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Optimal Gaussian Kernel Parameter Selection for SVM Classifier

Xu YANG†a), Student Member, HuiLin XIONG†, and Xin YANG†, Nonmembers

SUMMARY The performance of the kernel-based learning algorithms,
such as SVM, depends heavily on the proper choice of the kernel param-
eter. It is desirable for the kernel machines to work on the optimal kernel
parameter that adapts well to the input data and the learning tasks. In this
paper, we present a novel method for selecting Gaussian kernel parame-
ter by maximizing a class separability criterion, which measures the data
distribution in the kernel-induced feature space, and is invariant under any
non-singular linear transformation. The experimental results show that both
the class separability of the data in the kernel-induced feature space and the
classification performance of the SVM classifier are improved by using the
optimal kernel parameter.
key words: kernel optimization, model selection, kernel parameter selec-
tion, support vector machines, pattern recognition

1. Introduction

The “kernel method” is well established as a way of nonlin-
ear generalization of the linear machines, e.g. KPCA, KDA
and SVM [1], by mapping the input data X into a high-
dimensional feature space F, φ : X → F, where the lin-
ear machines perform. The map φ is implicitly presented by
specifying a kernel function as the dot product between each
pair of points in F. It is often assumed that the distribution
of the mapped data in the feature space is more appropriate
to the linear algorithms than that in the original space. How-
ever, this is not always the case, and a lot of researches [2]–
[9] have shown that the performance of kernel based learn-
ing algorithms depends heavily on the kernel selection. It
is desirable for the kernel machines to find a way that could
automatically choose an optimal kernel.

The goal of kernel selection is to find a kernel which
minimizes the generalization error of the corresponding
classifier. Unfortunately, the error rate is not an explicit
function of the kernel, so the problem of kernel selection is
usually tackled by cross validation, which usually takes an
exhaustive search on every possible values of a pre-defined
discrete set. This may be time-consuming, and furthermore,
the kernel selected in this way is usually sub-optimal. In
literatures, the research concerning kernel selection focuses
on approximating the error rate with an explicit continuous
measure, so that the task could be considered within the
framework of a tractable mathematic optimization problem.
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This is also known as the “kernel optimization” problem.
In [2], the optimal kernel for KPCA is optimized by max-
imizing a quadratic cost function with respect to eigenval-
ues, which measures the variances deviation of the principal
components. In [3], a measure, called kernel-alignment, is
proposed to evaluate the degree of the agreement between
a kernel matrix and the expected target kernel matrix, and
the theoretical analysis proves that a high kernel alignment
value corresponds to the low generalization error bound of
a Parzen windows classifier. In [4], both the kernel align-
ment and the maximal margin measures are adopted and the
kernel optimization is achieved by the Semi-Definite Pro-
gramming technique. In [5], a more complicated measure,
the radius-margin bound, is proposed and a gradient based
method is used to select the optimal kernel parameters au-
tomatically for Support Vector Machine (SVM) classifier.
Xiong et al. [6] firstly propose to optimize the kernel func-
tion by using a class separability measure. This measure
is defined as the ratio between the trace of the between-
class scatter matrix and that of the within-class scatter ma-
trix, which corresponds to the J4 criterion in [10]. This
measure is also used latter by Yeung et al. [7] as the crite-
rion to optimize the coefficients of a recombination kernel
matrix, and further generalized by Chen et al. [8] to cope
with the kernel optimization of the multimodally distributed
data. Although convenient for mathematical handling the
data in the high-dimensional feature space, the J4 criterion
has the disadvantage of being dependent on the coordinate
system [10]. Recently, Sekiguchi et al. [9] select the optimal
kernel parameter for KDA by maximizing the ratio of the
within-class scatter matrix to the between-class scatter ma-
trix. In their optimization scheme, they first project all the
samples into a subspace of the feature space using the em-
pirical kernel map [11], and then, evolve the optimization in
this finite-dimensional sbuspace. They show that both the
kernel optimization and the KDA learning can be expressed
in an explicit form in this sub-space .

In this paper, we propose an alternative method to learn
the Gaussian kernel parameter by maximizing the class sep-
arability of the mapped data in the kernel-induced feature
space. This criterion is similar to the commonly used Fisher
criterion [10], which is invariant under any non-singular lin-
ear transformation. We maximize the criterion by using a
standard gradient descent approach, which is performed im-
plicitly by specifying the inner product between each pair of
data points rather than by giving their corrdinates explicitly.
The Gaussian kernel learned by this method can implicitly
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distribute the data in the feature space in a favorable way for
the task of classification. Experimental results are encour-
aging in comparison with the cross-validation method.

The paper is organized as follows. In Sect. 2, the tra-
ditional scatter-matrix-based criterion is reviewed, and then
we show how it is generalized in the kernel-induced fea-
ture space, and utilized efficiently as a measure to choose
the Gaussian kernel parameter for SVM classifier. Sec-
tion 3 presents the experimental results on the benchmark
data sets. Finally, concluding remarks and future work are
given in Sect. 4.

2. Proposed Kernel Optimization Method

SVM classifiers work by constructing a hyperplane in
the kernel-induced feature space with the largest distance,
called margin, between the nearest support vectors of dif-
ferent data classes. According to the Vapnik-Chervonenkis
theory [1], the larger the margin is, the lower the generaliza-
tion error of the classifier is. Since the kernel optimization
using the Fisher criterion can make different data classes in
the kernel-induced feature space well separated, that is with
a relatively larger margin, the kernel parameter obtained by
the Fisher criterion usually leads to the best performance of
the SVM classifier.

2.1 Scatter-Matrix-Based Class Separability Criterion

Let X denote the input data set, which is a subset of Rd,
and Y = {−1,+1} the corresponding class labels. The input-
output pairs (xi, yi), where xi ∈ X and yi ∈ Y (i = 1, . . . , n),
constitute the whole sample set. The number of samples
in class C j (class label equals l1 = −1 or l2 = +1) is
n j, ( j = 1, 2), where n = n1 + n2. Let mj =

1
n j

∑
yi=l j

xi be

the mean vector of class j and m = 1
n

∑n
i=1 xi be the global

mean vector. The between-class scatter matrix S b and the
within-class scatter matrix S w are defined as

S b =
1
n

2∑
j=1

n j

(
mj − m

) (
mj − m

)T
(1)

S w =
1
n

2∑
j=1

∑
yi=l j

(
xi − mj

) (
xi − mj

)T
(2)

We adopt the Fisher criterion J1 = Tr
(
S −1
w S b

)
, where Tr (·)

denotes the trace of a square matrix, to measure the class
separability of the data. This measure is independent on
the coordinate system, and invariant under any non-singular
linear transformation.

2.2 Regularized Class Separability Criterion in the Kernel-
Induced Feature Space

The kernel function kγ
(
xi, x j

)
=

〈
φ (xi) , φ

(
x j

)〉
, where γ is

the kernel parameter, determins the mapping φ (·), and more-
over, implicitly determins the distribution of the mapped

data in the kernel-induced feature space. Therefore, we
can derive the class separability criterion as the function
of the kernel parameter. Replacing x by its image φ(x) in
Eqs. (1) and (2), we define the between-class scatter matrix
and within-class scatter matrix in the feature space as fol-
lows,

S φb =
1
n

2∑
j=1

n j

(
mφj − mφ

) (
mφj − mφ

)T
(3)

S φw =
1
n

2∑
j=1

∑
yi=l j

(
φ (xi) − mφj

) (
φ (xi) − mφj

)T
(4)

where the superscript φ is used to stress the variables are in
the feature space F, rather than the input data space X.

Without loss of generality, let us assume that the first n1

data belong to class C1, that is, yi = −1, i ≤ n1, and the re-
maining n2 data belong to class C2, where n = n1+n2. Let 1m

be the m−dimensional vector whose all entries are equal to
unity, 1+k

m

(
1−k

m

)
the m−dimensional vector whose first (last)

k entries are equal to unity and the remaining entries are
equal to 0, and the data matrix Φ = (φ (x1) , . . . , φ (xn)).
Then, we have

mφ =
1
n

n∑
i=1

φ (xi) =
1
n
Φ1n (5)

mφ1 =
1
n1

n1∑
i=1

φ (xi) =
1
n1
Φ1+n1

n (6)

mφ2 =
1
n2

n2∑
i=n1+1

φ (xi) =
1
n2
Φ1−n2

n (7)

The between-class scatter matrix can be formulated as fol-
lows:

S φb =
n1

n

(
1
n1
Φ1+n1

n − 1
n
Φ1n

) (
1
n1
Φ1+n1

n − 1
n
Φ1n

)T

+
n2

n

(
1
n2
Φ1−n2

n − 1
n
Φ1n

) (
1
n2
Φ1−n2

n − 1
n
Φ1n

)T

=
n1

n
Φ

(
1
n1

1+n1
n − 1

n
1n

) (
1
n1

1+n1
n − 1

n
1n

)T

ΦT

+
n2

n
Φ

(
1
n2

1−n2
n − 1

n
1n

) (
1
n2

1−n2
n − 1

n
1n

)T

ΦT

= ΦBΦT (8)

where

B =
n1

n

(
1
n1

1+n1
n − 1

n
1n

) (
1
n1

1+n1
n − 1

n
1n

)T

+
n2

n

(
1
n2

1−n2
n − 1

n
1n

) (
1
n2

1−n2
n − 1

n
1n

)T

(9)

is a n×n constant symmetrical matrix. The within-class scat-
ter matrix can be decomposed to two terms, and formulated
as follows:
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S φw =
1
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n1∑
i=1

(
φ (xi) − mφ1

) (
φ (xi) − mφ1

)T

+
n∑

i=n1+1

(
φ (xi) − mφ2

) (
φ (xi) − mφ2

)T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n1∑
i=1

(
φ (xi) φ (xi)

T − mφ1mφ1
T
)

+
n∑

i=n1+1

(
φ (xi) φ (xi)

T − mφ2mφ2
T
)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1
n

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

φ (xi) φ (xi)
T − n1mφ1mφ1

T − n2mφ2mφ2
T
⎞⎟⎟⎟⎟⎟⎠

=
1
n

(
ΦΦT− 1

n1
Φ1+n1

n 1+n1
n

T
ΦT− 1

n2
Φ1−n2

n 1−n2
n

T
ΦT

)

=
1
n
Φ

(
I − 1

n1
1+n1

n 1+n1
n

T − 1
n2

1−n2
n 1−n2

n
T
)
ΦT

= ΦWWTΦT (10)

where W = 1√
n

(
I − 1

n1
1+n1

n 1+n1
n

T − 1
n2

1−n2
n 1−n2

n
T )

is also a
constant n × n symmetrical matrix.

The Fisher criterion J1 = Tr
(
S −1
w S b

)
requires in ad-

vance that the within-class scatter matrix S w is nonsingular,
which is usually not satisfied in practice, especially in the
case when the sample size is smaller than the dimension of
the sample data. The problem could become even worse as
we use the criterion in the high-dimensional feature space.
To address this problem, we adopt the regularization tech-
nique by adding a small term λI to the within-class scatter
matrix S φw, where I is an identity matrix. Then, the regular-
ized class separability criterion (RCSC) in the feature space
is:

J̃φreg = Tr
((
λI + S φw

)−1
S φb

)

= Tr
((
λI + ΦWWTΦT

)−1
ΦBΦT

)
(11)

Using the Woodbury formula,

(A + BC)−1 = A−1 − A−1B(I +CA−1B)−1CA−1

we obtain
(
λI + ΦWWTΦT

)−1
=

1
λ

(
I − ΦW

(
λI +WΦTΦW

)−1
WΦT

)

and the regularized class separability criterion can be refor-
mulated as

J̃φreg=Tr

(
1
λ

(
ΦBΦT−ΦW

(
λI+WΦTΦW

)−1
WΦTΦBΦT

))

=
1
λ

Tr
(
ΦBΦT − ΦW (λI +WKW)−1 WKBΦT

)

=
1
λ

Tr
(
ΦBΦT − ΦAΦT

)

=
1
λ

Tr

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

i=1

n∑
j=1

(
bi j − ai j

)
φ (xi) φ

(
x j

)T

⎞⎟⎟⎟⎟⎟⎟⎠

=
1
λ

n∑
i=1

n∑
j=1

(
bi j − ai j

)
Tr

(
φ (xi) φ

(
x j

)T
)

=
1
λ

n∑
i=1

n∑
j=1

(
bi j − ai j

)
k
(
xi, x j

)

=
1
λ

1T
n ((B − A) . ∗ K) 1n (12)

where “.∗” denotes the element-by-element multiplication
operation of two matrix, K =

[
kγ

(
xi, x j

)]
n×n

is the kernel

matrix, and A = W (λI +WKW)−1 WKB =
[
ai j (γ)

]
n×n

is
a matrix, whose entries are also determined by the kernel
parameter γ. As we can see that the J̃φreg criterion is still
conceptually simple and computationally efficient by incor-
porating the kernel trick.

2.3 Gaussian Kernel Parameter Selection by Maximizing
the RCSC

We use the Gaussian function ki j = exp
(
−γ ∥∥∥xi − x j

∥∥∥2
)

as

our kernel in this paper, where γ is the kernel parameter to
be optimized. The optimal value γopt of the kernel parameter
can be obtained through maximizing Eq. (12), i.e.

γopt = arg min
γ

J̃φreg (γ) (13)

Unfortunately, this optimization problem can not be solved
analytically from ∂J̃φreg

/
∂γ = 0. In this paper, we employ the

standard gradient algorithm to approximate the value of the
optimal γ. The updating equation for maximizing the class
separability criterion J̃φreg is given by

γ(t+1) = γ(t) + η
(
∂J̃φreg

/
∂γ

)
(14)

where η is the learning rate. To ensure the convergence
of the algorithm, a gradually decreasing learning rate is
adopted

η (t) = η0

(
1 − t

N

)
(15)

where η0 is the initial learning rate, N denotes a pre-
specified number of iterations, and t represents the current
iteration number. Since B is a constant matrix, containing
the label information of the samples, differentiating both
sides of Eq. (12), we have

∂J̃φreg (γ)

∂γ
=

1
λ

1T
n
(
(B − A) . ∗ K′ − A′. ∗ K

)
1n (16)

where K′=
[
∂ki j

∂γ

]
n×n
=

[
−ki j

∥∥∥xi − x j

∥∥∥2
]

n×n
, and A′=

[
∂ai j

∂γ

]
n×n

.

Let C (γ) denote λI +WKW, then ∂C/∂γ = WK′W and the
inverse of matrix C can be calculated using the Woodbury
formula again. Since ∂C−1

/
∂γ = −C−1 (∂C/∂γ) C−1, the dif-

ferential of matrix A to γ can be expressed by

A′ = −WC−1WK′WC−1WKB +WC−1WK′B

Now we can summarize our kernel optimization algorithm
as follows.
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1. Group the training samples according to their class la-
bels. Calculate W and B.

2. Initialize λ, γ(0) and set the iteration number t = 0.
3. Calculate K and K′ first, then A and A′, and then
∂J̃φreg

/
∂γ.

4. Update the kernel parameter

γ(t+1) = γ(t) + η (t)
(
∂J̃φreg

/
∂γ

)
5. If t reaches a pre-specified number N, stop. Otherwise,

set t = t + 1, and go back to step 3.

3. Experiments

In this section, we conduct three sets of experiments to in-
vestigate the effectiveness of using the proposed method to
select the optimal Gaussian kernel parameter for the SVM
classifier. In the first set of experiments, we study if the
kernel parameters optimized by the regularized class sepa-
rability criterion J̃φreg match with the kernel parameters that
lead to the best performances of SVM classifier. The sec-
ond set of experiments examines the performance of the
gradient-based iterative algorithm to maximize J̃φreg. The
final set of experiments compares the performances of the
proposed method and the cross validation method in ker-
nel parameter selection. Seven real data sets, namely, the
Ionosphere, Wisconsin Breast Cancer, Sonar, Pima Indi-
ans diabetes, Liver disorder, Heart disease and Australian
credit approval, are collected from the UCI machine learn-
ing benchmark repository [12] to test our algorithm. These
seven data sets are chosen, since they present different de-
grees of difficulty from the point of view of data classifica-
tion. Table 1 presents some basic information about these
data sets.

3.1 Experiment 1: The Effectiveness of J̃φreg (γ)

To show the effectiveness of the class separability criterion,
J̃φreg (γ), we illustrate the performance of SVM classifier and
the values of J̃φreg (γ), when different kernel parameters are
used. Three real data sets, namely, Ionosphere, Wisconsin
Breast Cancer, Sonar, are used. Each data set is first nor-
malized to a distribution with zero mean and unit variance,
and then randomly partitioned into two disjoint parts, con-
sisting of 2/3 and 1/3 of the entire samples, respectively.
The former is used as the training set, and the other as the
test set. The regularization constant λ of J̃φreg (γ) is set to

Table 1 Characteristics of datasets in the UCI repository.

Dataset #Samples #Dimensions
Ionosphere 351 34
Breast 683 10
Sonar 208 60
Pima 768 8
Liver 345 6
Heart 270 13
Australian 690 14

10−5, and 100 different kernel parameters γ are uniformly
sampled from the interval of

[
10−5, 102

]
on the logarithm

scale. Figure 1 shows the values of the regularized class
separability criterion (RCSC) and the classification accu-
racy (CA) of SVM, whose regularization constant is set to
1, over different kernel parameter γ values on the three data
sets. For the convenience of comparisons, we normalize the
values of J̃φreg (γ) to [0, 1].

From Fig. 1, we see that the class separability of the test
data varies in the same manner as that of the training data,
and the maxima of J̃φreg (γ) on both training set and test set
are almost identical. Since both the training and test data are
from the same probability distribution, optimizing the kernel
parameter on the training data, or increasing the class sepa-

(a) Ionosphere

(b) Breast Cancer

(c) Sonar

Fig. 1 Evaluation of the effectiveness of J̃φreg (γ).
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rability of the training data in the feature space, should lead
to a similar effect on the test data. It can also be observed
that the highest classification accuracies on the test set al-
ways coincide with the best class separability of the training
data in the same position, where the classification accuracy
on the training set just approach 100%. Therefore, using the
optimal kernel parameter selected from the training data, the
SVM achieves the highest classification accuracy on test set.
This indicates that the maximization of J̃φreg (γ) on the train-
ing set can result in a good kernel parameter selection for
the SVM classifier.

3.2 Experiment 2: The Gradient-Based Kernel Optimiza-
tion

To show the performance of the gradient-based kernel op-

(a) J̃φreg (γ) as a function of the number of iterations.

(b) 3-D embedding results with the initial kernel.

(c) 3-D embedding results with the optimized kernel.

Fig. 2 Optimizing J̃φreg (γ) on the Ionosphere data set.

timization algorithm, we test it on the same 3 data sets as
used in Sect. 3.1. The initial learning rate in Eq. (15) and
the iteration number N are set to 10−4 and 100, respectively.
The regularization term λ of J̃φreg (γ) is always fixed at 10−6

and the initial value for the kernel parameter γ is set to
γ(0) = n

/∑n
i=1 ‖xi − x̄‖2, where x̄ is the centroid of the whole

data set. The values of the class separability on the train-
ing data of the three data sets are shown in Fig. 2 (a), 3 (a)
and 4 (a), respectively. It is seen that the class separabil-
ity of the data sets in the feature space can be improved
substantially along with the iterations. Besides, by pro-
jecting the data onto its first three significant dimensions,
Fig. 2 (b), 3 (b), 4 (b) and Fig. 2 (c), 3 (c), 4 (c) visualize the
spatial distributions of the data before and after the kernel
optimization, respectively. From these figures, the improve-

(a) J̃φreg (γ) as a function of the number of iterations.

(b) 3-D embedding results with the initial kernel.

(c) 3-D embedding results with the optimized kernel.

Fig. 3 Optimizing J̃φreg (γ) on the Breast Cancer data set.
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(a) J̃φreg (γ) as a function of the number of iterations.

(b) 3-D projection by the initial kernel before optimization.

(c) 3-D projection by the optimized kernel.

Fig. 4 Optimizing J̃φreg (γ) on the Sonar data set.

ment of the class separability can also be observed.

3.3 Experiment 3: Comparison with the Cross-Validation
Method

In this experiment, we demonstrate the effectiveness of the
proposed kernel parameter selection method by comparing
with the commonly used cross-validation method. Eight real
data sets in Table 1 are used in the experiment. Each data
set is randomly partitioned into a training set and a test set
as before. We use 2/3 of the total samples as the training set
to perform the kernel parameter selection. For the proposed
method, the regularization constant λ is fixed to 10−5, the
initial learning rate is set to 10−4, and the iteration number
N is set to 100. The initial value for the kernel parameter
γ is determined in the same way as that in Sect. 3.2. For

Table 2 Classification accuracies with kernels got by the proposed
method KOPT and the cross-validation method KCV .

Dataset KOPT KCV

Ionosphere 95.81% 95.31%
Breast 97.69% 97.11%
Sonar 86.34% 84.28%
Pima 77.91% 76.86%
Liver 69.81% 67.68%
Heart 84.25% 83.79%
Australian 85.27% 85.35%

the cross-validation method, the training data set is further
divided into 10 equal subsets. Of the 10 subsets, one is re-
tained as the validation set and the remaining subsets are
used to train SVM with the kernel parameter choosing from
{1×10−5, 2×10−5, . . . , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. This process is repeated 10 times,
so that each of the 10 subsets is used exactly once as the
validation data. The 10 results of kernel parameter selection
are averaged to produce a final estimation. The classifica-
tion accuracies of the SVM classifier with kernel parameters
selected by the two methods are compared to evaluate the
performances. The average experimental results on the test
data set over 20 trials are shown in Table 2. As what we can
see, the optimal kernel parameters selected by maximizing
the class separability criterion achieve better classification
results in most cases than the traditional cross-validation
method.

4. Conclusion

In this paper, a method for learning the optimal Gaussian
kernel parameter is presented. We evaluate the kernel pa-
rameter by measuring the corresponding class separability
of the mapped data in the kernel-induced feature space. A
gradient-based optimization method is adopted to maximize
the class separability criterion and to find the good param-
eter. Experimental results on real data sets show that the
class separability of the data in the feature space is improved
greatly by using the optimized kernel parameter, and the cor-
responding classification performance of the SVM classi-
fier outperforms that of the cross-validation method in most
cases. The method proposed in this paper can also be di-
rectly generalized to the other kinds of kernel parameter se-
lection, provided that the kernel functions are differentiable
to the parameter, and thus it provides a promising alterna-
tive for the traditional cross-validation method. Currently,
the regularization constant λ is determined empirically, so
we will explore the possibility of formulating another op-
timization procedure to find the optimal value of λ in our
future research.
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