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Selecting Help Messages by Using Robust Grammar Verification
for Handling Out-of-Grammar Utterances in Spoken Dialogue

Systems**

Kazunori KOMATANI*¥, Member, Yuichiro FUKUBAYASHI', Satoshi IKEDA,

SUMMARY  We address the issue of out-of-grammar (OOG) utterances
in spoken dialogue systems by generating help messages. Help message
generation for OOG utterances is a challenge because language under-
standing based on automatic speech recognition (ASR) of OOG utterances
is usually erroneous; important words are often misrecognized or missing
from such utterances. Our grammar verification method uses a weighted
finite-state transducer, to accurately identify the grammar rule that the user
intended to use for the utterance, even if important words are missing from
the ASR results. We then use a ranking algorithm, RankBoost, to rank
help message candidates in order of likely usefulness. Its features include
the grammar verification results and the utterance history representing the
user’s experience.

key words: spoken dialogue system, help generation, out-of-grammar ut-
terances, novice user, utterance history

1. Introduction

Spoken dialogue systems are being moved from the labo-
ratory to the public sphere [2]-[4], so opportunities are in-
creasing for the general public to use such systems. Even
novice users can now directly access such systems without
previous instruction, which is quite different from labora-
tory experiments in which instructions are normally given to
users. Novice users often input utterances that are not cor-
rectly recognized due to the gap between the system and the
user’s mental model of it, i.e., the user’s expectations about
the system. Thus, user utterances often cannot be interpreted
correctly because of the system’s limited grammar for lan-
guage understanding (LU). We call such utterances “out-of-
grammar (OOG) utterances”. The user needs to change such
utterances to make them acceptable, but cannot do so unless
they are given instructions on what expression patterns are
accepted by the system.

Our approach to managing the problem of OOG utter-
ances is to provide the user a help message showing an ex-
ample of an acceptable language expression when the user’s
utterance is not acceptable. For example, in a sightseeing

Manuscript received April 5, 2010.
Manuscript revised July 6, 2010.
"The authors are with the Graduate School of Informatics,
Kyoto University, Kyoto-shi, 606-8501 Japan.
“Presently, the author is with the Graduate School of Engineer-
ing, Nagoya University, Nagoya-shi, 464-8603 Japan.
“*This paper is a modified and extended version of an earlier
report [1].
a) E-mail: komatani @nuee.nagoya-u.ac.jp
DOI: 10.1587/transinf.E93.D.3359

Tetsuya OGATA, and Hiroshi G. OKUNO', Nonmembers

task, if a user wants to get information on a tourist spot but
an automatic speech recognition (ASR) error occurs because
of an OOG utterance, a help message would be generated
adaptively; for example, “If you want to get information
on a tourist spot, you can say, ‘Tell me the phone number
of Kiyomizu Temple’, for example, and specify the name
of the place”. We prepare such help messages that corre-
sponds to each grammar rule the system has. We therefore
assume that an appropriate help message can be provided
if the user’s intention, i.e., the grammar rule that the user
intended to use for his utterance, is correctly identified.

Requirements for generating such help messages
would include:

1. identifying the user’s intention even from OOG utter-
ances and

2. considering utterance history that represents the user’s
experience.

The first requirement is based on the fact that ASR results,
which are the main input to the spoken dialogue system,
are usually erroneous for OOG utterances. Identifying the
grammar rule that the user intended to use is accordingly
difficult especially when content words, which correspond
to database entries such as place names and their attributes,
are not correctly recognized. To identify the user’s inten-
tion from erroneous ASR results, all three types of ASR
errors (insertion, deletion, and substitution) in any position
should be taken into consideration. The second requirement
is based on the fact that an ASR result for an OOG utter-
ance does not necessarily contain sufficient information to
identify the user’s intention. This is because of ASR errors
or because users tend to omit some elements from their ut-
terances when they are clear in the context. Therefore, the
information needs to be complemented by using the user’s
utterance history to provide appropriate help messages.

We develop a grammar verification method based on a
weighted finite-state transducer (WFST) to meet the first re-
quirement. It robustly identifies the grammar rule intended
for the utterance even for OOG utterances. A WFST rep-
resenting an ASR result takes all possible errors into con-
sideration. To meet the second requirement, we incorporate
the utterance history representing the user’s experience and
the user’s knowledge [5] as features of a boosting algorithm,
RankBoost [6]. It ranks help message candidates in order of
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likelihood. Because it is difficult even for human annotators
to uniquely determine which help message should be pro-
vided for each case, we use a ranking algorithm that ranks
help message candidates on the basis of training examples
with multiple labels having a certain order of priority.

2. Related Work

A robust system should be able to handle situations in which
a user’s input cannot be correctly interpreted by the sys-
tem. Dzikovska et al.[7] analyzed and categorized inter-
pretation errors in their text-based tutoring system. Bohus
and Rudnicky [8] analyzed non-understanding errors in spo-
ken dialogue systems. One way to prevent such errors is
to acquaint users with the limitations of the system through
a preceding tutorial session [9]. Tomko et al. [10] designed
a standardized protocol called “Speech Graffiti”. They de-
signed a subset language used in spoken dialogue systems
and taught the user how to use it in a short tutorial session.
They also tried to “shape” user utterances by changing the
expressions used by the system for confirmation [11]. We
take the approach of guiding the user’s utterances to match
the system’s capability without providing a tutorial session
before using the system. We did this by designing the sys-
tem to provide adaptive and explicit help messages during
dialogues.

There have been a number of studies on generating help
messages in spoken dialogue systems. Gorrell et al. [12]
trained a decision tree to classify causes of errors for OOG
utterances. Hockey et al. [13] classified OOG utterances into
three categories (endpointing errors, unknown vocabulary,
and subcategorization mistakes) by comparing two ASR re-
sults. Their method, called “Targeted Help”, provides a user
with immediate feedback tailored to what s/he said. Lee et
al. [14] addressed error recovery by developing a method to
generate help messages in an example-based dialogue mod-
eling framework. These approaches, however, determine
the help message to provide mainly on the basis of literal
ASR results and do not take the user’s utterance history into
consideration. Therefore, the messages are degraded if the
ASR results have a lot of information missing, especially for
OOG utterances.

An example dialogue enabled by our method, espe-
cially the part of the method described in Sect. 4, is shown
in Fig. 1. The user utterances are transcriptions, and the “S”
and “U” denote system and user utterances, respectively. In
this example, the ASR results for the user utterances (Ul
and U2) do not contain sufficient information because the
utterances are short and contain out-of-vocabulary words.
These two results are similar, so the help message after U2
provided by methods like Targeted Help [12], [13] will be
the same as Utterance S1 because they are based only on the
ASR results. Our method can provide different help mes-
sages (e.g., Utterance S2) after ranking candidates by con-
sidering the user’s utterance history and grammar verifica-
tion results. Because the candidates are arranged in the order
of likely usefulness, the most appropriate help message can
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U1l: Tell me your recommended sites.
Underlined parts are not in-vocabulary, and no valid
LU result is obtained. The identified grammar rule
is [Obtaining info on a site] although the most
appropriate help message is that corresponding to
[Searching tourist sites].

S1: I did not understand. You can say, “Tell me
the address of Kiyomizu Temple”, for exam-
ple, if you want to get information on a site.
The help message corresponding to [Obtaining info
on a site] is provided.

U2: Tell me your recommended sites.
The user repeats the utterance probably because the
help message (S1) was not very helpful. The iden-
tified grammar rule is [Obtaining info on a site]
again.

S2: I did not understand. You can say, “Search

shrines or museums”, for example, if you
want to search for tourist sites.
Another help message corresponding to [Searching
tourist sites] is provided after ranking candidates by
using the user’s utterance history and the grammar
verification result.

[ ] denotes grammar rules.

Fig.1 Example dialogue enabled by our method.

be provided after fewer user attempts.

This method for ranking help message candidates is
also useful in a multimodal interface with speech input.
Help messages are necessary when ASR is used as its in-
put modality; for example, such messages are implemented
in City Browser [15]. This system lists template-based help
messages on the screen by using ASR results and the inter-
nal states of the system. The order of help messages is im-
portant, especially in portable devices with a small screen,
on which the number of help messages displayed at one
time is limited, as Hartmann and Schreiber pointed out [16].
Even if large screens are available, too many help messages
without any order will distract the user’s attention and thus
spoil the system’s usability.

We assume that an appropriate help message can be
provided by identifying the grammar rule that the user in-
tended to use, which corresponds to the user’s intention. In
other words, help message generation is one application re-
alized by identifying the user’s intention. Because our goal
is to generate help messages for language expressions the
user does not know, we define user intention not by slot val-
ues but by grammar rules corresponding to the expressions.
There have been several studies on identifying the user’s
intentions as slot values by using history information and
treating multiple candidates derived from ambiguous ASR
results. In such studies, the most appropriate slot value was
selected after maintaining multiple candidates using rules
for tree structures that maintain histories [17], a particle fil-
ter [18], or statistics on dialogue acts and dialogue state up-
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dates [19]. History information has also been used to esti-
mate confidence measures for slot values in a current user
utterance [20], [21]. In these studies, ASR results for OOG
utterances were simply discarded if they did not contain any
slot values; that is, no intention was identified.

In contrast, the grammar verification method we de-
velop can identify the user’s intention even from ASR re-
sults containing no correct slot value. This is possible be-
cause we define user intentions as grammar rules, which are
less concrete than slot values but are helpful in generating
help messages. Furthermore, the features used to identify
user intention are different from those in the related studies
mentioned above. We use features representing the user’s
experience such as whether or not the user has already ut-
tered the language expression, that is, whether the user al-
ready knows the expression. They are used to identify user
intention at the grammar level for generating help messages,
while related studies focus on the reliability of slot values.

3. Grammar Verification Based on WFST

As mentioned, we identify the user’s intention as the gram-
mar rule that the user intended to use for his/her utterance
even if it is OOG. We call this method grammar verifica-
tion. We use two kinds of transducers: finite-state transduc-
ers (FSTs), representing each task grammar, and weighted
FSTs (WFESTs), representing each ASR result and its confi-
dence score. Hereafter, we denote them as “grammar FST”
and “input WFST”. The grammar verification (GV) score is
defined as the sum of the weights of the sequence obtained
by composing the input WFST and the grammar FSTs. The
optimal grammar rule is the sequence having the maximum
GV score.

Our method takes all three types of ASR errors into
consideration. The input WFST is designed to be able to
generate arbitrary sequences in which every word in an ASR
result can be replaced by an insertion or substitution error
and in which any word can be deleted. Its weight is de-
signed to reflect the confidence score of the ASR result and
the word length. Accordingly, we obtain the grammar rule
that is nearest to the input ASR result even if an element in
it is misrecognized or absent. An overview of the grammar
verification method is depicted in Fig. 2.

Grammar FSTs

BTN,

ﬂ Ut WEST Ut ut SCOFE

Generated per
/\& gm’”’”“r rule Tellme INS SUB ... (+0.16)
‘ Tell me <item> of .. ‘ Tellme SUB SUB ... (+0.02)

ﬁ generated

TeIIme all .. \i ‘ Tell me <facility>of ...

ASRresult

‘{Tell me INS SUB ... (-0.24)

compose

‘ How can | get to <facility>? ‘ SUB SUB SUBSUB ... (-2.02)

Grammar rules

Fig.2  Overview of grammar verification method.
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3.1 Design of Input WFST and Grammar FST

In the input WFST and grammar FST shown in Fig. 3, each
state transition has a label in the form of “a:b/c” denoting
input symbol a, output symbol b, and weight c. Weights are
omitted in the grammar FST because no weights are used".
Input symbol ¢ indicates a state transition without any input
symbol, that is, an epsilon transition. Output symbol & indi-
cates no output in the state transition. For example, a state
transition “please:&/1.0” is executed when the input symbol
is “please”; in this case, no output symbol is generated, and
1.0 is added to the GV score.

The input WEST is automatically constructed from the
ASR result. Words in the ASR result make up sequential
state transitions, and each of them is paralleled by filler tran-
sitions: INS and SUB. Another filler transition, DEL, is at-
tached to every state as a self loop. The filler transitions INS,
DEL, and SUB are assigned to each state to represent the er-
rors, insertion, deletion, or substitution. All input symbols
in the input WEST are &, with which the WEFST represents
all possible sequences containing arbitrary errors. For ex-
ample, the input WFST in Fig. 3, in which the ASR result is
“Every Monday please”, represents all possible sequences
including fillers such as “Every Monday please”, “Every
Monday F”, and “F Monday F”, where every word can be
replaced by symbol F that represents an insertion (INS) or
substitution error (SUB). Moreover, the error symbol DEL
can be inserted into the output symbol sequence at any po-
sition; it corresponds to a deletion error in the ASR result.
The weights for each state transition are summed up to de-
termine the GV score, and the optimal result is determined.
The weights are explained in Sect. 3.2.

Input WEST  ASR result: “Every Monday please”

€:DEL/w,, €:DEL/w,, €:DEL/w,, e:DEUYw,,

e:Every/w,,, €:Monday/ w,, €:please/ w,,,

€:INS/Wys

€:INS/w s

Grammar FST
INS:INS

€:INS/Wys

INS INS Monday: Monday |NS:INS INS:INS

.

DEL:DEL

Every: please:

Every

DEL:DEL

input:output/weight
Fig.3  Example of input WFST and grammar FST.

"The grammar FST actually has a few weights in the current
implementation to calculate weights at runtime. Specifically, only
arcs of SUB and DEL have weights corresponding to the word
length of its grammar element used in Egs. (3) and (5). We denote
it as “FST” for conceptual simplicity.
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The grammar FSTs are generated from the task gram-
mar, which is written by a system developer for the target
domain. They determine whether an input sequence con-
forms to the task grammar. Filler transitions are assigned to
each state to handle each type of ASR error that might be
in the input WEST. A filler transition, INS, DEL, or SUB,
is added to each state in the FST, except for states within
keyphrases as indicated by the system developer. In the
example shown in Fig. 3, the grammar FST accepts “SUB
Monday please” but does not accept “DEL SUB Monday
please”, both of which are outputs of the input WFST.

3.2 Weights Assigned to WFST

The GV score represents how close an ASR result is to each
grammar rule in the system. The score is defined as the
sum of the weights for all the i-th output symbols of the
composed WFST and is calculated for each grammar rule &:

GV scorey = mjax Z,: Wijks (D

where j denotes the output sequences of the composed
WEST. The i-th output symbol is obtained as part of out-
put sequence j after taking account of possible correspon-
dences between grammar rule k and the current ASR result.
The sequence with the highest score is obtained after decod-
ing by the WFST in which possible output sequences j are
considered.

Weight w;  is given to each symbol of WFST output i
so that its value becomes larger when the current ASR re-
sult is closer to grammar rule k. The weight is defined by
using the products of the confidence score and word length
of the current ASR result[22]. This means that an ASR re-
sult is regarded to be closer to a grammar rule when longer
words having higher confidence scores in the ASR result
agree with those in the grammar rule. On the one hand,
positive weights are given to the WFST output as rewards,
when a word in the ASR result agree with the correspond-
ing element in the grammar rule, in accordance with the
ASR confidence and the length of the agreed words. On
the other hand, negative weights are given as penalties when
the words do not agree.

More specifically, we define reward w;j; as shown in
Eq. (2). This is the case when a word is accepted and then
becomes the i-th symbol of the WFST output; that is, word
in an ASR result ¢*5R agrees with element ¢*"® in gram-
mar rule k. Grammar element 8™ is either a word or a
slot.

wijk = CM(e™)(e*F) 2)
[when the i-th output is SR,

where CM(e*5®) and 1(¢*S®) denote the confidence score

and the word length of ¢*S%. The confidence score is be-

tween 0 and 1[23]. The word length is calculated as the

number of moras normalized by that of the longest word in

the vocabulary.
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Cases in which a word in the ASR result does not agree
with an element in a grammar rule are regarded as errors,
and the output symbol of the WFST becomes SUB, INS, or
DEL. Output symbol SUB indicates that eAS® corresponds to
grammar element ¢4 "® but does not agree with it. In this

case, penalty w; j is defined as the average of the weights for
eASR and egram(k).

1
wije = =5 {CM(eP )i ")
+CM(egram(k))l(egram(k))}
1
= —F{CME D) + e ™)) (3)
[when the i-th output is SUB],

where CM(e8"#"®) = 1 because there is no ASR confidence
score for any grammar element. When ¢2""® is a slot in the
grammar, the average word length in the slot is used instead
of I(esram®)y,

Output symbol INS indicates that no element in gram-
mar rule k corresponds to MR In this case, w; Jk 1s defined
as the average length of words in the vocabulary, I(e), in-
stead of the length of a grammar element, [(e#""®), as is
used in the definition of weights for SUB.

Wi =~ [CMEDIE) + ) @
[when the i-th output is INS]

Output symbol DEL indicates that no e*S¥ corresponds to

grammar element ¢¢’*®_ In this case, I(e) is used instead
of I(e*5%) and CM(e*S®) = CM(ef™®) = 1 is assumed

because there is no ASR result.
1
wije = =5 {CM(eP )i ")

+CM(egram(k))l(egram(k))}

1 —
=5 {le) + e D)) (5)
[when the i-th output is DEL]

3.3 Example of Calculating Weights

Weights are calculated as illustrated in Fig.4. In this ex-
ample, the user utterance is, “Tell me a liaison of Koetsu-ji
(a temple name)”. The word “liaison” is not in the system
vocabulary. The ASR result accordingly contains errors for
that part; the result is, “Tell me all Sakyo-ward Koetsu-ji”.

GV scores are calculated for each grammar rule that the
system has. This example shows calculations for two gram-
mar rules: [get_info] and [search_ward]. The former accepts
“Tell me (item name) of (temple name)”, and the latter ac-
cepts “Tell me (facility name) of (ward name)”. Here, [] and
() denote a grammar rule and a slot in the grammar. This ex-
ample also shows two WEST output sequences, which cor-
respond to variable j used in Sect. 3.2, for the single gram-
mar rule [get_info].

We consequently obtain the result that grammar rule
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User utterance: “Tell me a liaison of Koetsu-ji”. (Underlined word is OOG.)

ASR result tell  me all Sakyo-ward Koetsu-ji GV score
(ward) (temple%
grammar rule [get_info] tell  me (item name)  of  (temple name)
WEFST output tell  me INS SUB DEL Koetsu-ji
weights +0.09 +0.06 —0.04 —-0.11 —0.02 +0.18 +0.16
grammar rule [get_info] tell  me (item name ) of (temple name)
WEFST output tell  me SUB SUB Koetsu-ji
weights +0.09 +0.06 —-0.21 —0.10 +0.18 +0.02
grammar rule [search_ward] tell  me (facility type) in  (ward name)
WEST output tell  me INS SUB DEL SUB
weights +0.09 +0.06 —0.04 —0.12 —0.02 —0.21 —0.24
Fig.4  Example of calculating weights in our grammar verification method.
Calculate features
- Rank candidates Sortby Hix
i
(RankBoost) X
User results fl (’ﬁ)f,(r\) " T P =
utterance| Statistical Grammar ) Za, /() $
LM-based | o ification : E
’ £ f(x,) @ 0,1, G4y Xy
¢
history Training
data
Fig.5 Outline of our method for ranking help message candidates.
Table 1  Features used for ranking help message candidates.
Feature  Description Example value
H1: GV score 0.16
H2: GV score normalized by total GV score for all candidates 0.09
H3: ratio of no. of accepted words in GV result to no. of all words 0.5
H4: maximum no. of successively accepted words in GV result 2
HS: no. of accepted slots in GV result 0.13
H6: how much time before this grammar rule was selected as GV result 3
(in no. of utterances)
H7: maximum GV score for this grammar rule until current utterance 0.40
H8:  whether it belongs to “command” class 1
H9:  whether it belongs to “query” class 0
H10:  whether it belongs to “request-info” class 0
H11-H17:  products of H8 and each of H1 to H7 (products of two values)
H18-H24:  products of H9 and each of H1 to H7 (products of two values)
H25-H31: products of H10 and each of H1 to H7 (products of two values)

[get_info] has the highest score for this OOG utterance,
and its GV score is +0.16. The result also indicates each
error type as a result of the correspondence between the
ASR result and the output sequence of the WEST: (item
name) is replaced by “Sakyo-ward”, “of” in the grammar
rule [get_info] is deleted, and “all” in the ASR result is in-
serted.

4. Ranking Help Message Candidates by Using Utter-
ance History

We use various types of information including the grammar
verification (GV) result and the user’s utterance history to
rank the help message candidates. The latter helps make up
for the information that is often absent from utterances or

GV: grammar verification

misrecognized in ASR results. Figure 5 outlines the method.

4.1 Features Used in Ranking
Table 1 lists the features used in our ranking method. They
are calculated for the help message candidate corresponding
to each grammar rule. Features H1 to H5 represent GV re-
sult reliability. H1 is the GV score given by Eq.(1). H2 is
calculated by normalizing H1 by the total GV score for all
grammar rules. This represents the GV result reliability rel-
ative to other GV results. H3 to HS represent how well the
user utterance matches the grammar rule.

Features H6 and H7 correspond to the utterance history.
H6 reflects the case in which users tend to repeat similar
utterances when their utterances are not understood by the
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system. H7 represents whether and how well the user knows
language expressions for the grammar rule. This feature cor-
responds to the known degree we previously proposed [5].
Features H8 to H10 represent properties of utterances
corresponding to the grammar rules. They are categorized
into three classes: “command”, “query”, and “request-info”.
The numbers of grammar rules in the three classes are
8, 4, and 11, respectively, in the sightseeing task. Here,
“query” and “request-info” correspond to the two modes
in the database search task: “specifying query conditions”
and “requesting detailed information”[24]. In the model
assumed here, the user first tries several query conditions
to narrow down the entries and then formulates questions
for individual entries found in the first mode. More specifi-
cally, the first mode deals with query conditions in the task,
like “Please tell me sightseeing spots around (location)”; the
second mode deals with questions about specific entries in
the target database such as “Please tell me how to get to
(temple name)”. Therefore, utterances in either the “query”
or “request-info” class tend to appear successively; in con-
trast, utterances in the “command” class tend to appear in-
dependently of the context. Features H11 to H31 are the
products of features H8, H9, and H10 and each feature from
HI to H7. These were defined to take into account combina-
tions of properties of utterances represented by H8, H9, and
H10, and their reliability represented by H1 to H7, because
RankBoost does not consider them automatically.

4.2 Ranking Algorithm

We choose to use RankBoost [6], a boosting algorithm based
on machine learning. Help message candidates correspond-
ing to each grammar rule are ranked as target instances x
of the algorithm. This algorithm is suitable because it can
use training examples with multiple labels having a certain
order of priority.

RankBoost arranges candidates x in order by using a
scoring function H(x). Here, H(x') < H(x") means x” is
ranked higher than x’. This scoring function is defined as a
linear combination of weak rankers giving partial informa-
tion regarding the order:

T
H) = ) anhi(x), (©6)

where T, h,(), and «, denote the number of boosting itera-
tions, a weak ranker, and its associated weight, respectively.
Weak ranker /4, is defined by comparing the value of feature
f; of candidate x with threshold 6. That is,

1if f(x) > 0
0if f(x) <6 (7)
Gaey 1f fi(x) = L

hi(x) =

where gq4.r € {0, 1}. Here, fi(x) denotes the value of the i-th
feature of candidate x, and L denotes that no value is given

in fi(x).
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5. Experimental Evaluation
5.1 Target Data

We collected utterance data from 30 participants by using a
multi-domain spoken dialogue system that handles five do-
mains: restaurant, hotel, sightseeing, bus, and weather [25].
The data were collected under the following conditions: the
participants were given no instructions on the language ex-
pressions that the system accepts. System responses were
given by a text-to-speech (TTS) system without a display
screen. The participants were given six scenarios describing
the tasks to be completed.

The data consisted of 180 dialogues and 11,733 utter-
ances. Data from five participants were used to determine
the number of boosting iterations and to improve the lan-
guage models (LMs) used for ASR. We used utterances in
the restaurant, hotel, and sightseeing domains because the
remaining two, bus and weather, did not have many gram-
mar rules. The number of grammar rules in the bus and
weather domains was 12 and 11. Out of these, 8 belonged
to the “command” class. We then extracted utterances in-
cluding many OOG ones on the basis of the GV scores to
evaluate the performance of our method for such utterances.
Specifically, we collected utterances that had negative GV
scores, calculated using Eq. (1). Many OOG utterances were
included, although a negative GV score does not necessarily
indicate that the utterance is OOG. As a result, 1,349 utter-
ances by 25 participants were used as the evaluation data.
They consisted of 363 utterances in the restaurant domain,
563 in the hotel domain, and 423 in the sightseeing domain.

We used Julius™ as the ASR engine. We constructed
class 3-gram LMs for ASR by using 10,000 sentences gen-
erated from the task grammars and 600 utterances col-
lected from the five participants. The vocabulary sizes for
the restaurant, hotel, and sightseeing domains were 3,456,
2,625, and 3,593, and their ASR accuracies were 45.8%,
57.1%, and 43.5%, respectively. These ASR accuracies
were not high because the target utterances included many
OOG utterances.

To confirm that many OOG utterances were included
in these utterances, we also measured the utterance accura-
cies of ASR using the grammar-based ASR engine Julian
with LMs that were the same grammar set used in the gram-
mar FSTs. The accuracies approximately correspond to the
performance when we simply use an FST-based parser. The
accuracies were 11.6%, 7.3%, and 7.1%, respectively. This
means the performance of a conventional FST parser would
also be very low for the OOG utterances. Note that the
grammar did not have very wide coverage for the target
utterances. This was because all of the participants were
novices at using the system and were not given any instruc-
tion about which language expressions were accepted by the
system. Another reason was that we did not add grammar

http://julius.sourceforge.jp/
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rules after collecting the utterances in order to fix the defini-
tion of OOG utterances used here.

The set of possible thresholds in the weak rankers de-
scribed in Sect.4.2 consisted of all feature values that ap-
peared in the training data. The number of boosting iter-
ations was determined on the basis of the accuracy of the
data collected from the five participants: 400, 100, and 500
for the restaurant, hotel, and sightseeing domains.

5.2 Reference Data and Evaluation Criterion

We manually selected five help messages corresponding to
grammar rules as reference labels per utterance in the order
of having the strongest to weakest relation to the utterance.
We gave such multiple labels because the most appropriate
help message cannot necessarily be determined uniquely, es-
pecially when the user utterance is short and does not con-
tain sufficient information. The labels were given by look-
ing at not only the target utterance but also the preceding
utterances as context information. RankBoost was trained
by using the order among the five reference labels per utter-
ance; the order among the other candidates except the five
reference labels in the utterance was not used for the train-
ing. There were 28, 27, and 23 grammar rules in the restau-
rant, hotel, and sightseeing domains, respectively’. That is,
the number of help message candidates to be ranked was 28
in the restaurant domain and so forth. When an amount of
training data is small, a grammar rule that is not selected as
a reference label in the training set can appear as a refer-
ence label in a test set. Such a rule is possible to be ranked
correctly if its feature values are similar with those ranked
higher in the training set; this is because relationships in the
training data are modeled not as grammar rules themselves,
but as instances having certain feature values.

Several figures showing how the reference labels dis-
tributed in the evaluation data are listed in Table 2. Here,
we define relative frequency as occurrences of each label
divided by their total occurrences as reference labels in the
evaluation data. Entropy is calculated by regarding this fre-
quency as probability. From the table, we can see that gram-
mar rules to be ranked were not relatively varied in the sight-
seeing domain because there were less grammar rules and its
entropy was lower than the other two. Those of the hotel and
restaurant domains were almost the same.

N-best

0.0

Accuracy when N candidates were provided. (1 < N <5)
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sightseeing

0.4% "
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Table 2  Distribution of reference labels x.
restaurant  hotel  sightseeing

No. of grammar rules (1) 26 26 23
Max. relative frequency 0.093 0.100 0.113
Min. relative frequency 0.003 0.002 0.0004
Ave. relative frequency 0.0385 0.0385 0.0435
Sample stdev. 0.0261 0.0287 0.0392
Entropy H(x) 4.380 4.324 3.935
H(x)/log,(n) 0.932 0.920 0.870

stdev.: standard deviation

As a metric, we used the ratio of the number of ut-
terances with at least one of the reference labels in the top
N candidates. This corresponds to the probability that at
least one appropriate help message was contained in a list of
N candidates. The accuracy was calculated by 5-fold cross
validation. As the baseline method, the help messages were
provided using only the GV scores.

5.3 Results

Figure 6 plots the results for the three domains: restaurant,
hotel, and sightseeing. On the whole, accuracies in the sight-
seeing domain were higher than those for the other two. This
corresponds to the fact listed in Table 2, that is, the entropy
in the sightseeing domain was lower than those of the restau-
rant and hotel domains. The accuracies in the two domains
were similar as well as their entropy listed in the table.

The average differences between the baseline and our
method for the three domains were 11.7 points for N = 1,
9.7 points for N = 2, and 6.7 points for N = 3; i.e., the dif-
ferences were larger, the smaller the N. The following dif-
ferences in accuracy were statistically significant (p < 0.05)
in a McNemar test: N = 1 in the restaurant domain, N = 1,
2, 3 in the hotel domain, and N = 1, 2, 3, 4, 5 in the sight-
seeing domain. These results indicate that we can reduce the
number of help messages when several messages are pro-
vided to the user. The improvements result from the features
we incorporated, such as the estimated user knowledge, in
addition to the GV results.

We also identified the dominant features by summing
the absolute values of final weight « for each feature in

TOut of these, two and one grammar rules in the restaurant and
hotel domains did not appear as reference labels in our evaluation
data.
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Table3  Sum of absolute values of weight « for features.
H7 H17 H19 H2 H6
(H7*H8) | (H2*H9)
9.58 6.91 6.61 6.02 | 6.01

RankBoost. The five dominant features are shown in Ta-
ble 3. They include the feature obtained from the GV re-
sult (H2), the feature reflecting the user’s utterance history
(H6), the feature representing the estimated user knowledge
(H7), and the features representing properties of the utter-
ance (H8, H9). The most dominant feature was H7, which
appears twice in the table. This feature uses the GV scores
and if the score is high, an utterance is assumed to be cor-
rectly accepted by the system. After such an utterance, it
can be assumed that the user already knows the language
expression and its grammar rule, so a help message corre-
sponding to the grammar rule is unnecessary and should not
be provided. This feature improved the performance of the
ranking by giving a lower rank to help messages that pre-
viously had high maximum GV scores. The second most
dominant feature was H2, which shows that using the GV
result is effective.

6. Conclusion

We addressed the problem of OOG utterances in spoken di-
alogue systems and developed a method for generating help
messages. Each help message corresponds to a grammar
rule in the system, and the grammar rule that the user in-
tended to use is identified on the basis of the GV score. The
help message candidates are ranked on the basis of the user’s
utterance history and the grammar verification results.

The evaluation described here was based on utterances
collected beforehand. Another user study is required to eval-
uate how effective providing such help messages is in real
dialogues. Integration with other dialogue strategies such
as generating clarification questions and asking for values
of unfilled slots in a grammar rule identified by grammar
verification should also be investigated. We used Rank-
Boost, one of several ranking algorithms. Other ranking
algorithms, such as Ranking SVM [26], may achieve bet-
ter performance; this needs to be confirmed experimentally.
Finally, we assumed that the example language expressions
in the help messages were fixed. We need to investigate
what kinds of expressions would be most helpful in guiding
novice users.

Acknowledgments

This work was partially supported by KAKENHI and SCAT.

References

[1] K. Komatani, S. Ikeda, Y. Fukubayashi, T. Ogata, and H.G. Okuno,
“Ranking help message candidates based on robust grammar veri-
fication results and utterance history in spoken dialogue systems,”
Proc. SIGDIAL Conference, pp.314-321, 2009.

(2]

[3]

(4]

[3]

[6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

IEICE TRANS. INFE. & SYST., VOL.E93-D, NO.12 DECEMBER 2010

A. Raux, D. Bohus, B. Langner, A.W. Black, and M. Eskenazi, “Do-
ing research on a deployed spoken dialogue system: One year of
Let’s Go! experience,” Proc. Int’l Conf. Spoken Language Process-
ing (INTERSPEECH), 2006.

K. Komatani, T. Kawahara, and H.G. Okuno, “Analyzing tempo-
ral transition of real user’s behaviors in a spoken dialogue system,”
Proc. Annual Conference of the International Speech Communica-
tion Association (INTERSPEECH), pp.142-145, 2007.

R. Nisimura, A. Lee, M. Yamada, and K. Shikano, “Operating a
public spoken guidance system in real environment,” Proc. Euro-
pean Conf. Speech Commun. & Tech. (EUROSPEECH), pp.845—
848, 2005.

Y. Fukubayashi, K. Komatani, T. Ogata, and H.G. Okuno, “Dynamic
help generation by estimating user’s mental model in spoken dia-
logue systems,” Proc. Int’l Conf. Spoken Language Processing (IN-
TERSPEECH), pp.1946-1949, 2006.

Y. Freund, R.D. Iyer, R.E. Schapire, and Y. Singer, “An efficient
boosting algorithm for combining preferences,” Journal of Machine
Learning Research, vol.4, pp.933-969, 2003.

M. Dzikovska, C. Callaway, E. Farrow, J. Moore, N. Steinhauser,
and G. Campbell, “Dealing with interpretation errors in tutorial dia-
logue,” Proc. SIGDIAL Conference, pp.38—45, 2009.

D. Bohus and A.I. Rudnicky, “Sorry, I didn’t catch that! — An
investigation of non-understanding errors and recovery strategies,”
Proc. 6th SIGdial Workshop on Discourse and Dialogue, pp.128—
143, 2005.

C.A. Kamm, D.J. Litman, and M.A. Walker, “From novice to ex-
pert: The effect of tutorials on user expertise with spoken dialogue
systems,” Proc. Int’l Conf. Spoken Language Processing (ICSLP),
pp-1211-1214, 1998.

S. Tomko, T.K. Harris, A. Toth, J. Sanders, A. Rudnicky, and R.
Rosenfeld, “Towards efficient human machine speech communica-
tion: The Speech Graffiti project,” ACM Trans. Speech Lang. Pro-
cess., vol.2, no.1, 2005.

S. Tomko and R. Rosenfeld, “Shaping user input in speech graffiti:
A first pass,” CHI’06 Extended Abstracts on Human Factors in
Computing Systems, pp.1439-1444, 2006.

G. Gorrell, I. Lewin, and M. Rayner, “Adding intelligent help to
mixed-initiative spoken dialogue systems,” Proc. Int’l Conf. Spoken
Language Processing (ICSLP), pp.2065-2068, 2002.

B.A. Hockey, O. Lemon, E. Campana, L. Hiatt, G. Aist, J.
Hieronymus, A. Gruenstein, and J. Dowding, “Targeted help for spo-
ken dialogue systems: Intelligent feedback improves naive users’
performance,” Proc. 10th Conf. of the European Chapter of the ACL
(EACL2003), pp.147-154, 2003.

C. Lee, S. Jung, D. Lee, and G.G. Lee, “Example-based error
recovery strategy for spoken dialog system,” Proc. IEEE Auto-
matic Speech Recognition and Understanding Workshop (ASRU),
pp.538-543, 2007.

A. Gruenstein and S. Seneff, “Releasing a multimodal dialogue sys-
tem into the wild: User support mechanisms,” Proc. 8th SIGdial
Workshop on Discourse and Dialogue, pp.111-119, 2007.

M. Hartmann and D. Schreiber, “Proactively adapting interfaces
to individual users for mobile devices,” Adaptive Hypermedia and
Adaptive Web-Based Systems, 5th International Conference (AH
2008), Lecture Notes in Computer Science, LNCS 5149, pp.300-
303, Springer, 2008.

E. Ammicht, A. Potamianos, and E. Fosler-Lussier, “Ambiguity rep-
resentation and resolution in spoken dialogue systems,” Proc. Euro-
pean Conf. Speech Commun. & Tech. (EUROSPEECH), pp.2217-
2220, 2001.

J.D. Williams, “Using particle filters to track dialogue state,” Proc.
IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), pp.502-507, 2007.

R. Higashinaka and M. Nakano, “Ranking multiple dialogue states
by corpus statistics to improve discourse understanding in spoken
dialogue systems,” IEICE Trans. Inf. & Syst., vol.E92-D, no.9,



KOMATANI et al.: SELECTING HELP MESSAGES IN SPOKEN DIALOGUE SYSTEMS

pp-1771-1782, Sept. 2009.

3367

Satoshi Ikeda received B.E. and M.S. de-

[20] S.S. Pradhan and W.H. Ward, “Estimating semantic confidence for grees in Informatics in 2007 and 2009 from
spoken dialog systems,” Proc. IEEE Int’l Conf. Acoust., Speech & Kyoto University, Japan. He currently works at
Signal Processing (ICASSP), pp.233-236, 2002. Canon Inc.

[21] R. Higashinaka, M. Nakano, and K. Aikawa, “Corpus-based dis-
course understanding in spoken dialogue systems,” Proc. Annual
Meeting of the Association for Computational Linguistics (ACL),
pp.240-247,2003.

[22] Y. Fukubayashi, K. Komatani, M. Nakano, K. Funakoshi, H.

Tsujino, T. Ogata, and H.G. Okuno, “Rapid prototyping of ro-
bust language understanding modules for spoken dialogue systems,”
Proc. International Joint Conference on Natural Language Process-
ing (IJCNLP), pp.210-216, 2008. Tetsuya Ogata received the B.S., M.S.

[23] A. Lee, K. Shikano, and T. Kawahara, “Real-time word con- and D.E. degrees in Mechanical Engineering
fidence scoring using local posterior probabilities on tree trellis in 1993, 1995, and 2000, respectively, from
search,” Proc. IEEE Int’l Conf. Acoust., Speech & Signal Processing Waseda University. From 1999 to 2001, he
(ICASSP), pp.793-796, 2004. was a Research Associate in Waseda Univer-

[24] K. Komatani, N. Kanda, T. Ogata, and H.G. Okuno, “Contextual sity. From 2001 to 2003, he was a Research
constraints based on dialogue models in database search task for Scientist in the Brain Science Institute, RIKEN.
spoken dialogue systems,” Proc. European Conf. Speech Commun. Since 2003, he has been a Faculty Member in
& Tech. (EUROSPEECH), pp.877-880, 2005. ,ﬁ the Graduate School of Informatics, Kyoto Uni-

[25] K. Komatani, S. Ikeda, T. Ogata, and H.G. Okuno, “Managing out- versity, where he is currently an Associate Pro-

of-grammar utterances by topic estimation with domain extensibil-

fessor. He received the 2000 JSME Outstanding

ity in multi-domain spoken dialogue systems,” Speech Commun.,
vol.50, no.10, pp.863-870, 2008.
[26] T. Joachims, “Optimizing search engines using clickthrough data,”

Paper Medal from the Japan Society of Mechanical Engineers, and the Best
Paper Award of IEA/AIE-2005. He is a member of the IPSJ, JSAI, RSJ,
HIS, SICE, and IEEE.

Proc. ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD), pp.133-142, 2002.

Kazunori Komatani received B.E., M.S.,
and Ph.D. degrees in Informatics in 1998, 2000,
2002, from Kyoto University, Japan. In 2002,
he became an Assistant Professor in the Gradu-
ate School of Informatics, Kyoto University. He
is currently an Associate Professor in the Grad-
uate School of Engineering, Nagoya University.
From 2008 to 2009, he was a Visiting Scientist
& at Carnegie Mellon University, Pittsburgh, PA,
> USA. He has received several awards including
the 2002 FIT Young Researcher Award and the

2004 IPSJ Yamashita SIG Research Award, both from the Information Pro-
cessing Society of Japan (IPSJ). His research interests center on spoken
language processing, especially on spoken dialogue systems. He is a mem-
ber of the IPSJ, NLP, JSAI, ACL, and ISCA.

Yuichiro Fukubayashi received B.E. and
M.S. degrees in Informatics in 2006 and 2008
from Kyoto University, Japan. He currently
works at NEC Corporation.

Hiroshi G. Okuno received the B.A. and
Ph.D. degrees from the University of Tokyo,
Japan, in 1972 and 1996, respectively. He is cur-
rently a Professor of the Graduate School of In-
formatics, Kyoto University, Japan. He received
various awards including the Best Paper Awards
of JSAI. His research interests include compu-
tational auditory scene analysis, robot audition
and music scene analysis.



