
384
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.2 FEBRUARY 2010

LETTER

An Efficient Clustering Algorithm for Irregularly Shaped Clusters

DongMing TANG†a), QingXin ZHU†, Nonmembers, Yong CAO†, Member, and Fan YANG†, Nonmember

SUMMARY To detect the natural clusters for irregularly shaped data
distribution is a difficult task in pattern recognition. In this study, we pro-
pose an efficient clustering algorithm for irregularly shaped clusters based
on the advantages of spectral clustering and Affinity Propagation (AP) algo-
rithm. We give a new similarity measure based on neighborhood dispersion
analysis. The proposed algorithm is a simple but effective method. The ex-
perimental results on several data sets show that the algorithm can detect
the natural clusters of input data sets, and the clustering results agree well
with that of human judgment.
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1. Introduction

The basic concept of clustering is to divide patterns into dif-
ferent groups (clusters). The patterns in the same share more
similarity comparing with the patterns in other clusters. Re-
cently the spectral clustering approaches are getting more
and more attention due to the works of Shi et al. [1], and Ng
et al. [2]. Spectral clustering can provide good performance,
and can be implemented easily. A comprehensive review
can be found in the papers [3], [4]. Unlike classical parti-
tioning clustering algorithms, spectral clustering produces
better clustering results on the data sets with highly non-
linear and elongated clusters [3], [5], such as circle or stick
distribution. There are some well-known spectral clustering
algorithms, such as Shi and Malik algorithm [1], Ng, Jordan
and Weiss algorithm (NJW) [2], and others [5]–[8].

While the spectral clustering algorithms having
demonstrated good performance on many different data sets,
there are still some problems to solve: (1) how to deter-
mine the right number k of clusters; (2) how to construct a
function h to transform a given dataset into a graph when
data points are distributed among different shaped clus-
ters [4]. Besides, when clustering a dataset, the correct num-
ber of clusters is often unknown and hard to determine. In
NJW [2] we need to set the number of clusters manually.
Lihi et al. [6] proposed an alternative approach to automati-
cally infer the number of clusters, which relies on the struc-
ture of the eigenvectors. There are several widely used func-
tions h measuring the similarity of point pairs. NJW [2] uses
a Gaussian function h(xi, x j) = exp(−∥∥∥xi − x j

∥∥∥
/
2σ2), where

Manuscript received July 3, 2009.
Manuscript revised September 29, 2009.
†The authors are with School of Computer Science and En-

gineering, University of Electronic Science and Technology of
China, Chengdu 610054, China.

a) E-mail: tdm yc@uestc.edu.cn
DOI: 10.1587/transinf.E93.D.384

the norm
∥∥∥xi − x j

∥∥∥ measures the distance between two pat-
terns and σ controls the rapidity of decay of h. Lihi et al. [6]
suggested an improved affinity between a pair of points, that
is: h(xi, x j) = exp(−∥∥∥xi − x j

∥∥∥
/
σiσ j), where σi = d(xi, xK),

xK is the K-th neighbor of point xi. Clearly, except for spe-
cific situations when we have complete knowledge about
the data set to ensure the validity of chosen parameters, the
choice of the parameters σ and K can only be determined
by empirical methods.

Affinity Propagation algorithm (AP) was proposed by
Frey and Dueck [9]. AP takes a collection s of similarities
between data points as input, here s can be viewed as an
n × n matrix, in which the similarity s(i, k) indicates how
well the data point k is suited to be the exemplar for data
point i. In AP, the centers of clusters are selected from ac-
tual data points, they are called “exemplars”. Initially, each
data point is treated as a potential exemplar, and then the
exemplars are selected by the message-passing procedure.
There are two kinds of messages, and each corresponds to
a different kind of competition. The “responsibility” r(i, k),
sent from data point i to candidate exemplar point k, reflects
the accumulated evidence for how well-suited point k is to
serve as the exemplar for point i, taking into account other
potential exemplars for point i. The availability a(i, k), sent
from the candidate representative example point k to point
i, reflects the accumulated evidence from data points as to
whether each candidate exemplar would make a good ex-
emplar.

The main advantage of AP algorithm is that it considers
simultaneously all the data points as possible exemplars and
partitions the points into clusters gradually. Therefore, AP
does not require the number of clusters pre-specified. An-
other advantage of AP algorithm is that it does not require
that similarities of data points are symmetric and satisfy the
triangle inequality. This advantage makes it applicable to
unusual measures of similarity.

AP can be viewed as a method that searches for minima
of an energy function E(c) = −∑N

i=1 s(i, ci) that depends on
a set of N hidden labels, c1, . . . , cN , corresponding to the N
data points. Each label indicates the exemplar to which the
point belongs, so that s(i, ci) is the similarity of data point i
to its exemplar. ci = i is a special case indicating that point i
is itself an exemplar, so that s(i, ci) is the input preference for
point i. Essentially, the minimization of this energy function
is similar to that of the objective function for k-means algo-
rithm. Just as with the k-means algorithm, AP can’t work
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Fig. 1 Clustering result of AP on irregularly shaped clusters.

well on irregularly shaped clusters, such as circle or stick
distribution. Single exemplar difficulty represents this kind
of distribution. AP may force to divide a single cluster into
separate ones. In addition, AP forces each exemplar to point
to itself. Figure 1 illustrates the obtained clustering results
for an example. In this example, we use Euclidean distance
to measure the similarities between data points. Clearly,
this clustering result is not acceptable according to human
judgment. AP may be improved for this kind data points
by setting different preferences for each data point. But in
practice, it is hard to tune manually each preference without
prior knowledge about data distribution. From a theoretical
side, AP uses exemplar to represent cluster and forces each
exemplar to point to itself, in some cases, there exist several
shortcomings. However, it is hard to have a further theoret-
ical analysis to clarify the relationship between clustering
quality, exemplar, and uniform effect, since this relationship
is affected by many factors, such as cluster shapes and the
density in the data.

In practice, we find that the combined use of spectral
clustering and AP algorithm can overcome their shortcom-
ings. In this study, we propose an efficient clustering algo-
rithm for irregularly shaped clusters based on the combina-
tion of spectral clustering and AP. We also present a new
similarity measure based on neighborhood dispersion anal-
ysis.

2. The Algorithm

First we introduce a new similarity measure. Let X =

{x1, x2, . . . , xN} be a set of data points. All coordinate values
of data points are normalized to [−1, 1]. Adjacency between
two data points is defined as follows:

A(xi, x j) = exp(−d(xi − x j)
/
σiσ j) (1)

where d(xi, x j) denotes the Euclidean distance between data
points.

Lihi et al. [6] showed that Gaussian similarity function
using a single scaling parameter σ can’t work well when
the input data includes clusters with different local statis-
tics. The σi and σ j can be regarded as a specific scaling
parameter for each point allows self-tuning of the point-to-
point distances according to the local statistics of the neigh-
borhoods surrounding points i and j [6]. The problem of
selection σi and σ j can be treated as a Gaussian kernel opti-
mization problem with multiple parameters. To cluster data
set with irregularly shaped clusters, we often wish that the
linear separability of the mapped samples is enhanced in the

kernel feature space. However, this is not always the case.
Therefore, selecting a proper kernel with good group sep-
arability plays a significant role in kernel-based clustering
algorithms. Along this line, we introduce a new similar-
ity measure. The proposed computational process of σi in
Eq. (1) is described as follows:

(1) Let Di = {d1, d2, . . . , dN−1} be the distances between
the data point i and others, ordered by values.

(2) From pos = 1, we compute the CV (coefficient of
variation) value of ck = {dpos, . . . , dpos+2θ−1} and CV value of
ck+1 = {dpos+θ, . . . , dpos+θ+2θ−1}, if (CV(ck+1)/CV(ck)) > δ,
then set σi = mean(ck). Otherwise, set pos = pos + θ
and repeat until pos + θ + 2θ − 1 > N. For large scale
data set, the interval value θ can be set as the integer part of
2 log(N). Instead, we suggest set θ = 8 for small scale data
set. Here, the threshold parameter δ > 1 defines the maxi-
mum accepted variation between ck and ck+1. The value is
selected by the user to meet the requirements of a particular
domain or dataset.

(3) If there isn’t a value of pos which meets the condi-
tion (CV(ck+1)/CV(ck)) > δ until pos+ θ+ 2θ− 1 > N, then
set σi = mean(Di).

From probability and statistics theory, the coefficient
of variation (CV) is a normalized measure of dispersion of
a probability distribution. It is defined as the ratio of the
standard deviation σ to the mean μ: CV = σ/μ. The CV is
a dimensionless number that allows comparison of the vari-
ation of populations that have significantly different mean
values. In general, the larger the CV value is, the greater the
variability is in the data. In this study, we use CV to mea-
sure the distribution variation of the neighborhood of data
point xi. The similarity measure proposed by Lihi et al. [6]
only considers a fixed value of the k-nearest neighbor of data
point, it doesn’t fully reflect the distribution variation of the
neighborhood of data point. In contrast, the proposed simi-
larity measure is based on neighborhood dispersion analysis.
Irregularly shaped clusters should be detected by the con-
nectivity between points’ neighborhoods and the density of
cluster. Two points are in the same cluster, even though they
are far apart, if there is a path of locally similar points that
connects them. The CV value of ck = {dpos, . . . , dpos+2θ−1}
represents the variance of the distances between point to it’s
neighborhoods. A distance between two points is consid-
ered inconsistent if its value compared to the average and
standard deviation of its neighboring edges is larger than
a specified factor [10]. Therefore, the terminal condition
(CV(ck+1)/CV(ck)) > δ of the proposed computational pro-
cess of σi is consistent with this analysis.

The procedure of our clustering algorithm mainly fol-
lows that of the clustering algorithms suggested in [2], [6].
The proposed algorithm is composed of the following steps:

(1) Compute the affinity matrix A ∈ Rn×k using Eq. (1).
(2) Construct a symmetric normalized matrix L =

D−1/2AD−1/2 from the affinity matrix A, where D is a di-
agonal matrix with Di,i = −∑N

j=1 A(i, j).
(3) Find the k largest eigenvectors {e1, . . . , ek} of L, the

k is selected by the eigengap heuristically, form the matrix
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U = {e1, . . . , ek} ∈ Rn×k.
(4) Form the matrix Y ∈ Rn×k from U by normalizing

the rows to norm 1.
(5) Treating the rows yi ∈ Rk (i = 1, . . . , n) of Y as

points in Rn×k, cluster the points yi (i = 1, . . . , n) with the
AP algorithm into clusters.

At the last step, we use AP algorithm to perform the
final partition from the matrix Y . In fact, as we have seen
from the various explanations of spectral clustering, this
step should be very simple if the data contain well-expressed
clusters [4]. Ideally, the eigenvectors of L are piecewise con-
stant when the clusters are fully divided. In this case, all data
points in the same cluster C j are mapped to exactly the sam-
ple point yi, namely to the unit vector es ∈ Rk [4]. Therefore,
we can use AP algorithm to obtain the final clustering result
with the Euclidean distance between the points yi. The idea
behind the proposed algorithm is to combine spectral algo-
rithm and AP algorithm. AP algorithm helps to overcome
the shortcomings of spectral algorithm, and then the pro-
posed algorithm can automatically determine the number of
clusters. From this point of view, AP algorithm can be re-
garded as a post-processing of spectral algorithm. On the
other hand, spectral algorithm can be regarded as a prior-
processing of AP algorithm. After prior-processing for the
data points, AP algorithm can work well on irregular shape
and non-uniform density clusters.

The main tools for spectral clustering are graph Lapla-
cian matrices. In this study, we use normalized graph Lapla-
cians: L = D−1/2AD−1/2. Given a similarity adjacency ma-
trix A, the simplest and most direct way to construct a par-
tition of the data points is to solve the mincut problem. The
proposed algorithm’s objective function is normalized cut
Ncut [3], [4]. The definition of Ncut is: Ncut(Q1, . . . ,Qk) =
k∑

i=1

cut(Qi,Q̄i)
vol(Qi)

, where Q1, . . . ,Qk is a partition of data set, Q̄i

is the complement of Qi, vol(Qi) is the size of subset Qi, is
measured by the weights of its edges. The most important
thing that differentiates clustering algorithms is the objective
used for clustering. There is a close relation between spec-
tral and kernel. This relation has been discussed in paper [3].
The results of discussion show that there is a direct equiva-
lence between kernel and spectral clustering algorithms. Es-
sentially, they have similar objective function. The exam-
ple presented in paper [3] has illustrated the equivalence be-
tween kernel and spectral clustering algorithms from a uni-
fied view of the two approaches. Therefore, the proposed
algorithm can be considered as a kernel affinity propagation
algorithm or spectral affinity propagation algorithm.

3. Results and Discussion

First, we tested our algorithm using the following two-
dimensional data sets: DS1-DS6 with irregularly shaped
clusters inside clusters. We applied our algorithm, as well as
AP [9], NJW [2] on all data sets. In order to obtain the best
possible performance of NJW algorithm, we varied the pa-
rameters to obtain the most possible performance, and then

recorded the best result. For NJW, the numbers of clusters
were set as the right numbers. For AP, we employed the
squared Euclidean distance.

Figure 2 shows the clustering results. For each data
set, the clustering results of NJW, AP and our algorithm are
represented in the left, middle and right respectively. The
data set DS1 has three irregularly shaped clusters. This data
set is generated from a black-white image with hand paint-
ing. As shown in Fig. 2 (a), we can see the NJW and our
algorithm detect correctly the structure of clusters. The data
sets DS2-DS3 are also generated from a black-white image
with hand painting. Figure 2 (b) shows the results on the
data set DS2. We can see that there are three clusters, two
of them are roughly ring shape clusters, and one of them
is the intersection of two stripes. It can be observed from
the results that the NJW and our algorithm detect natural
clusters. As shown in Fig. 2 (c), the NJW can’t detect natu-
ral clusters for the data set DS3. In contrast, our algorithm
correctly detects natural clusters for the data set DS3. The
data set DS4 is generated by simulator program. It can be

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2 Clustering results on the data sets DS1-DS6: (a) DS1; (b) DS2;
(c) DS3; (d) DS4; (e) DS5; (f) DS6. For each data set, the clustering results
of NJW, AP and our algorithm are represented in the left, middle and right
respectively.
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(a) (b)

(c) (d)

Fig. 3 Clustering results on the data sets DS7-DS10: (a) DS7; (b) DS8;
(c) DS9; (d) DS10. For each data set, the original image and the clustering
result are represented in the left and right respectively.

seen that our method gives the best clustering result for this
data set. Indeed, we see that a small part of the half-ring is
assigned to another cluster by the NJW. The data sets DS5-
DS6 were proposed in the work [6]. The clustering results
using different methods on the data sets DS5-DS6 are shown
in Fig. 2 (e)–(f). The data set DS5 has four stripes with dif-
ferent lengths. For data sets DS5-DS6, the NJW and our
algorithm correctly detect natural clusters. As mentioned
earlier, AP can’t work well on data set of this type. Here,
the experimental results demonstrate the correctness of this
inference.

Next, we evaluated the performance of the proposed
algorithm on real world data sets. We applied it to four
data sets DS7-DS10. The DS7-DS8 were proposed in the
work [11]. The DS9-DS10 were proposed in the work [12].
Figure 3 shows the clustering results of the proposed algo-
rithm on four real world data sets. Note that, in all these data
sets, the data points were generated from the major compo-
nents of scene of the image. For each data set, the original
image and the clustering result are represented in the left
and right respectively. In the data set DS7, there are two
walking men. The data set DS8 has five persons. The data
set DS9 has a horse and a person. The data set DS10 has a
motorbike, an airliner and a fighter. As is seen from Fig. 3,
the proposed algorithm can cluster these data sets in the ex-
pected way.

4. Conclusion

In this study, we introduce an efficient clustering algorithm

for irregularly shaped clusters based on the combination of
spectral clustering and AP. The experimental results illus-
trate the efficiency of the proposed algorithm. We also com-
pared it with Ng, Jordan and Weiss algorithm and AP algo-
rithm. The clustering results agree well with human judg-
ment. In the further work, we will use it to cluster high
dimensional data. We are also going to investigate the meth-
ods for self-tuning the threshold value.
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