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PAPER

On-Line Electrocardiogram Lossless Compression Using
Antidictionary Codes for a Finite Alphabet

Takahiro OTA†a), Member and Hiroyoshi MORITA††b), Senior Member

SUMMARY An antidictionary is particularly useful for data compres-
sion, and on-line electrocardiogram (ECG) lossless compression algo-
rithms using antidictionaries have been proposed. They work in real-time
with constant memory and give better compression ratios than traditional
lossless data compression algorithms, while they only deal with ECG data
on a binary alphabet. This paper proposes on-line ECG lossless compres-
sion for a given data on a finite alphabet. The proposed algorithm gives
not only better compression ratios than those algorithms but also uses less
computational space than they do. Moreover, the proposed algorithm work
in real-time. Its effectiveness is demonstrated by simulation results.
key words: antidictionary, electrocardiogram, lossless, real-time, data
compression

1. Introduction

In recent years, information and communication technolo-
gies have been used in the biomedical field. In medical com-
munication technology, various applications have been pro-
posed [1]–[3]. Moreover, there have been regulations and
standards for wireless medical devices, networks, and appli-
cations since secure, high-quality, high-reliability links, and
the ability to work with the other medical systems are re-
quired [4]. On the other hand, in medical information tech-
nology, one of this field research, called biomedical infor-
matics, deals with the resources, devices and methods to op-
timize acquisition, storage, retrieval and use of biomedical
information. It becomes more important to use electronic
biomedical data in digital format to be handled by computer
systems and networks. Data compression is particularly use-
ful in their systems where resources are scarce, e.g., limited
bandwidth in communication systems and the capacity of
storage systems.

ElectroCardioGram (ECG) is one of biomedical data.
ECG compression algorithms are required for two main rea-
sons, that is, an effective and economic data storage and
reducing communication costs. Moreover, ECG wearable
measurement devices require to conserve energy and stor-
age to extend the life of the battery and the storage for as
long as possible [5]. Data compression algorithms are also
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useful for the requirements. On the other hand, each ECG
wave has an almost same waveform while a wave differs
from other waves with respect to the period and the ampli-
tude. Moreover, a few arrhythmias occur. These properties
make it difficult to compress ECG by means of lossless data
compression, so that numerous lossy data compression algo-
rithms of ECG have been proposed [6], [7]. However, from
the point of view of clinical medicine, an on-line lossless
compression algorithm is needed since ECG compression
algorithms are required to retrieve the original ECG signals
and to work in real-time [8].

Lossless data compression algorithms typically use a
dictionary, which is the set of all substrings of an input
data, to construct statistical models and replace substrings
with indices in the dictionary (e.g., [9], [10]). On the other
hand, in 1999, Crochemore et al. proposed an off-line loss-
less data compression algorithm using an antidictionary of
an input binary string [11]. An antidictionary for a given
string is the set of all words of minimal length, called Min-
imal Forbidden Words (MFWs), which never appear in the
string. Their method, called Data Compression using Anti-
dictionary (DCA), was applied to the Calgary Corpus, that
is a well-known benchmark archives for data compression,
and it was shown to perform as well as popular compression
algorithms such as the Lempel-Ziv (LZ) algorithms [13]. It
was also proved that the DCA algorithm achieves a com-
pression rate for a balanced binary source that is equal to
its entropy rate. Some algorithms based on the DCA also
have been proposed [14]–[16]. Those algorithms work in an
off-line manner, that is, a static scheme. In 2006, an on-
line linear compression algorithm based on the DCA algo-
rithm was proposed [17]. This algorithm, called Arithmetic
Coding based on the DCA (ACDCA), gives 20% improve-
ment in average compressed file size relative to the DCA
algorithm [12]. Moreover, some algorithms based on the
ACDCA also have been proposed [18], [19].

Regarding ECG lossless compression, in 2004, an on-
line lossless data compression algorithm using antidictionar-
ies of a given binary ECG data was proposed [20]. Ex-
perimental results showed that this algorithm achieves bet-
ter compression ratios than those of the original DCA and
the LZ algorithms for files on the MIT-BIH arrhythmia
database [21]. In 2009, an arithmetic coding based on the al-
gorithm was proposed [22]. These algorithms work in real-
time with constant computational memory since they use
an antidictionary constructed from training data of constant
length of an input ECG data.

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers
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However, these algorithms can deal with only binary
ECG data since compression ratios get worse as alphabet
size increases since the size of an antidictionary is propor-
tional to alphabet size [15]. To deal with ECG data over a
finite alphabet, we can apply the ACDCA to ECG data, how-
ever, it is difficult to handle an extremely long data such as
ECG since the ACDCA requires computational memory in
proportional to the data size.

In this paper, we propose a new on-line ECG loss-
less compression based on the ACDCA with aim to handle
ECG data over a finite alphabet and improve compression
ratios. The proposed algorithm works in real-time and uses
small computational memory in coder size relative to the
traditional algorithm [22]. Their effectivenesses are demon-
strated by simulation results.

This paper is organized as follows. Section 2 gives a
review of DCA algorithms and contains the basic notations
and definitions. Section 3 gives a proposed algorithm, and
Sect. 4 evaluates the proposed algorithm by computer simu-
lations for files of the MIT-BIH Arrhythmia Database. Sec-
tion 5 summarizes our results.

2. Review of ECG Lossless Compression Using Anti-
dictionaries

2.1 Basic Definitions and Notations

Let X be a finite source alphabet {ξ0, ξ1, . . . , ξn−1} and X∗ be
the set of all finite strings overX, including the null string of
length zero, denoted by λ. For a string x = x1x2 . . . xn ∈ X∗,
let xi be a prefix of x of length i, that is,

xi =

{
x1x2 . . . xi (1 ≤ i ≤ n),
λ (i = 0).

(1)

Let S(x) be the set of all suffixes of x, that is,

S(x) = {x jx j+1 . . . xn|1 ≤ j ≤ n} ∪ {λ}, (2)

and we define that S(λ) = {λ}. The dictionary D(x) is de-
fined as the set of all substrings of x, that is,

D(x) = {xk xk+1 . . . xl | 1 ≤ k ≤ l ≤ n} ∪ {λ}. (3)

A string v = v1v2 . . . vm (m ≥ 1) with following three prop-
erties

v � D(x), (4)

v1 . . . vm−1 ∈ D(x), (5)

v2 . . . vm ∈ D(x) (6)

is called a Minimal Forbidden Word (MFW) of x. Note that
v1 . . . vm−1 and v2 . . . vm are λ in case of m = 1. The anti-
dictionary of x, denoted by A(x), is defined as the set of
all MFWs of x. For example, the antidictionary A(x) of
x = 011021 and X = {0, 1, 2, 3}, is given by

{3, 00, 12, 20, 22, 010, 101, 111, 210, 211}. (7)

Moreover, A(x) is classified into two classes, AI(x) and
AL(x) [17]. For a string x of length n,AI(x) is defined as

AI(x)= {v|v=ua ∈ A(x),u ∈ D(xn−1), a ∈ X}, (8)

andAL(x) = A(x)\AI(x), respectively. For example,AI(x)
andAL(x) of x = 011021 are given by

{3, 00, 12, 20, 22, 010, 101, 111} and {210, 211}, (9)

respectively. We use a fanction | · | to represent not only the
length of a string but also the size of a set.

The suffix tree T(x) is a tree structure that stores all
elements of S(x) [23]. Let Ti be the suffix tree of xi. The
string associated with the path from the root ρ to a node p in
T(x) is called the path-string and is denoted by w(p). Notice
that let w(ρ) be the null string λ. For any node p in Ti, let
Li(p) be the set of all symbols that are associated with all
edges sprouting from p, that is,

Li(p) = {a |w(p)a ∈ D(xi), a ∈ X}. (10)

A node p is an internal node if the size |Li(p)| ≥ 1, oth-
erwise p is an external node (or leaf ), that is |Li(p)| = 0.
An internal node p is called an explicit node if |Li(p)| ≥ 2,
otherwise p is called an implicit node, that is |Li(p)| = 1.
Figure 1 shows suffix tree T(x) of x = 011021. It consists of
fourteen internal nodes and five leaves. White circles, black
circles, and squares indicate explicit, implicit nodes and
leaves, respectively. For example, for node p2, w(p2) = 1
and L6(p2) = {0, 1}. Note that for an MFW ua ∈ AI(x),
there exists an internal node p such as w(p) = u, while
for an MFW va ∈ AL(x), there exists the leaf q with the
shortest path length among all the leaves of T(x), where
w(q) = v [24].

For a node p � ρ in Ti, we can write w(p) = av, where
a ∈ X and v ∈ X∗. Let q be a node such that w(q) = v,
and we establish a pointer from p to q, called a suffix link,
and denoted by σ(p). For a node r in Ti, let d be an integer

Fig. 1 Suffix tree T(x) of x = 011021.
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such as 0 ≤ d ≤ |w(r)|. For a fixed d, σd(r) represents a
node s such that w(s) ∈ S(w(r)) and |w(s)| = d are satisfied.
In other words, s is a node on suffix links from r to ρ such
as |w(s)| = d. For example, σ(p10), σ1(p10), and σ3(p13)
represent p6, p1, and p9, respectively.

2.2 ECG Lossless Compression Based on the DCA

For a given binary string x of length n, DCA algorithm en-
codes x to γ by usingA(x) with an off-line manner in linear
time [12]. Suppose to have just read proper prefix xi of x. If
a string u0 (resp. u1) ∈ A(x), such that u is a suffix of xi,
then symbol xi+1 is not symbol 0 (resp. 1) since the alpha-
bet is binary {0, 1}. Therefore, the following symbol xi+1 is
surely symbol 1 (resp. 0). The DCA eliminates xi+1 to com-
press x since the next symbol xi+1 is turned out to be redun-
dant or predictable. The DCA outputs a triplet (A(x),γ, n)
as the codeword. The DCA uses a finite deterministic au-
tomaton, called AD-automaton, to find a proper MFW, that
is u0 (resp. u1), efficiently [12]. The AD-automaton is con-
structed from A(x) or the subset. Figure 2 shows an AD-
automaton of A(x) = {000, 111, 1010, 1101}. Circles and
squares represent states and sinks, respectively. State q0

represents the initial state. A state has two outgoing edges
labeled symbol 0 and 1, respectively. For a state s and an
input symbol a ∈ {0, 1}, a transition (s, a) = t from state
s to state t with a is implemented by traversing an outgo-
ing edge labeled symbol a from s. For example, (q3, 0) and
(q2, 1) is q4 and q3, respectively. In encoding process, tran-
sitions are implemented by using x starting from q0. The
output γ is given by using an AD-automaton as follows: if
a state has two outgoing edges toward states, then the out-
put symbol coincide with its input symbol; if a state has
one outgoing edge toward a sink, then no symbol is output
since a transition to a sink corresponds to an occurrence of
an MFW [12]. To avoid trivial cases, we suppose that a state
has at least one outgoing edge toward a state. For example,
for x = 1100100, γ is given by 1100 since the transitions is
implemented as follows:

q0 → q3 → q6 → q7 → q2 → q3 → q4 → q2. (11)

Symbols are output at states q0, q3, q4.
To encode x of ECG data with an on-line manner, ECG

data compression algorithms based on the DCA have been

Fig. 2 AD-automaton ofAI (x) = {000, 111, 1010, 1101}.

proposed [20], [22]. In [22], the EDCA algorithm and the
EACDCA algorithm which is the EDCA applied to arith-
metic coding have been proposed. Arithmetic coding is one
of entropy codings (cf. [10]). Figure 3 shows diagrams of
the EDCA and the EACDCA. The EDCA has the advantage
of computational time, while the EACDCA has that of com-
pression ratios. Both algorithms useAI(t) of a proper prefix
xl (= t) or a substring t of x of length l as training data in-
stead of a whole input string x since each ECG wave is sim-
ilar to the others. The antidictionary AI(t) is constructed
in the preprocessing. It was studied on the string length l
needed to construct an antidictionary whose size is almost
same as that of the whole string of ECG [20]. In Fig. 3,
AC encoder and AC decoder represent an encoder and a de-
coder of adaptive arithmetic coding order-0 (cf. [10]), re-
spectively. To improve compression ratios, the EACDCA
encodes γ by using AC encoder. Let N(p) and N(p, a)
be a number of transition times from state p and a num-
ber of transition times of edge labeled symbol a from p,
where N(p) = N(p, 0) + N(p, 1). Note that an initial value
N(p, a) is assigned by 1. The EACDCA encodes a probabil-
ity N(p, a)/N(p) by using AC encoder instead of outputting
symbol a straightforwardly. In other words, the EACDCA
uses an AD-automaton as a probabilistic model. A basis of
the idea was first proposed by Ohkawa et al., while their
algorithm only works with an off-line manner [16].

2.3 ACDCA Algorithms

First, a setVi(xi) is defined as a subset ofAI(xi), that is,

Vi(xi)= {v|v=ua ∈ AI(xi),u ∈ S(xi), a ∈ X}. (12)

If |Vi(xi)| = |X| − 1 and uxi+1 � Vi(xi) for any u ∈ S(xi)
are satisfied, then the symbol xi+1 is eliminated with DCA
manner since xi+1 is predictable. However, straightforward
implementations of dynamic DCA algorithms require worst
case O(n2) time with respect to a string length n to calculate
|Vi(xi)| since they need to update AI(xi) whenever a new

Fig. 3 Block diagrams of two ECG compression systems (EDCA and
EACDCA).
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Table 1 Relationship between αi and the codeword of xi+1.

case output conditions notes

(a) (I,R(xi+1)) xi+1 � Li(αi) an MFW occurs.
(b) none xi+1 ∈ Li(αi) and xi+1 is

|Li(αi)| = 1 eliminated.
(c) Pr(xi+1|αi) xi+1 ∈ Li(αi) and αi is an

|Li(αi)| ≥ 2 explicit node.

symbol is read [12], [14]–[16].
On the other hand, the ACDCA algorithms calculate

|Vi(xi)|with an on-line manner in linear time [17]–[19]. The
ACDCA algorithms use dynamic suffix trees to reduce com-
putational time. A linear construction algorithm of dynamic
suffix tree has been proposed by Ukkonen [25]. In the Ukko-
nen algorithm, a pointer to node in suffix tree, called active
point, plays a key roll in linear time for the construction of
the tree. An active point αi of Ti is defined as follows.

Definition 1 (active point). The active point αi is the node
p of Ti such that w(p) is the longest string in (S(xi) ∩
D(xi−1)).

In other words, w(αi) is the longest suffix of xi that has a
copy inD(xi−1). For active point αi and i > 0,

|Vi(xi)| = |X| − |Li(αi)| (13)

holds [17]. From (13), we can calculate |Vi(xi)| by using |X|
and |Li(αi)|.

Table 1 shows the relationship between αi and the
codeword of xi+1 in the ACDCA. In case-(a), I represents
an interval of occurrence of case-(a) and R(xi+1) represents
a rank of xi+1 in X (0 ≤ R(xi+1) ≤ |X|−1). Let Ri be a set
of the longest string w(p)c in (S(w(αi)c) ∩ D(xi−1)) or {c}
for each c ∈ X. Strings of Ri are sorted in descending or-
der of length either that of the following counter Ñ(c|p) in
case-(c) if lengths are the same or in lexicographical order if
those are the same. The rank R(xi+1) is the rank of the string
which has xi+1 as the last symbol in Ri. The rank R(xi+1)
is used to convert xi+1 into a small integer to improve the
compression ratio, and it can be simply determined in the
Ukkonen algorithm. The details are described in [18]. The
pair I and R(xi+1) are encoded by adaptive arithmetic cod-
ing using order-0 model. In case-(b), no symbol is output
since xi+1 is eliminated from (13). In case-(c), we use the
probability Pr(xi+1|αi) to encode xi+1 by adaptive arithmetic
coding order-0 model. For an explicit node p, let Ñ(c|p) be
a counter that has the number of traversed times by an active
point from p with symbol c. The probability Pr(xi+1|αi) is
given by Ñ(xi+1|αi)/

∑
c∈Li(αi) Ñ(c|αi).

3. Proposed Algorithm

The ACDCA algorithms work in an on-line manner with lin-
ear time and give better compression ratios than those of the
DCA algorithms do. Moreover, those algorithms are able
to deal with a string over a finite alphabet. However, the
ACDCA algorithms require computational memory in pro-
portional to the string length. On the other hand, the EDCA

and the EACDCA work with constant computational mem-
ory, while they are able to deal with only a string on a binary
alphabet.

In this section, we propose a new on-line ECG loss-
less compression algorithm based on the ACDCA and the
EACDCA. The proposed algorithm works with constant
computational memory in an on-line manner. To deal with
ECG data over a finite alphabet, the proposed algorithm con-
structs its encoder and decoder from training data by using
the ACDCA with an on-line manner.

3.1 Preliminaries

To reduce computational memory, we use a set of MFWs of
restricted length less than or equal to d + 1. A set Wi(xi)
is defined as a subset of elements ofVi(xi) whose length is
less than or equal to d + 1, that is,

Wi(xi)= {w|w= za ∈ AI(xi), z∈S(xi), |z|≤d, a∈X}.
(14)

Next, we define modified active point μi to calculate |Wi(xi)|
efficiently and show Proposition 1.

Definition 2 (modified active point). For a fixed integer
d ≥ 0 and αi,

μi =

{
αi (|w(αi)| ≤ d),
σd(αi) (|w(αi)| > d).

(15)

Proposition 1. For μi and |Wi(xi)|, if i > 0, then

|Wi(xi)| = |X| − |Li(μi)|. (16)

Proof. The proof is omitted here since it is described in the
proof of Proposition 1 in [19], [28]. �

From (16), we can calculate |Wi(xi)| by using |X| and
|Li(μi)|. The proposed algorithm uses a subtree of Ti, called
ST-automaton, whose height is d + 1, to calculate |Li(μi)|
efficiently. The subtree has the same root and consists of all
internal nodes within height d and all edges sprouting from
the internal nodes in Ti. Figure 4 shows a ST-automaton
of x = 0110211 for d = 2. Break lines represent suffix
links, and all the nodes except root ρ have a suffix link. A
white circle has at least two edges and black circle has an
edge. A modified active point μi traverses internal nodes
of a ST-automaton. Note that μi does not traverse deepest
edges which are at d + 1 in the ST-automaton since a length
of w(μi) does not exceed d from Definition 2. To avoid trivial
cased, all the nodes have at least one edge.

Table 2 shows the relationship between μi and the code-
word of xi+1 in the proposed algorithm. The proposed al-
gorithm uses μi instead of αi to encode xi+1 shown in Ta-
ble 2, while the ACDCA uses αi to encode xi+1 shown
in Table 1. In case-(a), Î represents an interval of occur-
rence of case-(a) and R̂(xi+1) represents a rank of xi+1 in
X (0 ≤ R̂(xi+1) ≤ |X|− 1). In case-(b), no symbol is out-
put since xi+1 is eliminated from (16). In case-(c), we use
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Fig. 4 ST-automaton for x = 0110211.

Table 2 Relationship between μi and the codeword of xi+1.

case output conditions notes

(a) (Î, R̂(xi+1)) xi+1 � Li(μi) an MFW occurs.
(b) none xi+1 ∈ Li(μi) and xi+1 is

|Li(μi)| = 1 eliminated.
(c) Pr(xi+1|μi) xi+1 ∈ Li(μi) and μi is an

|Li(μi)| ≥ 2 explicit node.

Fig. 5 Block diagram of the proposed compression system.

the probability Pr(xi+1|μi) to encode xi+1 by adaptive arith-
metic coding order-0 model. The probability Pr(xi+1|μi) is
given by N̂(xi+1|μi)/

∑
c∈Li(μi) N̂(c|μi), where N̂(c|p) counts

number of traversed times by a modified active point from p
with symbol c.

3.2 Proposed ECG Compression System

Figure 5 shows a diagram of the proposed algorithm.
Both ST-automatons are updated only if SW1 and SW2
are closed. To reduce computational memory of the ST-
automatons to constant and to synchronize them, we use a
fixed length l of prefix of ECG as training data t (= xl) to
construct them.

A symbol xi+1 (i < l) is encoded by using a updat-
ing ST-automaton, that is a subtree of Ti, while a symbol
x j+1 ( j ≥ l) is encoded by using a fixed ST-automaton con-
structed from xl. To encode x j+1, a pointer π j to node of
the fixed ST-automaton is used instead of μi in Table 2. The

codeword of x j+1 is obtained by replacing μi with π j in Ta-
ble 2. Initial pointer πl indicates μl, and π j+1 is determined
from π j and x j+1 as follows:

π j+1=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(π j, x j+1), (x j+1 ∈L j(π j), |w(π j)|<d)
(σ(π j), x j+1), (x j+1 ∈L j(π j), |w(π j)|=d)
η. (x j+1 �L j(π j))

(17)

Node η is a node (p, x j+1) such that x j+1 ∈ L j(p) and w(p)
is the longest string among all nodes on the suffix links from
σ(π j) to ρ. If there does not exist p such as x j+1 ∈ L j(p),
then η is ρ. By using suffix links of a ST-automaton, the node
η is determined, simply. For example, for z = 0110023 and
initial π0 = ρ, transitions on a fixed ST-automaton shown in
Fig. 4 are as follows:

ρ
0→ p1

1→ p4
1→ p7

0→ p6
0→ p1

2→ p5
3→ ρ. (18)

In transitions (p6, 0) and (p5, 3), output of case-(a) in Table 2
occur, and in (p4, 1) and (p7, 0), case-(b) occur. In (ρ, 0),
(p1, 1), and (p1, 2), output of case-(c) occur.

Note that asymptotic optimality of the proposed al-
gorithm for a stationary ergodic Markov source has been
proved [29].

4. Experimental Results

In this section, we show the performance of the proposed al-
gorithm by simulation results. In experiments, we used ECG
files on the MIT-BIH Arrhythmia Database [21] since ECG
is frequent measured and monitored for a patient having a
heart disease. An ECG data which is sampled at a rate of
360 samples/s (one sample is represented as 16 bits (2 bytes)
by padded 5 zeros of one sample with 11 bits resolution) and
has 6.5 · 105 samples (1.3 Mbytes (about 30 min.)). To eval-
uate performance of the proposed algorithm compared with
standard data compression applications such as bzip2 [26],
the proposed algorithm uses one byte (= 8 bits) for a symbol
since they also use one byte for a symbol. It is reported that
the EDCA and the EACDCA used one bit for a symbol [22].
In other words, one sample of ECG data is represented by
two symbols (= 2 bytes) in the proposed algorithm. A com-
pression ratio is given by (compressed file-size)/(input file-
size (=1.3 Mbytes)). In our experiments, the left-padded
5 zeros are not removed in preprocessing. The reason is
that the proposed algorithm uses one byte for a symbol and
entropy coding. By using entropy coding, length of code-
word for a symbol depends on only probability calculated
by number of traversed times with the symbol from a node
of its ST-automaton even if the symbol includes the padded
zeros.

Table 3 shows compression ratios of the proposed al-
gorithm on ten files on the MIT-BIH Arrhythmia Database,
along with the EDCA [22], the EACDCA [22], and bzip2
which is one of high-performance off-line lossless compres-
sion applications using the Burrows-Wheeler Transforma-
tion (BWT) [27] with entropy coding. In Table 3, we used
l = 0.1 Mbyte as the training data length. The reason is
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Table 3 Compression ratios (l = 0.1 Mbyte).

ECG file proposed EDCA EACDCA bzip2
100 0.24 0.31 0.26 0.26
101 0.25 0.35 0.27 0.27
102 0.24 0.32 0.26 0.26
103 0.26 0.34 0.29 0.27
104 0.27 0.37 0.29 0.28
105 0.31 0.37 0.34 0.30
200 0.31 0.38 0.33 0.31
201 0.24 0.32 0.26 0.24
202 0.28 0.33 0.30 0.28
203 0.35 0.43 0.39 0.34

Average 0.27 0.35 0.29 0.28

that the EDCA and the EACDCA used l = 0.1 Mbyte in ex-
periments [22]. To obtain the best results for the proposed
algorithm with l = 0.1 Mbyte, we selected the optimal value
of d, that is d = 2. It is reported that both the EDCA and
the EACDCA with l = 0.1 Mbyte used unbounded d, that
is d = ∞. In the experiments, bzip2 used 0.1 Mbyte as a
block size B. The BWT needs at least 5 · B bytes to store
an array of symbols (1 · B bytes) and an array of their in-
dices (4 · B bytes) in our experiments. Experimental results
show that the proposed algorithm achieved better compres-
sion ratios for all files than the EDCA and the EACDCA.
Moreover, the proposed algorithm achieved better compres-
sion ratios for 5 files and the same ratios for 3 files in 10
files than that of bzip2, and the average compression ratio of
the proposed algorithm was better than that of bzip2. Note
that bzip2 is not able to work in an on-line manner since it is
an off-line compression algorithm, while the proposed algo-
rithm works in an on-line manner. In file 105 and file 203,
the compression ratios are worse than those of bzip2. The
reason is that there are many noise signals in the latter of the
files which do not appear in the training data.

Here, if we apply d = 2 to the EACDCA with l =
0.1 Mbyte, its average compression ratio rises up to 0.37 for
the same files shown in Table 3. The EACDCA applied to
d = 2 uses a set of MFWs whose length is at most 24 bits (=
3 bytes). Note that for a given d, the maximum length of
MFWs is given by d+1 bytes from (14). The conditions d =
2 and l = 0.1 Mbyte are the same conditions of the proposed
algorithm shown in Table 3. Experimental results show that
compression ratios improve as alphabet size increases.

In our experiments on a 3.2 GHz Pentium 4 with
2 Gbytes memory, it took about 22.1 second (about
588 kbits/s) in average to finish encode an ECG file in the
proposed algorithm. The proposed algorithm is able to
work in real-time since an ECG sampling rate is about
6 kbits/s. With respect to computational memory of coders,
ST-automatons used 260 kbytes in the average in the exper-
iments, while bzip2 needs at least 500 kbytes for the BWT.
Moreover, the average is less than that of the EACDCA
since the average computational memory of AD-automatons
is 900 kbytes [22] for the same database.

Table 4 shows that the best compression ratios of
the proposed algorithm, bzip2, and the ACDCA (L-
ACDCA [18]) in our experiments. To obtain the best re-

Table 4 Compression ratios (l = 1.3 Mbytes).

ECG file proposed bzip2 ACDCA

100 0.23 0.24 0.26
101 0.24 0.25 0.27
102 0.23 0.24 0.26
103 0.24 0.25 0.28
104 0.26 0.27 0.30
105 0.28 0.27 0.31
200 0.29 0.29 0.33
201 0.22 0.22 0.25
202 0.25 0.26 0.29
203 0.32 0.32 0.36

Average 0.25 0.26 0.29

sults for the proposed algorithm, we selected the optimal
values of d and l which are 3 and l = 1.3 Mbytes, respec-
tively. The ACDCA uses l = 1.3 Mbytes and d = ∞. In
the experiments, bzip2 used 0.9 Mbyte as a block size B to
obtain best compression ratios. Experimental results show
that the proposed algorithm achieved better compression ra-
tios for 6 files and the same ratios for 3 files in 10 files
than those of bzip2. Moreover, the proposed algorithm with
l = 1.3 Mbytes and d = 3 achieved better compression ra-
tios for all files than results of the ACDCA and the proposed
algorithm with l = 0.1 Mbyte and d = 2 shown in Table 3.
From the results of the ACDCA, it is needed to use a proper
d to achieve a good compression ratio. On the other hand,
the computational memory and time were worse than the re-
sults of the proposed algorithm with l = 0.1 Mbyte. The pro-
posed algorithm required 2.5 Mbytes for a ST-automaton,
while bzip2 needs at least 4.5 Mbytes for the BWT. It took
23.1 second (563 kbits/s) to finish encoding on average.

Figures 6, 7, and 8 show observed relation among com-
putational memory of ST-automaton, training data length l,
and impact of height d for ECG file 100, 101, and 102, re-
spectively. Experimental results show that the memory is
proportional to d and l. In the experiments, for a fixed l,
the algorithm with d = 4 required the memory whose size
is twice the memory with d = 2 on average. On the other
hand, for a fixed d, the algorithm with 2l required the mem-
ory whose size is 1.68 times the memory with l. Therefore,
to reduce the memory, decreasing d is more efficient than
decreasing l. Figure 9, 10, and 11 show observed relation
among compression ratio, training data length l, and impact
of height d for ECG file 100, 101, and 102, respectively.
Note that compression ratios with d = 0 and d = 1 were at
least 15% worse than that with d = 3. In the experiments,
the algorithm with d = 2 achieved the best compression
ratios when l is less than 0.3 Mbyte on average, while that
with d = 3 did them when l is more than 0.3 Mbyte on av-
erage. Moreover, for all d, compression ratios improved as l
increased.

Therefore, a good compression ratio can be achieved
by using d = 3 and increasing l, while the memory increases
as l grows. There is a trade-off between compression ratio
and computational memory for a given fixed d.
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Fig. 6 Relationship between training data length l and computational
memory of ST-automaton for fixed heights d = 2, 3, 4, 5 (ECG file 100).

Fig. 7 Relationship between training data length l and computational
memory of ST-automaton for fixed heights d = 2, 3, 4, 5 (ECG file 101).

Fig. 8 Relationship between training data length l and computational
memory of ST-automaton for fixed heights d = 2, 3, 4, 5 (ECG file 102).

5. Conclusion

In this paper, we proposed a new on-line ECG lossless com-
pression using antidictionary codes. The proposed algo-
rithm can handle a string over finite alphabet, while tradi-
tional algorithms using antidictionary codes deal with only
a binary string. Moreover, the proposed algorithm can be
implemented without a preprocessing and works with a con-
stant computational memory.

Fig. 9 Relationship between training data length l and compression ratio
for fixed heights d = 2, 3, 4, 5 (ECG file 100).

Fig. 10 Relationship between training data length l and compression ra-
tio for fixed heights d = 2, 3, 4, 5 (ECG file 101).

Fig. 11 Relationship between training data length l and compression ra-
tio for fixed heights d = 2, 3, 4, 5 (ECG file 102).

Experimental results showed that the proposed algo-
rithm achieved better compression ratios for all files on the
MIT-BIH Arrhythmia Database than those of the traditional
algorithms. The proposed algorithm gives better compres-
sion ratios in average than those of bzip2 which is one
of high-performance off-line lossless compression applica-
tions. Moreover, it was shown that the proposed algorithm
needs 71% small computational memory in average coder
size relative to the traditional algorithm. It was confirmed
that the proposed algorithm works in real-time by simula-
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tion results.
In future works, we plan to apply an antidictionary

code using sliding windows [18] to ECG lossless compres-
sion for improving compression ratios.
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