
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010
3377

PAPER

A New Hybrid Method for Machine Transliteration

Dong YANG†a), Paul DIXON†, Nonmembers, and Sadaoki FURUI†, Fellow

SUMMARY This paper proposes a new hybrid method for machine
transliteration. Our method is based on combining a newly proposed two-
step conditional random field (CRF) method and the well-known joint
source channel model (JSCM). The contributions of this paper are as fol-
lows: (1) A two-step CRF model for machine transliteration is proposed.
The first CRF segments a character string of an input word into chunks and
the second one converts each chunk into a character in the target language.
(2) A joint optimization method of the two-step CRF model and a fast de-
coding algorithm are also proposed. Our experiments show that the joint
optimization of the two-step CRF model works as well as or even better
than the JSCM, and the fast decoding algorithm significantly decreases the
decoding time. (3) A rapid development method based on a weighted finite
state transducer (WFST) framework for the JSCM is proposed. (4) The
combination of the proposed two-step CRF model and JSCM outperforms
the state-of-the-art result in terms of top-1 accuracy.
key words: machine transliteration, two-step CRF, joint optimization, sys-
tem combination

1. Introduction

There are more than 6000 languages in the world and 10 lan-
guages have more than 100 million native speakers. With
the information revolution and globalization, systems that
support multi-language processing and language transla-
tion become urgent demands. In multi-language systems,
the out-of-vocabulary (OOV) problems caused by named
entities and technical terms from different languages have
become a serious issue. The translation of these terms
between alphabetic and syllabic languages is usually per-
formed through transliteration, which tries to preserve the
pronunciation in the original language.

Most non-alphabetic languages have standard Roman-
ization systems that map an item in the source language
to its alphabetic format. So transliteration from a non-
alphabetic language to an alphabetic language is not chal-
lenging. However, the other direction (an alphabetic lan-
guage to a non-alphabetic language) is usually a difficult
task, due to the mismatch of written units and a lack of stan-
dard conversion systems (functioning as reverse Romaniza-
tion systems).

For example, in Chinese, foreign words are written
with Chinese characters; in Japanese, foreign words are usu-
ally written with special syllabic characters (specially de-
signed for imported words) called Katakana; examples are

Manuscript received March 17, 2010.
Manuscript revised July 28, 2010.
†The authors are with the Dept. of Computer Science, Tokyo

Institute of Technology, Tokyo, 152–8552 Japan.
a) E-mail: raymond@furui.cs.titech.ac.jp

DOI: 10.1587/transinf.E93.D.3377

given in Fig. 1.
An intuitive transliteration method [1] is to firstly con-

vert a source word into phonemes, then find the correspond-
ing phonemes in the target language, and finally convert
them to the target language’s written system. There are two
reasons why this method doesn’t work well: first, the named
entities are usually OOVs with diverse origins and this
makes the grapheme-to-phoneme conversion very difficult;
second, the transliteration is usually not only determined by
the pronunciation, but also affected by the grapheme, e.g.
the Japanese example in Fig. 1, a Katakana “ru” is inserted
into the Japanese transliteration because of the existence of
r in the grapheme, despite the fact that there is no /r/ in the
English pronunciation.

Direct orthographical mapping (DOM), which per-
forms the transliteration between two languages directly
without using any intermediate phonemic mapping, has re-
cently been gaining more attention in the transliteration re-
search community, and it is also the “Standard Run” of the
“NEWS 2009 Machine Transliteration Shared Task” [2]. In
this paper, we try to make our system satisfy the standard
evaluation condition, which requires that the system uses the
provided parallel corpus (without pronunciation) only, and
cannot use any other bilingual or monolingual resources.

The source channel model and joint source channel
model (JSCMs) [3] have been proposed for DOM, and they
try to model P(T |S) and P(T, S), respectively, where T and
S denotes the words in the target and source languages. [4]
modified the JSCM to incorporate different contextual infor-
mation into the model for Indian languages. Several meth-
ods based on discriminative models have been proposed for
machine transliteration [2], [5]–[7], and one of them [2], [6]
has achieved the state-of-the-art result. One of the problems
with these methods is that the algorithm is usually very com-
plex and takes a very long time to implement.

For the “NEWS 2009 Machine Transliteration Shared
Task” we have proposed a new two-step conditional random

Fig. 1 Transliteration examples.

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

3378
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010

field (CRF) model for transliteration [8], in which the first
step is to segment a word in the source language into char-
acter chunks and the second step is to perform a context-
dependent mapping from each chunk into one written unit
in the target language. We summarize the method in this pa-
per and report our recent progress on further improving the
two-step CRF method. We propose jointly optimizing the
two steps together and a fast decoding algorithm to speed
up the joint search.

Following the two-step CRF model, we propose a
method to rapidly implement the JSCM using weighted fi-
nite state transducers (WFSTs). In the implementation, we
convert all the sub-tasks into WFSTs, and use publicly avail-
able toolkits to perform the standard operations, such as
compositions and n-best search. Although the WFST has
already been used for machine transliteration [1], it was im-
plemented for the source channel model (not for the JSCM)
and it could not deal with character chunks.

We also propose a method to combine the two-step
CRF model and the JSCM.

The rest of this paper is organized as follows: Section 2
describes the system structure, and Sect. 3 introduces our
proposed two-step CRF model, followed by Sect. 4 which
describes our joint optimization method and its fast decod-
ing algorithm; Section 5 introduces our rapid implementa-
tion of a JSCM system; System combination and experi-
ments are described in Sects. 6 and 7, respectively; Sec-
tion 8 discusses experimental results; the last section con-
cludes this paper and points out future work. Although
our method is language independent, we use an English-
to-Chinese transliteration task in all the explanations and
experiments.

2. System Structure

The structure of our system is shown in Fig. 2, details of
which will be explained in the following sections. The ba-
sic procedure of our system is as follows. Parallel training
data is aligned first, and then a WFST based JSCM system
and a two-step CRF system are built from the aligned data,

Fig. 2 System structure.

respectively. When performing the transliteration, outputs
from the two systems are combined to obtain the final re-
sult.

3. A Two-Step CRF Model for Machine Transliteration

We formalize machine transliteration as a two-step CRF tag-
ging problem, as shown in Fig. 3. The first CRF segments
an English word into chunks, and the second CRF converts
each chunk to a Chinese character.

The alignment used for CRF training is obtained by the
method described in Sect. 5.1.

3.1 CRF Introduction

A chain-CRF [9], which is an undirected graphical model,
assigns a probability to a label sequence L = l1l2 . . . lT ,
given an input sequence C = c1c2 . . . cT ,

P(L|C) =
1

Z(C)
exp

⎛⎜⎜⎜⎜⎜⎝
T∑

t=2

∑

k

λk fk(lt, lt−1,C, t)

⎞⎟⎟⎟⎟⎟⎠ (1)

For the kth feature, fk denotes the feature function and λk

is the parameter which controls the weighting. Z(C) is a
normalization term that ensures that the distribution sums
to one. CRF training is usually performed by the L-BFGS
algorithm [10] and decoding is performed by the Viterbi al-
gorithm.

3.2 CRF Segmenter

In the CRF, the feature function describes a co-occurrence
relation, and it is formally defined as fk(lt, lt−1,C, t) (Eq. (1)).
fk is usually a binary function, and takes the value 1 when
both observation C and transition lt−1 → lt are observed. In
our segmentation tool, we use the following features:

• Uni-gram features: C−2,C−1,C0,C1,C2

• Bi-gram features: C−1C0,C0C1

Here, C0 is the current character, C−1 and C1 denote the pre-
vious and next characters, and C−2 and C2 are the characters
located two positions to the left and right of C0.

Fig. 3 A pictorial description of a CRF segmenter and converter exam-
ple. The first line is a transliteration example, in which the mapping relation
between an English word and a Chinese word is displayed. The second line
is a segmentation example, and the tagging set is composed of two tags: B
and N, in which B represents a starting position of a new chunk and N
means a non-starting position. The third line is a converter example, in
which the tagging set is composed of about 400 Chinese chracters, and
each chunk is tagged as a character.

YANG et al.: A NEW HYBRID METHOD FOR MACHINE TRANSLITERATION
3379

Fig. 4 An example of how to perform transliteration via one-step CRF,
in which “-” represents a null output.

In our system participating in the “NEWS 2009 Ma-
chine Transliteration Shared Task”, only top-1 segmentation
is output to the following CRF converter.

3.3 CRF Converter

Similar to the CRF segmenter, the CRF converter has the
format shown in Fig. 3.

In this CRF, the sequence to be tagged is composed of
alphabet chunks, so the units here are chunks. For this CRF,
we use the following features:

• Uni-gram features: CK−1,CK0,CK1

• Bi-gram features: CK−1CK0,CK0CK1

where CK represents the English character chunk, and the
subscript notation is the same as the CRF segmenter.

3.4 Two-Step CRF-Based Transliteration

It is possible to perform transliteration using a one-step
CRF, which is shown in Fig. 4. The basic idea is to map
an English character to a Chinese character directly, instead
of an English chunk to a Chinese character. Some English
characters correspond to Chinese characters, while others
correspond to a null symbol “-”.

Compared to the two-step CRF method, the one-step
CRF method has two disadvantages. First, the training time
is much longer. In the two-step CRF method, the CRF seg-
menter’s computation is very short, and can be ignored com-
pared to that of the CRF converter. If we compare the CRF
converter and the one-step CRF, we find that they have an
almost identical tag set (there is a null tag in the one-step
CRF), but they have very different sequence length. In the
one-step CRF, the basic unit is the English character, so the
length is the number of English characters; in the CRF con-
verter, the basic unit is the chunk, so the length corresponds
to the number of chunks. The former lengths are 2.11 times
of the latter on average. When training the CRF, the normal-
ization factor is calculated as the sum over all possible tag-
ging sequences. Its computation is affected greatly by the
length of the observation sequence. Second, the two-step
CRF covers longer dependencies than the one-step CRF.
Comparing Fig. 3 and Fig. 4, as the features of two neigh-
boring observation units, the former one based on chunks
covers dependencies as long as 5 characters across, while
the latter one based on characters only covers dependen-
cies 2 characters across. The one-step CRF can use longer
features to complement the problem, for example, 2 or 3

neighboring characters and their combinations can be added
as features, and as a consequence the number of features is
significantly increased.

Our preliminary experiments show that the one-step
CRF method works substantially worse than the two-step
CRF method, and its training time is ten times longer.

4. Joint Optimization and Its Fast Decoding Algorithm
for the Two-Step CRF Method

4.1 Joint Optimization

We denote a word in the source language by S , a segmenta-
tion of S by A, and a word in the target language by T . Our
goal is to find the best word T̂ in the target language which
maximizes the probability P(T |S).

If we use only the best segmentation in the first CRF
and the best output in the second CRF, the process is equiv-
alent to

Â = arg max
A

P(A|S)

T̂ = arg max
T

P(T |S , Â), (2)

where P(A|S) and P(T |S , A) represent two CRFs, respec-
tively. This method considers the segmentation and the con-
version as two independent steps. A major limitation is that,
if the segmentation from the first step is wrong, the error
propagates to the second step, and the error is very difficult
to recover from.

To alleviate the segmentation error problem, we pro-
pose a new method to jointly optimize the two-step CRF,
which can be written as:

T̂ = arg max
T

P(T |S)

= arg max
T

∑

A

P(T, A|S)

= arg max
T

∑

A

P(A|S)P(T |A, S) (3)

The joint optimization considers multiple segmentation
possibilities and sums the probabilities over alternative seg-
mentations which generate the same output. Since it consid-
ers the segmentation and conversion in a unified framework,
this method is robust against segmentation errors.

4.2 N-Best Approximation

In the process of finding the best output using Eq. (3), ex-
act inference by listing all possible candidates and summing
the probabilities over all possible segmentation is intractable
because of the exponential computation complexity with the
source word’s increasing length.

In the segmentation step, the number of possible seg-
mentations is 2N , where N is the length of the source word
and 2 is the size of the tagging set. In the conversion step,
the number of possible candidates is MN′ , where N′ is the

3380
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010

number of chunks from the 1st step and M is the size of the
tagging set. M is usually large, e.g., about 400 in Chinese
and 50 in Japanese, and it is impossible to list all the candi-
dates.

Our analysis shows that beyond the 10th segmentation
candidate, almost all the probabilities of the candidates in
both steps fall below 0.01. Therefore we decided to generate
top-10 results for both steps to approximate Eq. (3).

4.3 Fast Decoding Algorithm

As introduced in the previous subsection, in the whole de-
coding process we need to perform n-best CRF decoding in
the segmentation step and 10 n-best CRF decoding in the
second CRF. Is it really necessary to perform the second
CRF decoding for all the segmentations? The answer is
“No” for candidates with low probabilities. Hence we pro-
pose a no-loss fast decoding algorithm that determines when
to stop performing the second CRF decoding.

Suppose we have a list of segmentation candidates
which are generated by the 1st CRF, ranked by probabilities
P(A|S) in descending order A : A1, A2, . . . , AN and we are
performing the 2nd CRF decoding starting from A1. Up to
Ak, we get a list of candidates T : T1,T2, . . . ,TL, ranked by
probabilities in descending order. If we can guarantee that,
even performing the 2nd CRF decoding for all the remaining
segmentations Ak+1, Ak+2, . . . , AN , the top 1 candidate does
not change, then we can stop decoding.

We can show that the following formula is the stop con-
dition:

P(T1|S) − P(T2|S) > 1 −
k∑

j=1

P(Aj|S). (4)

This means that the probability of all the remaining
segmentation candidates is smaller than the probability dif-
ference between the best and the second best candidates;
that is, even if all the remaining probabilities are added to
the second best candidate, it still cannot overturn the top
candidate.

The stop condition here has no approximation nor pre-
defined assumption and it is a no-loss fast decoding algo-
rithm. Along with the top-1 candidate, we can get a list of
n-best results.

5. Rapid Development of a JSCM System

The JSCM describes how the source words and target words
are generated simultaneously [3]:

P(S ,T) = P(s1, s2, . . . , sk, t1, t2, . . . , tk)

= P(< s, t >1, < s, t >2, . . . , < s, t >k)

=

K∏

k=1

P(< s, t >k | < s, t >k−1
1) (5)

where S = (s1, s2, . . . , sk) is a word in the source langauge,
T = (t1, t2, . . . , tk) is a word in the target language, and sk, tk

Fig. 5 An example of the aligned output, and how the JSCM probability
is calculated.

are either a written unit or several written units. An example
is given in Fig. 5. From Eq. (5), we can see that P(S ,T) can
be calculated in the same way as a language model, which
can be approximated by an n-gram language model.

5.1 Alignment

Given a parallel corpus composed of English and Chinese
word pairs, the first step is to obtain the alignment which
represents mapping relations between the two languages.
Since there are no order changes in the alignment, what we
have to do is to assign an English word and a Chinese word
with the same number of units. We can either insert null
characters into the Chinese word, or group English charac-
ters into chunks. In this paper, we perform the alignment
using the latter method, grouping English characters into
chunks.

In the alignment procedure, the initial alignments are
created by performing random alignments across the train-
ing set, and then n-gram statistics are obtained. These statis-
tics are used in Viterbi alignment to generate a new segmen-
tation. Our method is almost the same as [3] which can be
summarized as follows:

1. Initialize a random alignment
2. Calculate an n-gram model
3. E-step: apply the n-gram model to realign each entry

in the corpus
4. M-step: update n-gram probabilities
5. Repeat 3 and 4 until the alignment converges

An example after the alignment is given in Fig. 5, in
which the method for calculating a joint probability is also
shown.

5.2 WFST Decoder Construction

The decoding problem in the JSCM can be written as:

T̂ = arg max
T

P(S ,T). (6)

We implement the JSCM system based on the WFST
framework. WFSTs are widely used in the areas of speech
and language processing. Construction of the WFST and

YANG et al.: A NEW HYBRID METHOD FOR MACHINE TRANSLITERATION
3381

searching the WFST are both performed using standard op-
erations, such as composition and shortest path in the Open-
Fst toolkit [11]. The advantages of a WFST approach are
rapid system design and implementation. Because there is
no need to write a specific decoder, our development focuses
on how to represent problems by WFSTs .

After generating the alignments, a corpus to train the
transliteration WFST is built. Each aligned word pair is
converted to a sequence of transliteration alignment pairs
〈s, t〉1 , 〈s, t〉2 , . . . 〈s, t〉k, where each s can be a chunk of one
or more English characters and t is assumed to be a single
Chinese character.

The entire set of alignments is used to train an n-gram
language model, treating each of the pairs as a word. In
the evaluation we used the MITLM toolkit [12] to build an
n-gram model with modified Kneser-Ney smoothing. The
language model is converted to a standard weighted accep-
tor representation. The acceptor is then converted to a trans-
ducer by simply splitting the label into sk and tk components
and setting them respectively as input and output to give a
transducer M [13].

Since the inputs for M are English character chunks,
the second WFST T is constructed to convert characters into
chunks to allow transliteration from a sequence of individual
characters. T starts with a single state and for each English
chunk s a path is added to map the string of individual char-
acter input to chunks on the output. These characters are
also chunks themselves and an arc is added for each charac-
ter that performs a simple one-to-one mapping, as shown in
Fig. 6.

An input word is converted to a linear chain acceptor I,
which contains an arc for each character in the input word.
The three transducers are composed together and the best
transliteration can be found using:

bestpath (π (I ◦ T ◦ M)) (7)

Where ◦ denotes the composition operator and π is the
projection which converts a transducer to an acceptor with
the output labels, and further compacting can be achieved
by applying epsilon removal. The system can be extended
to generate n–best paths by using the n-shortest paths algo-
rithm with determinization to ensure that top n results con-
tain different transliteration candidates.

Fig. 6 An example of the WFST T , in which arcs for a chunk “sa” are
constructed.

6. System Combination

We propose a method to combine the two-step CRF model
and the JSCM. From the two-step CRF model we get a con-
ditional probability PCRF(T |S) and from the JSCM we get
a joint probability P(S ,T), and a conditional probability of
PJS CM(T |S) can be calculated as follows:

PJS CM(T |S) =
P(T, S)

P(S)
=

P(T, S)∑
T P(T, S)

. (8)

They are used in our combination method as:

P(T |S) = λPCRF(T |S) + (1 − λ)PJS CM(T |S) (9)

where λ denotes the interpolation weight which is set by
using development data.

7. Experiments

7.1 Evaluation Metric

We use the first three metrics from [2] to measure the per-
formance of our system. They are roughly described below;
details can be found in [2].

1. Top-1 ACC: word accuracy of the top-1 candidate
This measures the correctness of the first generated

transliteration. Sometimes there are several correct refer-
ences for a word. ACC = 1 means all top candidates are
correct transliterations i.e. they match one of the references,
and ACC = 0 means that none of the top candidates are cor-
rect.

2. Mean F-score: fuzziness in the top-1 candidate, how
close the top-1 candidate is to the closest reference

This measures how different, on average, the top
transliteration candidate is from its closest reference. Pre-
cision and Recall are calculated based on the length of the
longest common subsequence (LCS) between a candidate
and a reference.

3. MRR: mean reciprocal rank, 1/MRR tells approxi-
mately the average rank of the correct result

Since our decoding algorithm aims at obtaining the best
result in the first place, the Top-1 ACC is used as our major
metric.

7.2 Corpus Used in Experiments

We use the training, development and test sets of NEWS
2009 data for English-to-Chinese in our experiments as de-
tailed in Table 1. It is a parallel corpus and is not aligned.

Table 1 Corpus size (number of word pairs).

Training data Development data Test data
31961 2896 2896

3382
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010

7.3 Comparison with the JSCM

We first compared our two-step CRF method,which uses
only the best candidates in both CRF steps as shown in
Eq. (2), with the well known JSCM. We then added the
joint optimization as shown in Eq. (3) to the two-step CRF
method and compared it with the JSCM. As shown in Ta-
ble 2, the proposed joint decoding method improved the top-
1 ACC from 0.670 to 0.708, and it worked as well as or even
better than the well known JSCM in all three measurements.

Our experiments also show that the decoding time can
be reduced significantly using our fast decoding algorithm.
As we have explained, without fast decoding, we need 11
CRF n-best decoding for each word. The number can be
reduced to 3.53 (1 from “the first CRF” +2.53 from “the
second CRF”) via the fast decoding algorithm.

7.4 System Combinations

We use the combination methods described in Sect. 6. As
shown in Table 3, the linear combination of two sytems fur-
ther improves the top-1 ACC to 0.720, and it outperforms
the best reported “Standard Run” [2], [6] result 0.717 (The
reported best “Standard Run” achieved 0.731 but it used tar-
get language phoneme information which required a mono-
lingual dictionary; as a result it was not a standard run).

7.5 Statistical Significance Tests

For the top-1 accuracy results in Tables 2 and 3, we have

Table 2 Comparison of the joint optimization with the baseline method
and the JSCM.

Measure Top-1 ACC Mean F-score MRR
CRF 0.670 0.869 0.750
(1-best)
CRF 0.708 0.885 0.789
(Joint optimization)
JSCM 0.706 0.882 0.789

Table 3 Model combination results.

Measure Top-1 ACC Mean F-score MRR
CRF (1-best) + JSCM 0.713 0.883 0.794
CRF (Joint optim-
-ization) + JSCM 0.720 0.888 0.797
state-of-the-art [2], [6] 0.717 0.890 0.785

Table 4 Statistical significance test results: whether System II is better
than System I (strong significance ©, weak significance �, and otherwise
×). Note that since we do not have the top-1 transliteration output of the
state-of-the-art method [2], [6], we cannot perform significance test with it.

System II JSCM CRF-J 1+2 2+3
System I
1 CRF (1-best) © © © ©
2 JSCM × © ©
3 CRF-J (Joint) © ©
1 + 2 �

performed the binomial statistical significance tests. We de-
fine 1% as the strong significance level, and 5% as the weak
significance level. The significance test results are shown in
Table 4. In most of the tests, the null hypothesis is rejected.

8. Discussions

Since the JSCM was proposed in machine transliteration [3],
it has become the most well known statistical method be-
cause of its simplicity and excellent performance. The rea-
son behind its effectiveness is that there are very good lan-
guage model smoothing algorithms to adjust the conditional
probabilities used in Eq. (5).

The performance of the proposed two-step CRF
method is as good as or even better than JSCM. The main
difference between our CRF method and the JSCM exists in
the information used. The CRF uses the immediate previous
and next chunks, while the JSCM tri-gram implementation
uses previous two chunks. Although the CRF uses shorter
histories than the JSCM, it uses future chunks. It is possible
for CRF to use longer histories, but computation may then
become a problem. Our CRF training took 13 hours on an 8-
core computer, and including longer histories should require
a significantly longer training time.

Combining the CRF and JSCM leads to better perfor-
mance, probably because the feature sets that they use com-
plement each other. As a result, the combination leads to the
best performance, as shown in our experiment.

In the decoding part, it is also possible to use a thresh-
olding method to further reduce the computational cost.
We have tried the following method. Since the JSCM
is much simpler, we use it as our main system; when
PJS CM(Ttop−1|S) > threshold, we do not use the 2-step CRF
system, and when PJS CM(Ttop−1|S) <= threshold, we com-
bine the JSCM and the 2-step CRF. By setting the threshold
to an appropriate value, we have found that the 2-step CRF
decoding needs to be performed for only about 35.1% of the
test data, and we still obtain the same result.

9. Conclusions and Future Work

In this paper, we have presented a new two-step CRF
method for machine transliteration, along with its new joint
optimization method and a fast decoding algorithm. We
have also presented a WFST-based method to rapidly de-
velop a general JSCM model. The proposed CRF method
works as well as or even better than the JSCM. By combin-
ing the proposed CRF method with the JSCM, the perfor-
mance was further improved and it outperformed the state-
of-the-art result in terms of top-1 accuracy.

In future work we are planning to extend our method
to other languages. Also we want to make use of acous-
tic information in machine transliteration. We are currently
investigating discriminative training as a method to further
improve the JSCM. It is also interesting to use some other
discriminative models instead of the CRF model, such as
LDCRF.

YANG et al.: A NEW HYBRID METHOD FOR MACHINE TRANSLITERATION
3383

Acknowledgements

The corpus used in the experiments of this paper is from [3].

References

[1] K. Knight and J. Graehl, “Machine transliteration,” Computational
Linguistics, vol.24, pp.599–612, 1998.

[2] H. Li, A. Kumaran, V. Pervouchine, and M. Zhang, “Report of news
2009 machine transliteration shared task,” Proc. 2009 Named Enti-
ties Workshop: Shared Task on Transliteration (NEWS 2009), Sun-
tec, Singapore, pp.1–18, Association for Computational Linguistics,
Aug. 2009.

[3] H. Li, M. Zhang, and J. Su, “A joint source-channel model for ma-
chine transliteration,” Proc. 42nd Annual Meeting on Association
for Computational Linguistics, pp.159–166, July 2004.

[4] A. Ekbal, S.K. Naskar, and S. Bandyopadhyay, “A modified joint
source-channel model for transliteration,” Proc. COLING/ACL,
pp.191–198, 2006.

[5] K. Bellare, K. Crammer, and D. Freitag, “Loss-sensitive discrim-
inative training of machine transliteration models,” Proc. Human
Language Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational Linguis-
tics, Companion Volume: Student Research Workshop and Doctoral
Consortium, pp.61–65, Association for Computational Linguistics,
Boulder, Colorado, June 2009.

[6] S. Jiampojamarn, A. Bhargava, Q. Dou, K. Dwyer, and G. Kon-
drak, “Directl: A language independent approach to transliteration,”
Proc. 2009 Named Entities Workshop: Shared Task on Translitera-
tion (NEWS 2009), pp.28–31, Association for Computational Lin-
guistics, Suntec, Singapore, Aug. 2009.

[7] D. Zelenko, “Combining mdl transliteration training with discrim-
inative modeling,” Proc. 2009 Named Entities Workshop: Shared
Task on Transliteration (NEWS 2009), pp.116–119, Association for
Computational Linguistics, Suntec, Singapore, Aug. 2009.

[8] D. Yang, P. Dixon, Y.C. Pan, T. Oonishi, M. Nakamura, and S.
Furui, “Combining a two-step conditional random field model and
a joint source channel model for machine transliteration,” Proc.
2009 Named Entities Workshop: Shared Task on Transliteration
(NEWS 2009), pp.72–75, Association for Computational Linguis-
tics, Suntec, Singapore, Aug. 2009.

[9] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random
fields: Probabilistic models for segmenting and labeling sequence
data,” Proc. International Conference on Machine Learning, pp.282–
289, 2001.

[10] H.M. Wallach, Efficient training of conditional random fields, M.
Thesis, University of Edinburgh, 2002.

[11] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri,
“OpenFst: A general and efficient weighted finite-state transducer li-
brary,” Proc. Ninth International Conference on Implementation and
Application of Automata, pp.11–23, 2007.

[12] B.J. Hsu and J. Glass, “Iterative language model estimation: Effi-
cient data structure,” Proc. Interspeech, pp.841–844, 2008.

[13] D. Caseiro, I. Trancosoo, L. Oliveira, and C. Viana, “Grapheme-to-
phone using finite state transducers,” Proc. 2002 IEEE Workshop on
Speech Synthesis, pp.841–844, 2002.

Dong Yang is a Ph.D. candidate in the De-
partment of Computer Science, Tokyo Institute
of Technology, Japan. He received the B.E. de-
gree in Electronic Engineering from Tsinghua
University in 2005 and M.E. degree in Com-
puter Science from Tokyo Institute of Technol-
ogy in 2007, respectively. His current research
interests include speech recognition and natural
language processing.

Paul Dixon received Ph.D. and BEng de-
grees from the University of Birmingham (UK)
in 2007 and 2000 respectively. Since 2006 he
has been a researcher at Tokyo Institute of Tech-
nology conducting research and development of
a WFST based speech recognition engine.

Sadaoki Furui received B.S., M.S. and
Ph.D. degrees in mathematical engineering and
instrumentation physics from Tokyo University,
Tokyo, Japan in 1968, 1970 and 1978, respec-
tively. He is engaged in a wide range of research
on speech analysis, speech recognition, speaker
recognition, speech synthesis, and multimodal
human-computer interaction and has authored
or coauthored over 800 published articles. He
has received Paper Awards and Achievement
Awards from the IEEE, the IEICE, the ASJ, the

ISCA, the Minister of Science and Technology, and the Minister of Educa-
tion, and the Purple Ribbon Medal from Japanese Emperor.

