3410

IEICE TRANS. INFE. & SYST., VOL.E93-D, NO.12 DECEMBER 2010

[LETTER

Binary Oriented Vulnerability Analyzer Based on Hidden Markov

Model

Hao BAI'™, Student Member, Chang-zhen HU', Gang ZHANG ", Nonmembers, Xiao-chuan JING'", Member,

SUMMARY The letter proposes a novel binary vulnerability analyzer
for executable programs that is based on the Hidden Markov Model. A vul-
nerability instruction library (VIL) is primarily constructed by collecting
binary frames located by double precision analysis. Executable programs
are then converted into structurized code sequences with the VIL. The
code sequences are essentially context-sensitive, which can be modeled by
Hidden Markov Model (HMM). Finally, the HMM based vulnerability an-
alyzer is built to recognize potential vulnerabilities of executable programs.
Experimental results show the proposed approach achieves lower false pos-
itive/negative rate than latest static analyzers.

key words: executable program, binary, double precision analysis, vulner-
ability instruction library, Hidden Markov Model

1. Introduction

Static vulnerability analysis has been proven effective in
covering higher quantities of errors and flaws of applica-
tions prior to dynamic analysis [1]. Moreover, static analysis
maintains low cost and provides high scalability, while dy-
namic analysis usually relates to labor-intensive techniques.
Another advantage of static binary analysis lies in its ability
to reason all possible execution paths of a program.

Three of the existing vulnerability analysis methods de-
veloped in recent years are the most representative. Csaba
Nagy, et al. [2] make a code-scanning tool to perform static
analysis of the input-related source code. Pattabiraman,
et al. [3] develop detectors using source-code based static
analysis from the program slice concerned with critical vari-
ables. However, for most commercial software, users can
not have access to the source code. Besides, attackers usu-
ally don’t attach source code with malwares. Consequently,
the ability and scalability of these methods are confined
within open-source applications. Hassen Saidi [4] proposes
a tool-bus architecture dealing with applications for which
only binary is available. While this method can only deal
with malwares with small size and is not capable of analyz-
ing large-scale programs. According to our recent investi-
gation, few methods available can analyze binary effectively
meanwhile resulting in low false positive rate.

Manuscript received July 23, 2010.
Manuscript revised September 5, 2010.
"The authors are with Beijing Institute of Technology, Beijing,
China.
""The authors are with China Aerospace Engineering Consulta-
tion Center, Beijing, China.
a) E-mail: david_xiaobai@126.com
b) E-mail: quietlee0906 @yahoo.com.cn
DOI: 10.1587/transinf. E93.D.3410

and Ning LI'™), Student Member

All the limitation discussed above motivates us to focus
on disassembled executable programs. This letter proposes
a binary vulnerability analyzer by combining the static and
dynamic analysis. The analyzer consists of three key pro-
cedures: establishing the vulnerability instruction library
(VIL) from the executable programs that have typical vul-
nerabilities, structurizing binary to code sequence, and train-
ing the Hidden Markov Model (HMM) to recognize vulner-
abilities. Figure 1 shows the overview of the proposed ap-
proach.

In the first procedure, see the path labeled with “1”
in Fig. 1, a double-precision locating method is utilized to
construct the VIL. The binary segments are firstly coarse-
located by the IDA Pro Disassembler [5], and then the seg-
ments are dynamically analyzed with Paimei[6] to fine-
locate the binary frames. Each frame is a set of binary
instructions that give rise to a certain type of vulnerabili-
ties. The VIL is established by combining the binary frames.
In the second procedure, see the path “2”, binary instruc-
tions are structurized to code sequences by mapping with
the VIL. Due to the intrinsic causality in the context of bi-
nary, a disassembled executable program is mapped to a se-
quence of context-sensitive code after this procedure. The
word “context” implies that a current instruction only de-
pends on its previous one, which accords with the Markov
property. HMM is a powerful statistical method of charac-
terizing context-sensitive data sequences. In the last pro-
cedure, see the path “3”, inspired by the successful use of
HMM in speech recognition [7] and action recognition [8],
the HMM is applied to recognize software vulnerability ex-

————

/ cilr uctu rhtmg

VIL Construction

(P
Exceutable | 1 2. o 1
Program A
9

Code

|
e ™y
| | mapping | |
|
|
|
Sequence I

fulnerability
Ing, Lib.
{VIL)

- — -
/T\n n and

Test /‘l

’ ¢ {
’ 1\
|
Binary 1 g 1 Binary |] ’F-:ta-sh-.h | -
|)
I‘ Sogment \, _ocatmg A Frame _‘hif.v vy | MM based
- /
|
|

Classifier

\\II|I'|LN|||I|11\ |
Llassfication /
—_——

Fig.1 The overview of the proposed approach.

Copyright © 2010 The Institute of Electronics, Information and Communication Engineers

LETTER

isted in the code sequence.

The contributions of this letter are as follows: com-
pared with the latest static analyzer, the proposed approach
directly focuses on binary analysis and precisely identifies
the vulnerability within a minimal range while improving
the richness and quality of analysis; the VIL provides a met-
ric to map the unstructured binary instructions to structured
code sequences that can be processed by classical pattern
recognition model; the HMM is used to model the causality
of binary.

The remainder of the letter is organized as follows:
Section 2 introduces the proposed approach. Section 3
presents the experimental results. Conclusions and future
work are addressed at the end of the letter.

2. The Proposed Approach
2.1 VIL Construction

In this subsection, the double-precision locating method is
introduced to build the VIL that contains the key binary in-
structions resulting in vulnerabilities. We firstly use the IDA
Pro[5] to disassemble the executable and sketch the func-
tion structure graphs of the program. Every individual func-
tion is depicted in details with all the variables, registers,
system calls and arguments available. The most important
feature of the function graph is that, the IDA Pro can build
a precise control flow of the function due to its “jump” trac-
ing capability. With the structure graphs, IDA Pro divides
the program into pieces of binary segments, each of which
represents a function. Due to the comprehensive structure
graphs and abundant parameters, potentially vulnerable seg-
ments are manually selected from the multiple binary seg-
ments. This stage is called “coarse locating”.

To eliminate false positive warnings and figure out the
intrinsic features of vulnerabilities, binary frames are then
extracted from the vulnerable segments. Dynamic analy-
sis techniques are geared towards detecting vulnerabilities
in the functions. The Paimei [6] is used to locate the true
vulnerabilities: binary in execution is firstly marked when
the program behavior is normal, and then the executed bi-
nary is marked again as vulnerability is triggered. By the
step-in debugging, the two-round marked binaries are com-
pared to remove the “normal binary” and thus to uncover the
“bad binary”. Once vulnerabilities are found during the run-
time, the related fragments in binary segments are located
and stored as the binary frames that are the very instructions
giving rise to vulnerabilities. This stage is called “fine lo-
cating”.

The VIL is established by combining all the binary
frames of different vulnerability types. Figure 2 shows that
each binary frame consists of several instructions, thus the
VIL is a collection of binary instructions that are named as
keywords. The keywords are named in sequence by unique
code numbers. The code numbers are 4-digit decimal, of
which the first digit represents the vulnerability type and the
other three digits register the corresponding keywords.

3411
Binary Frame of Vul#1
subesp. B VIL
repne scash S —
not ecx 1001 subesp, 8
sub edi, ecx 1002 repne scash
! 1003 not ecx
1004 sub edi, ecx
rep movsd
rep movsh
add esp, 8 2001 push 10000h
P
e 2002 push 1000h
Binary Frame of Vulén
push ecx n001 push ecx
call _printf n002 call _printf
push eax n003 push eax
push ecx e
push 00406037
call _printf
Fig.2 The formation of VIL.
VIL
1001 subesp, 8
Binary 1002 repne scash Code
1003 notecx S
[[_push 10000h 1] 1004 sub edi, ecx Sequence
push 1000h

push 0 2001 push 10000h
Exetuable e 2002 push 1000h
Program push 0C8h 2003 pushO
gra push & Cas
push ebx n001 push ecx
call ebp

n002 call _printf
nD03 push eax
nD04 push ecx

Fig.3 The process of binary structurizing.

2.2 Structurizing the Binary

A binary is a collection of assembly instructions, which
is typically unstructured data and cannot be recognized by
classical pattern recognition model. This is a very negative
factor for the applicability of the HMM based vulnerabil-
ity classifier. To tackle this problem, the VIL is built and
utilized to map the binary to structured data.

Figure 3 demonstrates the mapping process and expli-
cates the form of data sequences after structurizing. Each
binary instruction of an input disassembled program is com-
pared with the items in the VIL one by one, and is assigned
to the code number of the item that has the maximal likeli-
hood with the input binary instruction. If the likelihood is
less than a predefined threshold, which implies there is no
similarity with all the items in the VIL, then the input is as-
sign to 0. After the mapping process, input binary file trans-
forms to a sequence of code number. There exists intrin-
sic logical correlation in the context of binary. Therefore,
the code sequence obtained by the structurizing procedure
is also context-sensitive.

2.3 HMM for Vulnerability Recognition

HMM is a powerful statistical method to model dynamic
processes and has been successfully applied to speech
recognition [7] and action recognition [8], where the data se-
quences analyzed are also context-sensitive. Inspired by its
application, HMM is utilized to characterize software vul-
nerability existed in code sequences.

3412

HMM is represented by a finite state process with
transition between states specified by transition probabil-
ity. In the proposed method, each type of software vul-
nerability can be well modeled by a HMM parameters set
A = {A, B, }. Given a vulnerability J, the corresponding A,
is defined as follows: A, is a matrix representing state tran-
sition probabilities. For instance, the A, in a 3-state HMM
is defined as:

ajr app ap
Ayj=| ay axp ax (D
as; dasy ass

Each element, for instance a;, denotes the transition proba-
bility from the current state S to next state S,. Each state
gives output probabilities for all keywords in the VIL. Sup-
pose there are m keywords, then each state generates m out-
put probabilities. Meanwhile, for a 3-state HMM, B; is a
3 X m matrix representing output probabilities for all states:

bi(c1) bi(cm)
B, =| balcy) ba(cm) ()
bs(c1) bi(cm)

The element in each row, for instance b;(c;) denotes the
probability that the state §; generates the code c¢;. m; is the
initial state distribution probability. The HMM can starts
from any state, therefore for a 3-state HMM, n; = {n; =
1/3,m, = 1/3,m3 = 1/3}. To perform the vulnerability clas-
sification, the parameter set A of each vulnerability type is
trained by training sequences. The A is iteratively optimized
by the Baum-Welch algorithm [7].

Given a parameter set for vulnerability J, and testing
programs {Oy,...,0;,...,0Oy}, the probability of the pro-
gram O;, generated by this model is computed using Bayes’s
rule as P(O;|4;). It is evaluated using the forward algorithm.
Suppose a(i) is the forward variable representing the proba-
bility that the HMM in state i has generated the partial code
sequence {vi,Vvy,...,V} at time ¢, T is the length of code
sequences, and v, is the current input symbol in a symbol
sequence, then the P(O;|4,) can be calculated using Eq. (3).
The testing program is recognized as the vulnerability J if
they generate the maximal probability. Figure 4 shows the
recognition process using the proposed approach based on a
3-state HMM.

k
P(Oi|Ay) = ZOZT(i),(Oi =V, sV V) 3
=1

l’:DArgmax P(OAy)
150N

v o¥ v ooy
[bifer) bilcw) bale)) balen) biley) h‘“"'}.n

(No™0 10}
= _
L

h=(A;. By, my)

Fig.4 Recognition process based on a 3-state HMM.

IEICE TRANS. INFE. & SYST., VOL.E93-D, NO.12 DECEMBER 2010

3. Experiment Evaluation
3.1 Experiment Configuration

In this section, experiment results of the proposed approach
are presented on three types of vulnerabilities: stack over-
flow, heap overflow and format string. They are chosen
because they are still common in software and are diffi-
cult to locate from the programs. According to the double-
precision analysis, the VIL contains 35 keywords for these
vulnerability types.

For each vulnerability type, 12 executable programs
are chosen. To compute an unbiased estimate of the true
classification rate, the cross-validation rule is adopted. The
dataset is randomly splitted as follows: 5 programs are used
as training set and the remaining 7 programs are used for
testing. The system performance is evaluated by the aver-
age of 12 random splits.

We construct one HMM for one type of vulnerability.
Therefore, 3 HMM parameter sets are built in our experi-
ment. In the initialization, the HMM states are treated as
uniform distribution. That is, each row element in B is
assigned to 1/m, where m = 35 is the size of the code-
book. The transition probabilities from each state are also
equal. Therefore, in the Baum-Welch training process the
total number of parameters that should be estimated is 114
(9 state transitions + 3 X35 output probabilities) for a 3-state
HMM.

All experiments are carried out on a Pentium Dual ma-
chine with 2.20 GHz and 2 G Memory running the Windows
XP system.

3.2 Experimental Results

In this subsection, the impact of the number of HMM state
on the false positive/negative rate is firstly studied. Table 1
shows that the false rate decreases as the number of states N
increases until N = 7; when N is larger than 7, the false rate
does not change significantly. This means small number of
states is not sufficient to characterize the context-sensitive
data sequence especially for the binary. Although larger
number of states also provides satisfying false rate, the com-
putation cost becomes high due to more HMM parameters
are involved. Therefore, we choose the 7-state HMM for the
following experiments.

Then, the performance and coverage provided by the
proposed approach and the benchmark methods that are typ-
ical static analyzer for software vulnerability are compared.
Here we still use the stack overflow, heap overflow and for-
mat string as the vulnerabilities injected in the test programs

Table 1 Performance of the proposed vulnerability analyzer based on

different number of HMM state (%).

| Number of states || 3 | 5 | 7 | 9 | 11 | 13 |
avg. False Positive 326 | 289 | 244 | 242 | 235 | 232
avg. False Negative || 24.8 | 20.1 | 16.7 | 16.6 | 16.1 | 15.8

LETTER

Table 2 Performance and coverage of the proposed approach and the
benchmarks (%).
[Vulnerability | Performance [[7-state HMM | [2] | [3] | [4] |

False Pos. 219 234 | 253 | 22.7
Stack Overflow | — recNeg. 109 123116 | 112
False Pos. 30.7 31.9 | 30.6 | 31.1
Heap Overflow | —¢ 1 Nee. 214 229 | 232 | 208
Format Strin False Pos. 20.7 2251209 | 21.2
ormatSing - —rlse Neg. 77 192185 | 174
avg. False Pos. 244 259 | 25.6 | 25.0
avg. False Neg. 16.7 18.1 | 17.8 | 16.5

chosen in Sect. 3.1. Since the method [2] and [3] are based
on source-code analysis, source codes written in C are pro-
vided for them. The test programs are analyzed by the pro-
posed approach and the static analyzer [2], [3] and [4] in a
controlled environment.

The comparison results are reported in Table 2. When
analyzing the stack overflow vulnerability of which the fea-
ture is relatively easy to recognize, the proposed approach
recognizes 89.1% of the existing vulnerabilities (false neg-
ative recognition rate is 10.9%) while recognizes 21.9% of
benign vulnerabilities (false positive recognition rate). In
contrast, in [2], [3] and [4], over 22% of the recognized vul-
nerabilities are benign and more than 11% of the vulnerabil-
ities are not recognized. Since the feature of heap overflow
is not as obvious as the stack overflow, the false positive
rate of the proposed approach is 30.7% while 21.4% real
vulnerabilities are not recognized. However, the false posi-
tive/negative rates are still lower than most of the other three
methods. Further, for the format string vulnerability, the
proposed approach recognizes 20.7% benign vulnerabilities
compared to the others, which have false positive rates of
20.9%-22.5% when analyzing the test program. The false
negative recognition rate of the proposed approach is 17.7%,
which is less than the 19.2% and 18.5% of method [2] and
[3]. Finally, the average false positive rate shows that the
proposed approach is more accurate in recognizing vulnera-
bilities and the false negative rate indicates that the proposed
approach can provide a higher coverage than the source-
code analysis methods (i.e., [2] and [3]).

4. Conclusion

In this letter, a novel binary vulnerability analyzer based on

3413

HMM is proposed. A vulnerability instruction library (VIL)
is established by double precision analysis. Executable pro-
grams are then structurized to code sequences by mapping
with the VIL. The HMM based vulnerability analyzer is
built to recognize vulnerabilities. Experiments demonstrate
that the proposed approach can provide higher coverage for
recognizing three typical vulnerabilities than latest static an-
alyzers. In the future work, the approach will be improved
more specifically to find vulnerabilities in embedded sys-
tems. For this purpose, the VIL will be expanded and up-
dated, and the HMM parameters will be reconfigured to
meet the special needs of embedded environment.

Acknowledgement

This work was supported by National High Technology Re-
search and Development Program of China (863 Program)
(Grant No. 2009AA01Z433).

References

[1] U. Bayer, E. Kirda, and C. Kruegel, “Improving the efficiency of dy-
namic Malware analysis,” Proc. 2010 ACM Symposium On Applied
Computing, pp.1871-1878, March 2010.

[2] C. Nagy and S. Mancoridis, “Static security analysis based on input-
related software faults,” Proc. 2009 European Conference on Software
Maintenance and Reengineering, pp.37-46, March 2009.

[3] K. Pattabiraman, Z. Kalbarczyk, and R.K. Iyer, “Automated deriva-
tion of application-aware error detectors using static analysis: The
trusted illiac approach,” IEEE Trans. Dependable and Secure Com-
puting, vol.11, June 2009.

[4] H. Saidi, “Logical foundation for static analysis: Application to bi-
nary static analysis for Security,” ACM SIGAda Ada Letters, vol.28,
no.1, pp.96-102, April 2008.

[5] The IDA Pro Dissasember and Debugger, http://www.hex-rays.com/
idapro/

[6] Paimei Reverse Engineering Framework, http://pedram.redhive.com/
PyDbg/

[71 X. Huang, A. Acero and H.-W. Hon, Spoken Language Processing-
A guide to theory algorithms and system development, pp.375-411,
Prentice Hall Books, New Jersey, 2001.

[8] N.Liand D. Xu, “Action recognition using weighted three-state Hid-
den Markov Model,” Proc. 9th International Conference on Signal
Processing (ICSP2008), pp.1428-1431, Oct. 2008.

