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The Software Reliability Model Based on Fractals

Yong CAO†a), Student Member and Qingxin ZHU†, Nonmember

SUMMARY Fractals are mathematical or natural objects that are made
of parts similar to the whole in certain ways. In this paper a software re-
liability forecasting method of software failure is proposed based on pre-
dictability of fractal time series. The empirical failure data (three data sets
of Musa’s) are used to demonstrate the performance of the reliability pre-
diction. Compared with other methods, our method is effective.
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1. Introduction

Software reliability, namely the capability that a given com-
ponent or system within a specified environment will oper-
ate correctly for a specified period of time, has been one of
the most important requirements. The important problem of
the software reliability models is to calculate and predict the
next failure time in advance. It was mainly treated as ran-
dom and statistical problem. The Jelinski-Moranda model
is based on time measurement and maximum likeness esti-
mation. The Kalman filter is an efficient recursive filter that
estimates the state of a linear dynamic system from a series
of noisy measurements. The ARIMA models are the most
general class of models for forecasting a time series which
can be stationarized by transformations such as differencing
and logging. Recently Bayesian networks, recurrent neural
networks, and support vector machine are applied in time
series analysis, which afford good results.

The term fractal, which means broken or irregular frag-
ments, was originally coined by Mandelbrot to describe
a family of complex shapes that possess an inherent self-
similarity or self-affinity in their geometrical structure. It
belongs to geometrical category. A fractal has a self-similar
structure that occurs at different scales. Fractal objects, by
definition, contain infinite detail, i.e., they contain the same
degree of detail in each part as is contained in the entire ob-
ject, no matter how many times its sections are enlarged. For
example, a small branch of a tree looks like the whole tree
due to the existence of branching structures. Fractal objects
are self-similar under some changes in scale, either strictly
or statistically.

A power law is a relationship between two scalar vari-
ables x and y, which can be written as follows:

y = Cxk (1)
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where C is the constant of proportionality and k is the ex-
ponent of the power law. Such a power law relationship
appears as a straight line on a log-log plot since, taking logs
of both sides, the above equation is equivalent to

log(y) = k log(x) + log C (2)

which has the same form as the equation for a straight line

Y = kX +C (3)

The equation f (x) = C, xk has a property that relative scale
change f (sx)/ f (x) is independent of x. In this sense, f (x) is
scale invariant or lacks a characteristic scale. Consequently,
f (x) can be related to fractal because of its scale invariance.
The k is called Fractal Dimension.

For Strictly Self-Similar Fractal, two scalar variables x
and y fit power law strictly described as Eq. (2); for Statisti-
cally Self-Similar Fractal, the x and y fit power law statisti-
cally and fractal dimension k is slope of linear regression on
a log-log plot described as Eq. (2).

Fractals have been applied to analyze some random
events like earthquakes, random walks and Brownian mo-
tions etc. Hughes et al. [1] has discovered that there exists
interrelationship between random events and fractal. Soft-
ware failures are also random events and the key of studying
fractal is self-similarity. If self-similarity exists in time se-
ries then we may investigate the relationship between soft-
ware failures and fractal.

The outline of this paper is the following: Section 2
presents sliding-window fractal forecasting model of soft-
ware failure and validates the model through analyzing the
empirical failure data. Section 3 concludes this paper and
describes the future research.

2. The Software Failure Prediction Based on Fractals

Fractals can be characterized by dimensional measures,
such as the Hausdorff dimension etc. The fractal dimension
is often noninteger and smaller than the embedding topo-
logical dimension. Previously we always adopt “scale vari-
ation” method to analyze fractal dimension of data such as
earthquakes etc. We select time section t as scale ε, divide
the time section into some time subsections and take count
of N(ε) which is the number of subsections the earthquake
happen. Then we change the time section ε to obtain a new
N(ε) and we repeat the above steps to obtain a series of
ε − N(ε) pairs. We regard a ε − N(ε) pair of the series as
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a point in log− log coordinates and draw a log ε − log N(ε)
graph to analyze the data. This method is inapplicable to an-
alyzing the data of software failure time because there will
make a lot of waste if we adopt “scale variation” to ana-
lyze the data of software failure. According to Eq. (2), let
y = N(r) = i which is the accumulative number of software
failure and x = Ti which is the cumulative time of the ith
software failure. The formula will be described as:

log(Ti) =
1
k

log(i) − 1
k

log(C) (4)

Let d = 1
k .The formula (4) can be transformed into:

log(Ti) = d log(i) − d log(C) (5)

Ti = sid (6)

where let s = C−d. When software failures happen, the time
fractal dimension k will be computed.

k =
log(im) − log(in)
log(tim ) − log(tin )

(7)

where im, in denote the ordinal number of software failure
and tim , tin denote corresponding failure time.

At first, we compute double log coordinates of the cu-
mulate time of software failure and the accumulative num-
ber of software failure log t − log i in Musa’s data set 1,
namely Table A·1 (The results see Fig. 1) [2]. The slope
k (fractal dimension) of each beeline connects point pairs
(3, 20), (3, 21), (3, 22), . . ., (3, 80) is between 0.65 − 0.03
and 0.65 + 0.03. All points are almost in a beeline, which
implies there exist good self-similarity in time series and
fractal relationship between the cumulate time of software
failure and the accumulative number of software failure.

After software failure happens, maintenance personnel
will repair software system, correct mistakes and software
reliability will be changed. The fractal dimension k will
change and d will also change.

Prediction of scalar time-series {x(n)} refers to the task
of finding an estimate x(n + 1) of the next future sample
x(n + 1) based on the knowledge of the history of the time
series. Introducing a general nonlinear function f (.): RN →
R applied to the vector X(n) = [x(n), x(n−1), . . . , x(n− (N −

Fig. 1 The double logarithmic log t -log i of Musa’s failure data set 1.

1))]T of past samples, we arrive at the nonlinear prediction
approach:

x(n + 1) = f (X(n))

In this way, We adopt method of sliding-window to
compute. The algorithm will be described as follow:
Algorithm 1:

Initialization: Suppose the size of sliding-window m, l = 1
and A is a array of ith failure time;

for i = l to m + l − 1 {B(i) = log(A(i));/*the logarithm of ac-
tual failure time in the sliding-window.*/ C(i) = log(i);/*the
logarithm of failure number in the sliding-window.*/}
Repeat

(1) According to Eq. (5) and method of linear regression,
compute the slope of linear regression in the sliding-window
b = d = 1

k and constant a = log(s) = −d log(C);
(2) Make a prediction of next point out of the sliding-

window using the above a and b.
(3) Add the actual failure time of the next point to A;

l + +; /*the sliding-window move backwards.*/
B(m + l − 1) = log(A(m + l − 1));
C(m + l − 1) = log(m + l − 1);

Until test over
End

The forecasting algorithm and a one-step-ahead fore-
casting policy are applied in three examples. The software
failure data are obtained from Musa’s data set 1, 2, and 3
(Table A·1, Table A·2 and Table A·3) [2], [3]. The perfor-
mance of the proposed model is compared with the normal
distribution [3], Kalman filter [3], adaptive Kalman filter [3],
and ARIMA [4], [5] forecasting methods. The experimental
results are shown in Fig. 2, Fig. 3, Table 1 and Table A·4.
In the investigation, the values of Mean Absolute Error

MAE = 1
n

n∑
i=1

abs Ti−Ti

Ti
, Normal Root Mean Square Error

NRMSE =

√√√ n∑
i=1

(Ti−Ti)2

n∑
i=1

T 2
i

, where Ti is the ith actual failure time

Fig. 2 Forecasting results of different models of Musa’s data set 1
(sliding-window size m = 5).
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and Ti is forecasting time (Table 1). Similarly, Mean Abso-

lute Error of Interval Time MAEIT = 1
n

n∑
i=1

abs(pi−pi)
pi

, where

n is the number of forecasting periods, pi is actual value of
period i (actual interval time between the (i−1)th failure and
ith failure) and pi is forecasting value (Table A·4).

We adopt different sliding-window sizes to compute
forecasting values. When the exponential d of fractal model
is steady, namely hardly change, the greater the size of the
sliding-window the better the linearity and the predictability
becomes better. After maintenance personnel fix the soft-
ware system, d may change sharply. At this time the less
size of sliding-window will keep up with the change of the
exponential d. When sliding-window size m = 5, 3, and 9,
fractal model provides the smallest MAE and NRMSE values
in Musa set 1, 2, and 3 respectively. Good self-similarity is
the key of fractal forecasting accuracy. We can make better
prediction through the similarity between parts and whole.
We have discovered the good self-similarity of time series
in Musa set 1. The self-similarities are also discovered in
Musa set 2 and 3, which lead to the better goodness-of-fit
than other methods (Table 1 and Table A·4). The exponen-
tial d of fractal model can be used to evaluate and character-
ize software quality. As the maintenance personnel continue
to improve software system, d increases. Software system
will operate correctly for longer time, namely the software
quality becomes better. Therefore positive correlation exists
between d and software quality.

3. Conclusion

This paper proposes the software reliability model based on

Fig. 3 Forecasting results of different models of Musa’s data set 2
(sliding-window size m = 3).

Table 1 Forecasting results of different models of Musa’s data set 1 and
2.

Error Fractal ARIMA Kalman Adaptive
Kalman

Musa 1 MAE 0.0271 0.0432 0.0474 0.0425
NRMSE 0.0312 0.0493 0.0541 0.0481

Musa 2 MAE 0.0574 0.0718 0.0687 0.0635
NRMSE 0.0645 0.0824 0.0764 0.0702

fractals to forecasting the next software failure time which
almost fit the actual failure time. Studying the empirical
data (three data sets of Musa’s) and comparison with other
models validate our method. Our model is different from ex-
isting forecasting approaches for it is based on geometrical
notion and method. We will research the mechanism behind
fractals further in future work.
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Appendix

Table A· 1 The Musa’s data set 1 of software failure time series, and
from left to right the time in each cell denotes the cumulate time of the ith
software failure, i = 1, 2, . . . [2].

3 33 146 227 342 351 353 444
556 571 709 759 836 860 968 1056

1726 1846 1872 1986 2311 2366 2608 2676
3098 3278 3288 4434 5034 5049 5085 5089
5089 5097 5324 5389 5565 5623 6080 6380
6477 6740 7192 7447 7644 7837 7843 7922
8738 10089 10237 10258 10491 10625 10982 11175
11411 11442 11811 12559 12559 12791 13121 13486
14708 15251 15261 15277 15806 16185 16229 16358
17168 17458 17758 18287 18568 18728 19556 20567
21012 21308 23063 24127 25910 26770 27753 28460
28493 29361 30085 32408 35338 36799 37642 37654
37915 39715 40580 42015 42045 42188 42296 42296
45406 46653 47596 48296 49171 49416 50145 52042
52489 52875 53321 53443 54433 55381 56463 56485
56560 57042 62551 62651 62661 63732 64103 64893
71043 74364 75409 76057 81542 82702 84566 88682
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Table A· 2 The Musa’s data set 2 of software failure time series, and
from left to right time in each cell denotes the interval between the (i− 1)th
failure and the ith failure, i = 1, 2, . . . [2].

320 1439 9000 2880 5700 21800 26800
113540 112137 660 2700 28493 2173 7263
10865 4230 8460 14805 11844 5361 6553
6499 3124 51323 17010 1890 5400 62313
24826 26335 363 13989 15058 32377 41632
4160 82040 13189 3426 5833 640 640
2880 110 22080 60654 52163 12546 784
10193 7841 31365 24313 298890 1280 22099
19150 2611 39170 55794 42632 267600 87074
149606 14400 34560 39600 334395 296015 177395
214622 156400 166800 10800 267000

Table A· 3 The Musa’s data set 3 of software failure time series, and
from left to right time in each cell denotes the interval between the (i− 1)th
failure and the ith failure, i = 1, 2, . . . [2].

5.7683 9.5743 9.105 7.9655 8.6482 9.9887
10.1962 11.6399 11.6275 6.4922 7.901 10.2679
7.6839 8.8905 9.2933 8.3499 9.0431 9.6027
9.3736 8.5869 8.7877 8.7794 8.0469 10.8459
8.7416 7.5443 8.5941 11.0399 10.1196 10.1786
5.8944 9.546 9.6197 10.3852 10.6301 8.3333
11.315 9.4871 8.1391 8.6713 6.4615 6.4615
7.6955 4.7005 10.0024 11.0129 10.8621 9.4372
6.6644 9.2294 8.9671 10.3534 10.0998 12.6078
7.1546 10.0033 9.8601 7.8675 10.5757 10.9294

10.6604 12.4972 11.3745 11.9158 9.575 10.4504
10.5866 12.7201 12.5982 12.0859 12.2766 11.9602
12.0246 9.2873 12.495 14.5569 13.3279 8.9464
14.7824 14.8969 12.1399 9.7981 12.0907 13.0977
13.368 12.7206 14.192 11.3704 12.2021 12.2793

11.3667 11.3923 14.4113 8.3333 8.0709 12.2021
12.7831 13.1585 12.753 10.3533 12.4897

Table A· 4 Forecasting results of different models of Musa’s data set 3.
Model I stands for the normal distribution, Model II stands for the Kalman
filter and Model III stands for the adaptive Kalman filter [2], [3].

NO. Actual data Fractal Model I Model II Model III
41 6.4615 6.7299 6.6196 5.8483 4.4709
42 7.6955 6.3346 6.6162 5.6402 5.9634
43 4.7005 4.8812 8.1919 8.8508 9.1343
44 10.0024 7.7381 4.7904 4.2833 2.5915
45 11.0129 10.3264 10.4177 13.3746 19.3881
46 10.8621 10.2448 11.4835 17.5081 11.0904
47 9.4372 10.0509 11.3140 11.3749 9.7274
48 6.6644 10.1561 9.7977 8.7832 7.4402
49 9.2294 10.3601 6.8764 5.2614 4.2686
50 8.9671 8.0196 9.5838 9.6011 11.5589
51 10.3534 9.6292 9.3004 10.5107 7.9377
52 10.0998 9.2025 10.7603 11.0118 10.8762
53 12.6078 9.3609 10.4852 10.7619 8.9795
54 7.1546 11.1223 13.1355 14.0128 14.3821
55 10.0033 11.0916 7.3952 6.5014 3.6967
56 9.8601 10.8053 10.4011 9.8018 12.6137
57 7.8675 9.7905 10.2433 11.7064 8.8370
58 10.5757 9.1107 8.1421 7.0314 5.6897
59 10.9294 9.7894 10.9974 11.3105 12.8783
60 10.6604 9.5571 11.3641 12.9563 10.2797
61 12.4972 11.5998 11.0736 10.7183 9.4502
62 11.3745 12.0479 13.0074 13.4218 13.3468
63 11.9158 12.6449 11.8162 11.8412 9.4337
64 9.575 12.2779 12.3801 11.6690 11.3776
65 10.4504 11.1209 9.9147 8.8680 7.0159
66 10.5866 10.4845 10.8297 9.8988 10.3937
67 12.7201 11.0893 10.9673 11.1270 9.8073
68 12.5982 11.7634 13.2073 14.0726 14.0040
69 12.0859 12.1176 13.0723 13.8034 11.4408
70 12.2766 12.6686 12.5277 11.7916 10.6270
71 11.9602 12.5548 12.7219 12.1274 11.4427
72 12.0246 12.9797 12.384 11.8994 10.7036
73 9.2873 11.4549 12.4459 11.9021 11.1151
74 12.495 11.1424 9.5809 8.2618 6.5952
75 14.5569 12.8428 12.9403 13.2075 15.4497
76 13.3279 12.7283 15.0996 18.2291 15.6550
77 8.9464 12.4730 13.8044 13.8709 11.2419
78 14.7824 11.7018 9.2257 7.1144 5.5249
79 14.8969 13.4620 15.3558 17.1115 22.4572
80 12.1399 14.9886 15.4692 19.7401 13.8009
81 9.7981 12.1403 12.5737 11.0814 9.0674
82 12.0907 10.0515 10.1218 7.3172 7.2440
83 13.0977 12.6443 12.5184 12.3172 13.6803
84 13.368 12.6054 13.5683 15.1443 13.0569
85 12.7206 11.5435 13.8459 14.0649 12.5528
86 14.192 12.3536 13.1633 12.5523 11.1382
87 11.3704 13.4333 14.6987 14.6675 14.5875
88 12.2021 13.7562 11.7469 10.8997 8.3918
89 12.2793 12.4227 12.6114 11.4370 12.0519
90 11.3667 11.8333 12.6876 12.7591 11.4003
91 11.3923 11.1775 11.7316 10.9819 9.7078
92 14.4113 10.9153 11.7545 10.9845 10.5370
93 8.3333 12.3353 14.9045 16.3186 16.8667
94 8.0709 10.8643 8.5791 7.6817 4.4545
95 12.2021 10.6880 8.3040 6.2499 7.1640
96 12.7831 9.6814 12.6137 15.0614 16.0111
97 13.1585 11.0842 13.2161 16.2962 12.3861
98 12.753 12.240 13.6036 13.6828 12.5033
99 10.3533 12.9568 13.1763 12.7557 11.4137
100 12.4897 13.6137 10.6746 9.2267 7.7609

MAEIT 0 0.1316 0.1734 0.2354 0.2578


