic reconfiguration technique is
used during the implementation of these three algorithms on
REMUS to reduce the execution time by making the paral-
lelization of calculation and reconfiguration, for the reason
that all of these algorithms are too complex to be disposed
into one context (Note: since the dynamic reconfiguration
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process and the computing process are overlapped, the dura-
tion of each dynamic reconfiguration is not listed in Table 2).
Table 3 shows the comparison results of these three algo-
rithms, on various architectures, which only contain the in-
tensive calculation of the following algorithms: interpola-
tion, boundaries filtering, and transform.

In Table 2, for MC, the host processor implements
the irregular calculation of reference addresses, while the
PEA performs regular and intensive interpolation. In the
worst case, operation which contains complex calculation
will consume 3×4 (luma)+2 (chroma) = 14 sets of context
and 6× 4 (luma)+ 2× 2 (chroma) = 28 times of inner mem-
ory access. For Deblocking, the host processor executes the
derivation of thresholds α and β, while the PEA executes
the calculation of BS and the boundaries filter. The two
sets of context correspond to BS = 4 and BS = 1, 2, 3 and
one set corresponds to the boundaries filter. For IDCT-IQ,
the host processor is in charge of data transform, and the
PEA executes the integral transform. Considering the size
of PEA16 × 16 and the independent characteristic of sub-
blocks, 4 different 4× 4 sub-blocks can be calculated in par-

Table 2 Results of complete algorithms.

Table 3 Comparison of different architecture results (cycle).

allel by utilizing the technology of pipeline. The same is
true for IDCT-IQ 8 × 8, except for some complexity. Fur-
thermore, the execution time of both MC and Deblocking
in the typical case is less than that in the worst case (about
13∼40% reduction) for the reason that in the worst case, dif-
ferent complexities and situations, such as the I/P/B frames
processing and MB partition, have to be taken into account,
resulting in considerable computing work-load. But for the
IDCT IQ, the calculation steps are relatively fixed, therefore
the execution time in the typical case is the same as that in
the worst case.

In Table 3, for MC, the platform [10]-MC, ASIC [11]-
MC, and XPP-PACT [4]-MC are all based on fixed block
size. The efficiency of transmission will be limited when
the partition is larger than this basic unit. By taking the
method of variable block size according to MB partitions,
the technology of parallelism (as mentioned in Sect. 2.1)
and rapid calculation, the efficiency is improved by 60%
compared with XPP-MC in the typical and worst case;
compared with the ASIC MC, the efficiency is improved
by 70% in the typical case and 74% in the worst case;
Compared with platform-MC, the efficiency is improved by
77.6% in the worst case. For Deblocking (intensive cal-
culation part-bounder filter), XPP-Deblocking and ASIC-
Deblocking [16] take traditional filtering steps, as men-
tioned in Sect. 2.2 methods(b)-SBP. On REMUS, FGP,
the Sect. 2.2 methods(c)-FGP, is utilized. The efficiency
is improved by 73% in the typical case and 69% in the
worst case compared with XPP-PACT-Deblocking. For
IDCT-IQ 4 × 4, XPP-PACT, Platform [10] -IDCT-IQ, and
ASSP [17]-IDCT do not consider the parallelism among
sub-blocks, but REMUS employs the method of parallel op-
eration. The efficiency improved by 88.5% compared with
XPP PACT, about 89.5% compared with Platform-IDCT-IQ,
and about 17% compared with ASSP. From the frequency’s
perspective, REMUS can meet the requirements of H.264
HiP 1080p@30 fps at the 200 MHz working frequency by
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making full use of parallel computing and efficient storage
control mechanism. To reach the same performance, XPP
has to adopt the 400 MHz working frequency and utilize
a 120 MB reconfigurable buffer.

4. Conclusions

To achieve high performance parallel computing on recon-
figurable system, it is very important to analyze the intrinsic
parallelism of the algorithms, not only between host proces-
sor and PEA, but also among the different PEs. In order to
realize the real-time decoding of H.264 HiP on REMUS,
this paper examined the parallelization of MC, Deblock-
ing, and IDCT-IQ, and proposed parallelization methods for
these algorithms, such as variable size block partition, un-
fixed sub-block operation, sub-block-based parallelization
for MC, MB-based parallelization for Deblocking and sub-
blocks-based parallelization for IDCT. Furthermore, the
proposed parallelization technology and HW/SW partition
method could also be applied to MPEG2 and AVS (Audio
Video coding Standard) [20] decoding. Tests showed that
1080p@30 fps of H.264 HiP@ Level 4, 1080p@30 fps of
AVS Part-2 Jizhun Profile@ Level 4, and 1080p@30 fps of
MPEG-2 MP@ High level decoding could be achieved on
REMUS when exploiting a 200 MHz working frequency.
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