
3232
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010

PAPER Special Section on Parallel and Distributed Computing and Networking

Parallel DFA Architecture for Ultra High Throughput DFA-Based
Pattern Matching∗

Yi TANG†, Student Member, Junchen JIANG†, Xiaofei WANG††, Chengchen HU†,
Bin LIU†a), Nonmembers, and Zhijia CHEN†, Student Member

SUMMARY Multi-pattern matching is a key technique for implement-
ing network security applications such as Network Intrusion Detection/
Protection Systems (NIDS/NIPSes) where every packet is inspected against
tens of thousands of predefined attack signatures written in regular expres-
sions (regexes). To this end, Deterministic Finite Automaton (DFA) is
widely used for multi-regex matching, but existing DFA-based researches
have claimed high throughput at an expense of extremely high memory
cost, so fail to be employed in devices such as high-speed routers and em-
bedded systems where the available memory is quite limited. In this pa-
per, we propose a parallel architecture of DFA called Parallel DFA (PDFA)
taking advantage of the large amount of concurrent flows to increase the
throughput with nearly no extra memory cost. The basic idea is to selec-
tively store the underlying DFA in memory modules that can be accessed
in parallel. To explore its potential parallelism we intensively study DFA-
split schemes from both state and transition points in this paper. The per-
formance of our approach in both the average cases and the worst cases
is analyzed, optimized and evaluated by numerical results. The evaluation
shows that we obtain an average speedup of 100 times compared with tra-
ditional DFA-based matching approach.
key words: Deterministic Finite Automata (DFA), Deep Packet Inspection
(DPI), regular expression, parallel matching, speedup

1. Introduction

Nowadays, Network Intrusion Detection/Protection Sys-
tems (NIDS/NIPSes) are deployed to safe-guard the secu-
rity of network operations. By inspecting the header and
payload of a packet against attack signatures, NIDS/NIPSes
are capable of discovering the invasion. As most of the
known attacks can be represented by a set of regular expres-
sions (regexes), multi-regex matching becomes one of the
key components in NIDS/NIPSes design. Meanwhile, more
and more security detections or application identifications
are performed at embedded systems and network processors
where the available memory resource is quite limited. Gen-
erally speaking, the two major metrics of matching engines
are throughput and memory cost. Hence, designing a multi-
regex matching scheme with increased throughput and quite
low memory cost leads to a great challenge both in algo-
rithm design and in hardware implementation.

Traditionally, Deterministic Finite Automaton (DFA)

Manuscript received February 5, 2010.
Manuscript revised June 14, 2010.
†The authors are with the Department of Computer Science

and Technology, Tsinghua University, Beijing, China.
††The author is with School of Electronic Engineering, Dublin

City University, Ireland.
∗This research is partially published in ICC 2010.

a) E-mail: liub@tsinghua.edu.cn
DOI: 10.1587/transinf.E93.D.3232

is widely used for multi-regex matching in NIDS/NIPSes
for its constant matching speed even in the worst case.
However, for byte-at-a-cycle processing, the throughput is
strictly proportional to the memory access frequency. For
example, an NIDS dealing with 10 Gb/s requires a mem-
ory access frequency of at least 1.25 GHz (for 8-bit data
bus), which is impractical with the current technologies.
To raise throughput, two accepted approaches are pipelin-
ing and parallelism. Considering the large amount of back-
tracking transitions in DFA, pipeline architecture is greatly
restrained. Alternatively, exploiting parallelism, including
intra-flow and inter-flow parallelism, which checks multi-
ple characters per clock cycle is a promising solution. Cur-
rent academic researches mostly focus on intra-flow paral-
lelism [1]–[3], they still suffer from the memory explosion
or other restraints on increasing throughput.

Approaches utilizing intra-flow parallelism consume
multiple characters in one single flow per cycle. However, to
ensure that a pattern starts or ends at any position of the flow
leads to a huge extra memory consumption (severe transi-
tion explosion) and overmuch hardware logic, which limits
their scalability. Actually, most of the existing inter-flow ap-
proaches can only achieve less than 5 times [1] speedup with
reasonable extra memory expense.

Alternatively, exploiting inter-flow parallelism which
processes characters of concurrent flows is seemly a more
practical approach for accelerating matching procedure.
Currently, the magnitude of concurrent flows in network is
large [4], [5]. In [4], the experiments on traces from OC-48
links where the statistical time scale is configured as 10 mi-
crosecond, shows that the number of concurrent flows is at a
level of several hundreds. Meanwhile, with the limitation of
hardware chip’s pins and available logic resource, the par-
allel processing units in FPGA or Network processor with
external SRAM or DRAM chips will not too much (< 100).
Hence, compared with available hardware parallel resource,
the flow number is larger, suggesting a potential improve-
ment on accelerating matching through utilizing inter-flow
parallelism.

Currently, a commonly agreed upon standard for eval-
uating inter-flow matching architecture is still missing, lead-
ing to unfair comparisons and designs lacking in generality
or scalability. For a better discussion, we address the three
major metrics of performance as follows:

1. Low Memory Duplication indicates that contents are

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

TANG et al.: PARALLEL DFA ARCHITECTURE FOR ULTRA HIGH THROUGHPUT DFA-BASED PATTERN MATCHING
3233

selectively stored in parallel memories, rather than sim-
ply copied in memories, making the memory consump-
tion sublinear to speedup.

2. High throughput should be achieved with full utiliza-
tion on the parallel recourses.

3. Short Latency guarantees balanced processing speed
among flows being matched in parallel.

Recently developed inter-flow approaches mainly fo-
cus on compressing single non-accelerated matching en-
gine and exploiting inter-flow parallelism by quite simple
duplication with little compression ratio. Therefore given
the memory size, their speedup is strictly bounded by the
compression ratio failing to deeply exploit inter-flow paral-
lelism.

Aiming at making the best use of inter-flow parallelism
regarding the above criteria and problems, we propose a
parallel storage architecture of DFA called parallel DFA
(PDFA) in this paper which selectively stores the underly-
ing DFA in memory devices which can be accessed concur-
rently. Different from conventional DFA taking transition
as the basic storage unit while transitions of the same state
are stored as a whole in hardware, we investigate how to
divide DFA using a hierarchical notion: DFA is initially di-
vided into different groups of states and further into groups
of transitions. Correspondingly, we give two schemes for
states assignment (SA) and transitions assignment (TA) re-
spectively. For state-level assignment, different states would
be assigned into various groups which would be accessed
independently during processing. And for transition-level
DFA assignment, transitions with different character classes
are stored in different memory modules to exploit paral-
lelism. Sharing fundamentally the same idea of storing tran-
sition in multiple memories the two schemes can be applied
at the same time.

PDFA makes little change to the conventional DFA
structure and can be thereby combined with existing com-
pression techniques (see Sect. 2). Multiple flows can be
processed simultaneously once their memory accesses have
no conflict. Consequently, a high speedup is achievable
when matching large amount of concurrent flows, mean-
while its space complexity is no more than one compressed
instance. In practice, proper construction of PDFA leads to
less memory-access conflict among concurrently processed
flows and thereby achieves high overall throughput. In other
words, Low memory duplication and increased throughput
shall be both satisfied under PDFA architecture. We split
the DFA into transitions and at one extreme, we can store
each of them in each memory module so that any two flows
can be concurrently processed without conflict for a higher
speedup, while at another extreme, we should store transi-
tions in as less memory modules as possible (in fact, we
store most transitions in one memory module) so that the
total space consumption is sublinear to the memory num-
ber and the management is simpler. Therefore essentially,
the devise of PDFA shall balance the two extreme cases. To
this end, we bound the speedup (Sect. 4) which would later

be shown determined by the distribution of current states,
we analyze the probability distribution of current states by
treating DFA as a Markov chain. Furthermore, fairness be-
tween flows will be taken into account to reduce the latency,
since impolitic flow scheduling might cause problems like
flow starvation.

Specifically, our contributions are listed as follows:

1. We propose a parallel DFA representation to exploit the
inter-flow parallelism with little memory duplication.
The speedup in both the average cases and the worst
cases is theoretically discussed.

2. Based on a series of theoretical analysis, we propose a
fast and effective DFA construction algorithm to fully
utilize the inter-flow parallelism. Experimental evalua-
tion shows that more than one hundred times speedup
can be achievable with less than one-tenth the memory
size compared with conventional approaches.

3. For a good flow scheduling, we devise a preliminary
chip design for PDFA where a delicately designed
multi-flow scheduling guarantees a balanced inter-flow
processing.

The remainder of this paper is organized as follows:
Section 2 goes over the previous works. Section 3 revis-
its the traditional DFA-based approaches, presents our ap-
proach by motivating examples and gives the problem state-
ments on specific algorithm design. Section 4 addresses the
speedup and Sect. 5 further devises an effective construction
algorithm. Section 6 provides the chip design with schedul-
ing policy. Section 7 presents the experimental results and
Sect. 8 concludes the paper.

2. Related Work and Background

Many works on accelerating DFA-based pattern (regular ex-
pression) matching are proposed in recent years. Generally,
they are classified into inter-flow and intra-flow parallelism
from the view point of parallel speedup.

Intra-flow parallelism consumes multiple characters
of a single flow in each clock cycle. These methods don’t
take the advantage of huge number of flows. However, there
are also some problems:

1. As they don’t utilize the characteristics of multiple
flows, the extra price for speedup obtained within one
flow is expensive, it limits the intra-flow speedup (usu-
ally less than 5).

2. Sensible to the length of pattern. Their use of bloom-
filter or TCAM as match engine is hard to extend to
regex, because the length of matched strings of certain
regex rules is implicit. TCAM or bloom-filter would
not take ambiguous streams as input.

Two kinds of memory explosions would occur in multi-
character based DFA matching: The first is the transition
explosion, which is introduced to consume multiple charac-
ters (as a block) in each transition. Such algorithms lead
to an exponential number (Θ(Σl), l is the block length) of

3234
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010

(a) Single-character string matching. (b) Transition explosion in block-oriented
multi-character DFA matching for intra-flow
parallel speedup.

(c) Duplication and transition explosion in
block-oriented multi-character DFA matching
for intra-flow parallel speedup.

Fig. 1 Different string matching schemes for pattern “abcb” on alphabet set {a,b,c}.

transitions in each state. Figure 1 (b) and 1 (c) illustrate the
cases where each state has 32 transitions. The second is the
DFA replication (see Fig. 1 (c), which duplicates DFA into
multiple copies to ensure the so-called byte alignment re-
quirement, i.e., every character of the input stream should
have the chance to be examined as the first character of the
pattern. Since the first character of the pattern can occur in
any location of the input stream, the byte alignment problem
is inherent in existing block-oriented algorithms.

Furthermore, most proposed intra-flow approaches
mainly target on problems of string matching [1]–[3], whose
expressiveness is incompetent to NIDS or DPI ruleset. The
obstacle of adapting them to regular expression matching
involves that (i) regular expression does not have the fea-
tures of string pattern such as explicit length and content
(mainly due to wildcards and sparks), so parallel facilities
for string matching such as bloom-filter or TCAM become
useless; and that (ii) the extra memory price for speedup is
expensive which limits the scalability of intra-flow speedup
approaches.

In the state-of-the-art [6], the authors raise the through-
put of regular expression matching by expanding the alpha-
bet set. This produces an exponential increase in memory
usage (since the cardinality of the alphabet is now squared).
Though they propose several heuristics to mitigate the mem-
ory blow-up, the speedup as well as the throughput is very
limited.

Inter-flow parallelism accelerates pattern matching
through exploiting the parallel recourse. Recently proposed
approaches claim a high throughput through simply dupli-
cating and compressing single matching instance. Tradi-
tional inter-flow speedup approaches just duplicate the DFA
with multiple copies and store in different memory modules
for multiple flows matching. In their approaches, the mem-
ory storage is overlapping with each other and they ignore
the features of different flows.

Existing inter-flow approaches still rest on the du-
plication of DFA, they focus on compressing single non-
accelerated DFA matching engine and utilize inter-flow par-
allelism through simple duplication. Transition compres-
sion approaches achieve a high compression ratio by greatly
reducing per state transitions. D2FA [7] acknowledged as
the original work in this approach, is proposed to compress
DFA by applying default transition, but at a cost of access-

ing DFA multiple times per input character. Based on it,
later works including [8], [9] improve the worst case perfor-
mance.

State compression technique is first utilized in [10],
where pattern grouping is introduced to deflating state ex-
plosion. [11] performs a partial NFA-to-DFA conversion to
prevent state explosion. The state-of-the-art work named
XFA [12], [13] uses auxiliary memory to reduce the DFA
state explosion and achieves a great reduction ratio. How-
ever, it is not suitable for real-time network applications
for its significant startup overhead. These above mentioned
DFA-based works can be easily employed in our approach
with the similar compression ratios since their fundamen-
tal structures can be completely preserved. Our proposed
method does not conflict with above works. The method of
PDFA also can be exploited on the compressed DFA with
above approaches. As the average speedup of the proposed
parallel architecture is mainly influenced by the distribution
of current states. So most DFA compression approaches will
not affect the throughput of our proposed method.

3. Exploiting DFA Parallelism

In this section, we introduce two schemes of exploiting par-
allelism, state assignment scheme (SA scheme) and transi-
tion assignment scheme (TA scheme). We begin with two
motivation examples, and further give the problem state-
ment of DFA matching speedup.

3.1 State Assignment (SA) Scheme

We depict a standard DFA recognizing pattern set
{[aA]+b+,[aA]+c+,b+[aA]+,b+[cC],dd+} over input char-
acter set {a,A,b,B,c,C,d,D} in Fig. 2 (a). Traditional DFA-
based approach is implemented by storing the depicted DFA
in a single memory module. During the processing, one
current state is maintained within the memory module for
each current flow, and one byte can be processed per cycle
by accessing the memory module once to update the corre-
sponding current state. However, when matching multiple
input flows, conventional storage architecture of DFA has to
process them sequentially, since the updating of each flow’s
current state needs a memory access.

Alternatively, Fig. 2 (b) shows an instance of our stor-

TANG et al.: PARALLEL DFA ARCHITECTURE FOR ULTRA HIGH THROUGHPUT DFA-BASED PATTERN MATCHING
3235

(a) A complete DFA of pattern set {[aA]+b+,
[aA]+c+, b+[aA]+, b+[cC], dd+} over input
character set {a,A,b,B,c,C,d,D} (transitions to
state 0 is ignored for simplicity).

(b) Storing all states in k = 3 modules together
with their transitions.

(c) The process of matching three flow seg-
ments S TR1 = . . .Aab . . . , S TR2 = . . .bac . . . ,
S TR3 = . . .ddbc

Fig. 2 The State Assignment’s motivating example and its implementation.

(a) A complete DFA of pattern set {[aA]+b+,
[aA]+c+, b+[aA]+, b+[cC], dd+} over input
character set {a,A,b,B,c,C,d,D} (transitions to
state 0 is ignored for simplicity).

(b) Storing and visiting each state on differ-
ent memory modules according to transition
classes, here give the splitting sample on state
0.

(c) The process of matching three flow seg-
ments S TR1 = . . .cad . . . , S TR2 = . . .dbca
. . . , S TR3 = . . .aCdc

Fig. 3 The Transition Assignment’s motivating example and its implementation.

age scheme, which stores states in independent memory
modules with no duplication so that the total memory cost
keeps unchanged. When processing k concurrent flows, it
maintains k current states, and each of the states is updated
by processing one character of the corresponding flow. The
memory modules containing at least one current state are
called active modules. In each cycle, an active module is
able to process one current state, and the processed flow is
called active flow. So the number of active flows is equal
to the number of active modules. As an example, Fig. 2 (b)
demonstrates one way to store states in three memory mod-
ules. In Fig. 2 (c), we illustrate the matching process on
three flow segment S TR1, S TR2, S TR3. Initially, three cur-
rent states are 0, 8 and 2, located in different modules, so
a full speedup is obtained in the first cycle. In the second
cycle, access conflict occurs when updating current states
of S TR1 and S TR2 (state 1 and 7 are both in module one),
so one of them is chosen to be processed and therefore the
second cycle achieves a speedup of two. During the four
cycles shown in Fig. 2 (c), our approach processes ten bytes,
compared with the four bytes processed by the traditional
method.

3.2 Transition Assignment (TA) Scheme

In this section, we will exploit the parallelism between tran-
sitions by assigning different transitions to given memory
modules, called TA scheme, for processing enhancement.
As the Fig. 3 shows, the above mentioned sample pattern set
{[aA]+b+,[aA]+c+,b+[aA]+,b+[cC],dd+} over input char-
acter set {a,A,b,B,c,C,d,D} is given here. Our TA scheme is
based on a classical technique called alphabet set classifica-
tion whose original form is introduced as follows. Typical
DFA (e.g., Fig. 2 (a)) has 256 next states for each state, since
there are 256 characters in alphabet for ASCII. In practice,
DFA generator unquestionably does not hold 256 entries for
each state; instead, for most generators like JFlex [14], they
perform classifications for transitions so that transitions with
same character would be classified into one class shown in
Fig. 3 (a). For instance, ‘A’ and ‘a’ have the same next hop
for any states in DFA, so they are classified into one class
encoded by 1.

Based on alphabet classification, we divide the transi-
tion set of each state into multiple class-sets, of which the
one encoded i consists of transitions belonging to alphabet

3236
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010

class i. Figure 3 (b) depicts the result of TA scheme on the
same standard DFA of Fig. 2 (a). Notice that state 1 has six
transitions being preserved in 3 memory modules according
to the labeled character on each transition. For any class-set
i, TA scheme stores all transitions belonging to it into the
same memory module, forming one DFA called sub-DFA
where each state has one single transition labeled class i. In
this match system, the contents of any two memory mod-
ules do not overlap implying that no extra memory cost is
introduced for parallel speedup. When receiving one char-
acter, the matching system dispatches it into the correspond-
ing sub-DFA labeled with the class containing the charac-
ter. Sequentially, for multiple flows, they can be matched
simultaneously once the incoming characters are not con-
flicted with each other (conflict when characters belong to
the same class-set). Figure 3 (c) illustrates the matching pro-
cess on three flow segments S TR1, S TR2, S TR3 under TA
scheme. Initially, three current states are 0’s, the first three
input characters are c,d,a, they do not conflict with each
other causing a full speedup in the first cycle. In the second
cycle, a,b are in the same class-set, so one of them is cho-
sen to be processed and therefore the second cycle achieves
a speedup of two.

In conclusion, we refer to a DFA stored in TA scheme
or SA scheme described previously as a Parallel DFA
(PDFA). As the motivating example shows, no extra infor-
mation is stored in PDFA compared with the conventional
one. Furthermore, PDFA makes no change to the typical
structure of DFA as well as the processing on each flow.
For easy implementation, PDFA requires that all transitions
of class-set i are stored in one memory module. In other
words, if two flows’ current characters are of the identical
class and then they would be sent into the same sub-DFA
stored in one memory module. Also the definition of an ac-
tive module is formally defined as any memory module that
receives at least one character to process.

3.3 Problem Statement

In PDFA, the speedup equals to the number of active mod-
ules determined by characters in input flows as well as by
the allocation of states in different modules. Since we have
no control over input flows, our first target is to allocate
states, as well as transitions, of the original DFA so that a
substantially large amount of active modules would exist in
each cycle. Moreover, how to handle the access conflicts
between current states within one active module and how
to prevent flow starvation make it indispensable to design a
flow scheduling for PDFA. We regard the above mentioned
two problems to two aspects respectively, where the tran-
sition assignment problem as well as the state allocation is
decided in pre-computing phase while scheduling directly
involves the selection among conflicting current states dur-
ing running phase. We resolve the two problems in Sect. 4, 5
and Sect. 6 respectively.

4. Analyzing Speedup

Speedup of the PDFA is mainly influenced by the distribu-
tion of current states in different modules and further the
distribution of current characters in various classes. Con-
sequently, it is necessary to address the possibility of each
state being the current state under one single flow (Here cur-
rent state denotes the state being visited after reading a char-
acter). Then we will study the expected number of classes
containing at least one current character.

4.1 A Brief Markovian Analysis of DFA Under Single
Flow

The detailed analysis on the characteristic of traffic flow is
not the main focus of this work, so we only provide an brief
overview. Note that the current state in DFA is determinis-
tic given the input sequence of characters. For modeling the
character sequences in various real-world flows, we chose
to consider “language-independent” statistical modeling of
data flows best exemplified by the well known n-gram anal-
ysis. Generally speaking, given a sequence xi, (i = 0, 1, . . .),
n-gram predicts xi based on xi−1, . . . , xi−n. The method is
well understood and effective. 1-gram is the most simpli-
fied version, and suffices to model the character distribution
in most flow environments. In other words, a statistically
stationary distribution of characters in any place of flow is
guaranteed. For detailed treatment of this subject, the reader
can refer to [15].

Given a DFA (Q,Σ, δ, q0, F), where Q = {q0, . . . , qN},
Σ, δ, q0 and F refer to the state set, the input character set,
the transition function, the initial state, and the accept state
set respectively. Of a certain input flow T = t0, t1, . . ., we
denote the current state sequence with X = x0, x1, . . ., where
x0 = q0 and xn+1 = δ(xn, tn), n = 0, 1, So the possibility
of current state transferring from qi to q j in the nth step is
P(n)

i j = Pr(xn+1 = q j|xn = qi) =
∑

c:q j=δ(qi,c) Pr(tn = c).
Based on the flow modeling, we can assume the sta-

tionary distribution Pr(tn = c), n ∈ Z+ and denote it as D(c).
Then P(n)

i j =
∑

q j=δ(qi,c) D(c) = Pi j. Consequently, if we con-
sider the DFA as a Markov chain over a finite state machine,
the transition possibility P(n)

i j between qi and q j is indepen-
dent with n which means that the DFA model here is a time-
homogeneous Markov chain. Actually, large DFA can be
seen as a nondecomposable Markov chain, whose states are
all recurrent states, so a unique limiting probability distribu-
tion vector (stationary distribution) π = (P(q1), . . . , P(qN))
exists, where P(qi) refers to the probability of state qi being
the current state. π satisfies the equation π = πM where ma-
trix M = (Pi j) is called transition matrix. For minute discus-
sion on periodicity and decomposability of Markov chain in
a large finite state machine, the reader can refer to [16].

4.2 Average Speedup with SA Scheme

The analysis of speedup under multiple flows involves a syn-

TANG et al.: PARALLEL DFA ARCHITECTURE FOR ULTRA HIGH THROUGHPUT DFA-BASED PATTERN MATCHING
3237

thesis upon the probability distribution of current state un-
der single flow. In Sect. 4.1, we address the existence of a
unique limiting probability distribution of current state un-
der single flow which is statistically reliable when process-
ing large data flows. As an example in Fig. 2 (a), the lim-
iting distribution of the DFA in the motivating example of
Fig. 2 (a) is computed as below (we assume D(c) = 1/8 for
each input characters c without loss of generality):

π = πM

= π

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4/8 2/8 1/8 0 1/8 0 0 0 0
3/8 2/8 1/8 0 0 1/8 0 1/8 0
4/8 2/8 0 1/8 1/8 0 0 0 0
4/8 2/8 0 1/8 1/8 0 0 0 0
2/8 0 1/8 0 1/8 0 2/8 0 2/8
3/8 2/8 1/8 0 1/8 1/8 0 0 0
4/8 2/8 1/8 0 1/8 0 0 0 0
2/8 0 1/8 0 0 0 2/8 1/8 2/8
3/8 0 1/8 0 0 1/8 0 1/8 2/8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
π = (0.433, 0.208, 0.109, 0.015, 0.089, 0.035,

0.031, 0.035, 0.041)

where M is the transition matrix. The value in M is calcu-
lated as the probability from one state to another state. For
example, there are 2 transitions from state 0 to state 1, and
the total outgoing transitions from state 0 is 8. Hence, the
probability from state 0 to state 1 is 2/8. M stores all states
in k distinct memory modules Q1, . . . ,Qk, then we have

Theorem 1: When matching one single flow, the limiting
probability of memory module Qj containing the current
state is P(Qj) =

∑
qi∈Q j

P(qi), where P(qi) is the stationary
possibility of state qi.

It can be inferred that
∑k

j=1 P(Qj) = 1. Given r flows (r
current states), we denote the probability that t current states
being state qi (i = 1, . . . ,N) in the nth cycle as P(n)

t (qi). Then
the expectation of the speedup S is

E(S) = lim
n→∞

k∑
j=1

∏
qi∈Q j

(1 − P(n)
0 (qi)) (1)

where 1 − P(n)
0 (qi) is the expectation of qi being at least

one current state in the nth cycle. In each cycle, any ac-
tive module can process one current state, and new current
states might transmit to it from the other modules (includ-
ing itself). We consider the number (denoted as ni) of new
coming current states to qi, then the probability

Pr(ni = m) =
∑

Q′⊆Q,|Q′ |=m

A(Q′)B(Q′) (2)

where A(Q′) =
∏

q j∈Q′(1 − P(n)
0 (q j))Pji is the possibility of

all states in Q′ transmitting their current states to qi, and
B(Q′) =

∏
q j�Q′(P

(n)
0 (q j)+ (1− P(n)

0 (q j))(1− Pji)) is the pos-
sibility of all states not in Q′ transmit no current state to qi.

P(n+1)
t (qi)=P(n)

0 (qi)Pr(ni= t)+
t∑

s=0

P(n)
s+1(qi)Pr(ni= t−s−1)

(3)

According to Eq. (1), (2) and (3), we have the following

theorem: F(E(S)) = E(S) −∑k
i=1

(
1 − 1

αE(S)
i

)
= 0 where αi =(

1
(1−P(Qi))r +r(1

P(Qi)−1)
)
/(1−P(Qi)). Instead of solving the equation,

we deduce the factors to raise E(S). Note that, when E(S) =
0, the left side is larger than zero. So the solution of E(S) is
bigger when the differential coefficient over E(S) of the left
side is smaller. By analyzing the differential coefficient we
have the following theorem:

Theorem 2:

F′(E(S)) =
k∑

i=1

⎛⎜⎜⎜⎜⎜⎝P(Qi) − 1

αE(S)
i

lnαi

⎞⎟⎟⎟⎟⎟⎠ =
k∑

i=1

H(P(Qi))

(4)

and H is a convex function on P(Qi).

Given that
∑k

j=1 P(Qj) = 1 (see Theorem 1), the more
balanced the distribution of P(Qi) is, the larger the expecta-
tion of speedup can be achieved.

4.3 Average Speedup with TA Scheme

Average speedup with TA scheme refers to the number of
modules accepting at least one character. The issue here is
very similar with that of SA scheme, yet it is much more
simple. As mentioned in Sect. 4.1, we assume a distribution
over the set of alphabet classes {C1, . . . ,Ct}, and denote the
probability of Ci with P(Ci). Now given the number of con-
cerned flows n, the theorem below provides the expectation
E(S) of speedup here.

Theorem 3:

E(S) = t

⎛⎜⎜⎜⎜⎜⎝1 −
t∑

i=1

P(Ci)t+n−2((P(Ci) − 1
t)∏t

j=1,i� j(P(Ci) − P(C j))

⎞⎟⎟⎟⎟⎟⎠ (5)

Here, S denotes the speedup value and E(S) is the expecta-
tion of the speedup. P(Ci) is the probability of class-set Ci

containing the current input character and t is the number of
class set.

Proof 1: Let function sign(x) be 1 if x > 0 and 0 if x = 0,
and E(S) = E(

∑t
i=1 sign(xi)) =

∑t
i=1 E(sign(xi)) under the

condition
∑t

i=1 xi = n where xi is the number of current input
characters in class Ci. Note that E(sign(xi)) = 1−Pr(xi = 0).
If xi = x, the probability of a specific solution (x1, . . . , xt) of∑t

j=1, j�i x j = n − x is
∏t

j=1, j�i P(C j)x j . Sum them up, we get
the probability of xi = x, that is

Pr(xi = x) = P(Ci)
x

∑
x1+...+xt=n

t∏
j=1, j�i

P(C j)
x j (6)

which is the coefficient α(i)
n−x of un−x in the polynomial

3238
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010

∏t
j=1, j�i

1
1−P(C j)u

=
∑∞

i=0 α
(i)
i ui. So

E(S) =
t∑

i=1

E(sign(xi)) =
t∑

i=1

(1 − Pr(xi = 0))

= t −
t∑

i=1

α(i)
n = t − αn (7)

where αn is the coefficient of un in polynomial

t∑
i=1

t∏
j=1, j�i

1
1 − P(C j)u

=
t −∑t

i=1 P(Ci)u∏t
i=1(1 − P(Ci)u)

(8)

We give a lemma to compute αn:

Lemma 4:

c∏
i=1

1
1 − aix

=

c∑
i=1

ai
c−1∏c

j=1,i� j(ai − a j)
· 1

1 − aix
(9)

Proof 2: See Appendix.

From the lemma,

αn = t
t∑

i=1

P(Ci)t−1∏t
j=1,i� j(P(Ci) − P(C j))

P(Ci)
n

−
t∑

i=1

P(Ci)
t∑

i=1

P(Ci)t−1∏t
j=1,i� j(P(Ci) − P(C j))

P(Ci)
n−1

=

t∑
i=1

P(Ci)t+n−2((tP(Ci) − 1)∏t
j=1,i� j(P(Ci) − P(C j))

(10)

which indicates the theorem.

Theorem 5: For two possibility distributions on t classes:
P(Ci) and P′(Ci) for i = 1, . . . , t only different in two classes,
i.e., P(Cs) < P′(Cs) < P′(Ct) < P(Ct) and P(Ci) =
P′(Ci), i � s, t, and let E(S) and E′(S) be the expectation
of speedup under two distributions. Then E(S) < E′(S)

Proof 3:

1
t

(E′ − E) =
t∑

i=1

P(Ci)t+n−2((P(Ci) − 1
t)∏t

j=1,i� j(P(Ci) − P(C j))

−
t∑

i=1

P′(Ci)
t+n−2((P′(Ci) − 1

t)∏t
j=1,i� j(P

′(Ci) − P′(C j))

= W0 +Wx +Wy (11)

where W0 =
∑t

i=1,i�x,y
P(Ci)t+n−2((P(Ci)− 1

t)∏t
j=1,i� j(P(Ci)−P(C j))

−
∑t

i=1,i�x,y
P′(Ci)

t+n−2((P′(Ci)− 1
t)∏t

j=1,i� j(P
′(Ci)−P′(C j))

and

Wi =
P(Ci)t+n−2((P(Ci)− 1

t)∏t
j=1, j�i(P(Ci)−P(C j))

−
P′(Ci)

t+n−2((P′(Ci)− 1
t)∏t

j=1, j�i(P
′(Ci)−P′(C j))

, i = x, y

Considering that P(Cx)− P(Cy) > P′(Cx)− P′(Cy) > 0,
it is trivial to have W0 +Wx +Wy > 0.

4.4 Bounding Speedup in Worst Cases

We bound the speedup theoretically in this subsection. The
speedup in our approach as discussed previously, is the num-
ber of active modules. There are two cases that would lead
to the system containing very few active modules. One is
that there are few concurrent flows in the system and the
other is that a large number of concurrent states are coex-
isting in a few modules. Since in most time, the network
contains flows in abundance, we only consider the latter. If
a module Qi whose probability of being an active module is
P(Qi), the probability of T current states co-existing in Qi is
P(Qi)T . In the next section, we will propose a state alloca-
tion algorithm, which guarantees that P(Qi) < 2

k 	 1 where
k is the number of modules. Given P(Qi) 	 1, P(Qi)T

will sharply decrease when T increases. So large amount
of states blocking in one module is relatively a small proba-
bility event in our approach.

To sum up, we have seen that to reach a higher speedup
ratio, it is always beneficial to balance the possibilities of
multiple memory modules being the active module as bal-
anced as possible. This requires an elaborate design on how
the states and transitions are assigned. In the next section,
we would show the detailed SA and TA scheme.

5. Refined SA and TA Scheme

The state assignment and transition assignment are decided
during the pre-computation. The limiting distribution π =
(P(q1), . . . , P(qN)) must be computed beforehand. Unfortu-
nately, traditional method (such as Cramer method) to com-
pute π by π = πM costs a time complexity of O(N·N!), while
for SA scheme N is the number of states which is very large
and for TA scheme N is the number of character classes.
Alternatively, we introduce another approximating method
which significantly reduces the time complexity to O(N2).
Initially, π(0) = (1, . . . , 1), and π(n+1) = π(n)M. Exponen-
tially ergodic property of states shows that |p(n)

i − P(qi)| ≤
(1 − Nδ)n where δ = min(Pi j : 1 ≤ i, j ≤ N). We de-
fine the “distance” between π(n) and π as d(n) = |π(n) − π| =(∑N

i=1(p(n)
i − P(qi))2

) 1
2 < N

1
2 (1 − Nδ)n where 1 − Nδ 	 1.

So in finite steps, the result is sufficiently approximating to
π.

Now, we start to design the SA and TA scheme.
According to Theorem 2, our aim is to make P(Qi) =∑

q∈Qi
P(q), i = 1, . . . , k as balanced as possible. In more de-

tail, we assume a “deviation” ε and restrict that |P(Qi)− 1
k | <

ε. The Algorithm 1 is designed to meet this purpose. The
key step is to store state qi whose P(qi) > ε for t times.
When storing PDFA in memory modules, if the next state
(denoted as q) of certain transition is stored in t memory
modules, we randomly choose one of them to store and the
probability of each state is thereby P(qi)

t < ε (in line 4). To
bound the extra memory of state duplication, we denote the
number of state qi with P(qi) satisfying jε ≥ P(qi) > (j−1)ε

TANG et al.: PARALLEL DFA ARCHITECTURE FOR ULTRA HIGH THROUGHPUT DFA-BASED PATTERN MATCHING
3239

Algorithm 1 Allocating N states in k modules so that
|P(Qi) − 1

k | < ε
1: procedure Allocation(q1, . . . , qN , k, ε)
2: N′ ← 0
3: for i = 1, . . . ,N do
4: t ←
 P(qi)

ε � � the probability of each state P(qi)
t < ε

5: q′N′+1 ← qi,. . . ,q′N′+t ← qi

6: N′ ← N′ + t
7: end for
8: for j = 1, . . . , k do
9: Q j ← ∅, P(Q j)← 0

10: while P(Q j) < 1
k , i ≤ N′ do

11: Q j ← Q j
⋃{qi}

12: P(Q j)← P(Q j) + P(qi)
13: i← i + 1
14: end while
15: end for
16: return Q1, . . . ,Qk

17: end procedure

as a j, then the total number of states is N′ =
∑N

j=1 ja j =

N +
∑N

j=1(j − 1)a j < N + 1
ε

∑N
i=1 P(qi) = N + 1

ε
. Generally,

it would suffice to set 1
k = 10ε, and then the upper bound

of new adding states N′ − N is 10k(∼ 103) compared with
N(∼ 106). Hence, the extra memory is negligible even in the
worst case.

6. Chip Design and Flow Scheduling of PDFA

We present a preliminary chip design of our matching sys-
tem in Fig. 4. The overall structure follows the formal DFA
matching engine manner. The input packets of flows are
parsed into header (sent to Session Table) and content (sent
to Packet Buffer). Then Session Table maps the packets to
flows by parsing their headers and keeps the packets within
each flow in their arrival order. Input packets sent to Pro-
cessing Module are first buffered in a certain Char FIFO in
Active Flow Buffer (AFB). Processing Module matches the
contents in AFB (depicted in detail later), reports the match-
ing results and feeds back to Session Table when a FIFO in
AFB is empty. Then Session Table informs Packet Buffer
whether Processing Module can receive data (empty FIFO
exists in AFB).

The PDFA is stored in k memory modules which pro-
cess contents of different packets buffered in r char FIFOs
in parallel. We deploy r registers for each memory module.
The ith register always receives the (char, state) pair from ith
FIFO (buffering the content of the ith flow). In each cycle,
every active module chooses one current state using round
robin manner from its r registers to process. The memory
modules producing no next state send default signs back and
all FIFOs without feedback are set “hold”. The round robin
processing guarantees that all current states would be pro-
cessed within at most r rounds. The upper bound of time
that one flow is delayed in a certain module is the number
of current states being just in this module. As analyzed in
subsection 4.4, such delay will be very small when P(Qi) is
small for each module Qi.

Fig. 4 The on-chip design for fast pattern matching and flow scheduling
using PDFA.

7. Evaluation of Performance

We evaluate the performance of our approach on the latest
ruleset from Snort [17] and L7-filter [18] where all patterns
are written in regular expressions. The patterns are first
compiled into standard DFAs using the set splitting tech-
niques proposed by Yu et al. in [10]. It splits the pattern
set into multiple subsets so that each subset creates a DFA
which can be fit into the memory size. For DFA of each sub-
set, we apply state allocation algorithm to assign states into
k memory modules. We plot the result under various num-
ber of modules k and ε = 1

10k in Table 1. The table indicates
that when k increases from 80 to 140, the total number of
states stored of PDFA increases a little and even the theoret-
ical upper bound of increments is negligible (< 3%). When
storing the PDFA, we employ one of the most acknowledged
DFA compression techniques, D2FA, to compress the mem-
ory size of PDFA.

The runtime test is conducted on 10 GB live traffic
traces from campus gateway of Tsinghua University and a
randomly generated trace. We create the random trace ac-
cording to the 1-gram characteristic of flows mentioned in
Sect. 4.1. The increases of speedup under given number
of modules and various flows are plotted in Fig. 5 (a) and
Fig. 5 (b). It is evident from the plots that as we increase
the number of concurrent flows, the overall speedup scales
up. Moreover, when the number of concurrent flows m in-
creases to about m ≈ 3k, the inter-flow parallelism is almost
fully exploited (the speedup almost reaches the upper bound
represented by dashed lines).

For the purpose of comparison, we display in Fig. 5 (c)
and Fig. 5 (d) the time and space performance of PDFA
together with D2FA [7] and table-compressed DFA [9] on
Snort ruleset [17] and L7-filter ruleset [18] under the real-
world trace. In the two plots, the x-axis (memory usage)
and y-axis (throughput) increase on a log scale. The dashed
line represents the throughput of the largest instance of orig-

3240
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010

(a) average speedup k = 100 (b) average speedup k = 120 (c) time-space performance under
Snort ruleset (k: from 100 to 150)

(d) time-space performance under
L7-filter ruleset (k: from 100 to 150)

Fig. 5 Performance evaluation: (a), (b) depict the average speedup with given number of modules k
under various number of buffered flows; (c), (d) illustrate the time-space trade-offs of PDFA in real traces
evaluation compared with D2FA and traditional DFA compression techniques (table compression).

Table 1 The number of states in PDFA using DFA allocation algorithm
on rulesets of L7-filter and Snort.

L7-filter 80 100 120 140
(modules)

Original DFA 51274 51274 51274 51274
PDFA 51450 51485 51517 51532

Upper bound 51535 51814 52108 52501
Snort 80 100 120 140

(modules)
Original DFA 720398 720398 720398 720398

PDFA 720450 720624 720720 721540
Upper bound 720511 720939 721210 721546

inal DFA if it can be fit into memory modules. With sin-
gle matching instance, a high parallel speedup is obtainable
with PDFA while there is little memory duplication (see Ta-
ble 1) and other compression techniques can be employed.
The points representing D2FA and Table-compressed DFA
illustrate trade-offs between space benefits and expenses on
time. Meanwhile, the points labeling PDFA under various
module number k (from 100 to 150) delineate a nearly un-
compromising large speedup with little memory cost. It
can be indicated that Table-compressed DFA is worse than
PDFA in throughput and memory size. The plots also reveal
that PDFA achieves high throughput compared with D2FA
while their memory sizes are very similar.

8. Conclusion

In this paper, our proposed parallelism architecture of DFA
called PDFA takes the advantage of hardware parallelism as
well as the large amount of flows in today’s network envi-
ronment to achieve a high parallel speedup. Such speedup is
obtained with little extra cost compared with current intra-
flow parallel methods. Theoretical analysis and experimen-
tal evaluation both show a good performance of PDFA on
average situation. Even under worst case traffic, as analyzed
in Sect. 4.4 and Sect. 6, the increment of memory size or the
reduction of throughput PDFA is negligible.

Acknowledgement

This work is supported by NSFC (60625201, 60873250,
60903182, 61073171), 973 project (2007CB310702),

Tsinghua University Initiative Scientific Research Program
and open project of State Key Laboratory of Networking and
Switching Technology (SKLNST-2008-1-05).

References

[1] N. Hua, H. Song, and T. Lakshman, “Variable-stride multi-pattern
matching for scalable deep packet inspection,” Proc. INFOCOM,
2009.

[2] S. Dharmapurikar and J.W. Lockwood, “Fast and scalable pattern
matching for network intrusion detection engines,” IEEE J. Sel. Ar-
eas Commun., vol.24, no.10, pp.1781–1792, 2006.

[3] H. Lu, K. Zheng, B. Liu, X. Zhang, and Y. Liu, “A memory-efficient
parallel string matching architecture for high-speed intrusion detec-
tion,” IEEE J. Sel. Areas Commun., vol.24, no.10, pp.1793–1804,
2006.

[4] C. Hu, Y. Tang, X. Chen, and B. Liu, “Per-flow queueing by dynamic
queue sharing,” Proc. INFOCOM, 2007.

[5] A. Kortebi, L. Muscariello, S. Oueslati, and J. Roberts, “Evaluating
the number of active flows in a scheduler realizing fair statistical
bandwidth sharing,” Proc. ACM SIGMETRICS, 2005.

[6] B.C. Brodie, D.E. Taylor, and R.K. Cytron, “A scalable architec-
ture for high-throughput regular-expression pattern matching,” Proc.
ISCA, 2006.

[7] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, “Algo-
rithms to accelerate multiple regular expressions matching for deep
packet inspection,” Proc. ACM SIGCOMM, 2007.

[8] S. Kumar, J. Turner, and J. Williams, “Advanced algorithms for fast
and scalable deep packet inspection,” Proc. ANCS, 2006.

[9] M. Becchi and P. Crowley, “An improved algorithm to accelerate
regular expression evaluation,” Proc. ANCS, 2007.

[10] F. Yu, Z. Chen, Y. Diao, T.V. Lakshman, and R.H. Katz, “Fast and
memory-efficient regular expression matching for deep packet in-
spection,” Proc. ANCS, 2006.

[11] M. Becchi and P. Crowley, “A hybrid finite automaton for practical
deep packet inspection,” Proc. CoNEXT, 2007.

[12] R. Smith, C. Estan, and S. Jha, “Xfas: Faster signature matching
with extended automata,” IEEE Symposium on Security and Privacy
(Oakland), 2008.

[13] R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating the big bang:
Fast and scalable deep packet inspection with extended finite au-
tomata,” Proc. ACM SIGCOMM, 2008.

[14] “Jflex—The fast scanner generator for java,” http://jflex.de/
[15] K. Wang and S.J. Stolfo, “Anomalous payload-based network intru-

sion detection,” Proc. 7th International Symposium on Recent Ad-
vances in Intrusion Detection (RAID), 2004.

[16] G.D. Hachtel, E. Macii, A. Pardo, and F. Somenzi, “Markovian anal-
ysis of large finite state machines,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol.15, no.12, pp.1479–1493, 1996.

[17] Snort. http://www.snort.org/

TANG et al.: PARALLEL DFA ARCHITECTURE FOR ULTRA HIGH THROUGHPUT DFA-BASED PATTERN MATCHING
3241

[18] “Application layer packet classifier for linux,”
http://l7-filter.sourceforge.net/

Appendix

Lemma1:

c∏
i=1

1
1 − aix

=

c∑
i=1

ai
c−1∏c

j=1,i� j(ai − a j)
· 1

1 − aix
(A· 1)

Proof : The lemma would be proved by inducting c. Initially,
when c = 2, it is trivial.

If the equation holds with certain c, we compute the
left sides of (4) with c + 1.

c+1∏
i=1

1
1 − aix

=

⎛⎜⎜⎜⎜⎜⎝
c∑

i=1

ai
c−1∏c

j=1,i� j(ai − a j)
· 1

1 − aix

⎞⎟⎟⎟⎟⎟⎠ · 1
1 − ac+1x

=

c∑
i=1

ai
c−1∏c

j=1,i� j(ai − a j)
· 1

(1 − aix)(1 − ac+1x)

=

c∑
i=1

ai
c−1∏c

j=1,i� j(ai − a j)

·
(

ai

ai − ac+1
· 1

1 − aix
+

ac+1

ac+1 − ai
· 1

1 − aix

)

=

c∑
i=1

ai
c∏c+1

j=1,i� j(ai − a j)
· 1

1 − aix

+

c∑
i=1

ai
c−1∏c

j=1,i� j(ai − a j)
ac+1

ac+1 − ai
· 1

1 − ac+1x

(A· 2)

To induct the (5) to (4) under c + 1, we must prove that

c∑
i=1

ai
c−1∏c

j=1,i� j(ai − a j)
ac+1

ai − ac+1
+

ac+1
c∏c

j=1(ai − ac+1)
= 0

(A· 3)

It is equivalent with

c+1∑
i=1

ai
c−1∏c+1

j=1,i� j(ai − a j)
= 0 (A· 4)

We use induction again to prove (9). Actually, we seek
to prove a stronger equation: ∀t > c, there is

t∑
i=1

ai
c−1∏t

j=1,i� j(ai − a j)
= 0 (A· 5)

We induct with c. When c = 1, it is trivial. Suppose
that (9) holds under a certain c, c − 1, . . . , 1, we define that

g(x1, . . . , xt) �
t∑

i=1

xi
c−1∏t

j=1,i� j(xi − x j)
= 0, t > c (A· 6)

So we have,

g(a1, . . . , at) = 0 (A· 7)

g(a1, . . . , at−1, at+1) = 0 (A· 8)

. . . (A· 9)

g(a2, . . . , at+1) = 0 (A· 10)

(A· 11)

Adding them up, we get:

0 =
t+1∑
i=1

ac−1
i

∑t+1
j=1,i� j(ai − a j)∏t+1

j=1,i� j(xi − x j)

=

t+1∑
i=1

ac−1
i

∑t+1
j=1(ai − a j)∏t+1

j=1,i� j(xi − x j)

=

t+1∑
i=1

ac
i∏t+1

j=1,i� j(xi − x j)

−
⎛⎜⎜⎜⎜⎜⎜⎝

t+1∑
j=1

a j

⎞⎟⎟⎟⎟⎟⎟⎠
t+1∑
i=1

ac−1
i∏t+1

j=1,i� j(xi − x j)

=

t+1∑
i=1

ac
i∏t+1

j=1,i� j(xi − x j)
(A· 12)

Yi Tang was born in 1983. He received his
B.S. degree from Department of Computer Sci-
ence, Northwestern Polytechnical University,
Xi’an, China, in 2005; He is a Ph.D. Candi-
date at Department of Computer Science and
Technology, Tsinghua University, China. His
research area is in Deep Packet Classification,
Web Security, Network Intrusion Detection.

Junchen Jiang was born in 1988. He is
a undergraduate student at Department of Com-
puter Science and Technology, Tsinghua Uni-
versity. His research area is in Deep Packet
Classification, Traffic Management.

3242
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010

Xiaofei Wang was born in 1982. He is a
Ph.D. Candidate at School of Electronic Engi-
neering of Dublin City University, Ireland. His
research area is in Deep Packet Classification,
P2P detection, Traffic Management.

Chengchen Hu was born in 1981. He re-
ceived his Ph.D. degree from the Department
of Computer Science and Technology, Tsinghua
University, Beijing, China, in 2008. He is cur-
rently an assistant research professor in the de-
partment of computer science and technology of
Tsinghua University. His research interests in-
clude high performance routers, traffic manage-
ment and network measurement.

Bin Liu was born in 1964. He received
his Ph.D. degree in the Department of Com-
puter Science and Engineering from Northwest-
ern Polytechnical University, Xiän, China, in
1993. Currently, He is a Full Professor in the
Department of Computer Science and Technol-
ogy, Tsinghua University. His current research
areas include network processors, traffic mea-
surement and management, high performance
switches/routers, and high speed network secu-
rity. Bin Liu has received numerous awards

from China including the Distinguished Young Scholar of China.

Zhijia Chen was born in 1982. He is a
Ph.D. student at Computer Science department
of Tsinghua University, China. He is a visit-
ing student at school of engineering of Stanford
University in Spring 2007 and visiting scholar in
CS Department of Hong Kong UST in 2008. His
research area is in content distribution networks
and P2P networks.

