
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.3 MARCH 2010
491

PAPER Special Section on Trust, Security and Privacy for Pervasive Applications

Consistency Checking of Safety and Availability in Access Control

Ruixuan LI†a), Member, Jianfeng LU†, Zhengding LU†, and Xiaopu MA†, Nonmembers

SUMMARY The safety and availability policies are very important in
an access control system for ensuring security and success when perform-
ing a certain task. However, conflicts may arise between safety and avail-
ability policies due to their opposite focuses. In this paper, we address the
problem of consistency checking for safety and availability policies, es-
pecially for the co-existence of static separation-of-duty (SSoD) policies
with availability policies, which determines whether there exists an access
control state that satisfies all of these policies. We present criteria for de-
termining consistency with a number of special cases, and show that the
general case and partial subcases of the problem are intractable (NP-hard)
and in the Polynomial Hierarchy NPNP. We design an algorithm to effi-
ciently solve the nontrivial size instances for the intractable cases of the
problem. The running example shows the validity of the proposed algo-
rithm. The investigation will help the security officer to specify reasonable
access control policies when both safety and availability policies coexist.
key words: access control, availability, consistency checking, safety,
separation-of-duty

1. Introduction

An access control policy focuses on safety properties en-
suring that users who should not have an access do not get
the access. Safety analysis has been studied extensively in
the context of access control systems [1], [2]. One exam-
ple of an access control policy focuses on safety properties
is a separation-of-duty (SoD) policy, which is considered
as a fundamental principle of information security that has
been widely used in business, industry, and government ap-
plications [3]. A static SoD (SSoD) policy states that the
cooperation among at least a certain number of users is re-
quired in order to have all permissions necessary to com-
plete a sensitive task. There exists a wealth of literature on
SoD policies, and almost all existing work focuses on safety
properties. For example, Crampton [4] developed a simple
set-based specification scheme for SoD in role-based access
control systems, and suggested an enforcement model for a
restricted subset of this scheme. Such focus on safety prop-
erties can be viewed as a tool for restricting access.

In the meantime, to ensure the tasks to be performed
smoothly, it is also important to analyze the maximum num-
ber of users needed to complete a task [5]. An equally im-
portant aspect of access control is the availability property
that enabling access in the context of access control systems.

Manuscript received July 3, 2009.
Manuscript revised October 7, 2009.
†The authors are with College of Computer Science and Tech-

nology, Huazhong University of Science and Technology, Wuhan
430074, P. R. China.

a) E-mail: rxli@hust.edu.cn
DOI: 10.1587/transinf.E93.D.491

The availability policy requires that the cooperation among
at most a certain number of users is necessary to perform a
task. Without the availability requirement, an access control
state can trivially satisfy a safety requirement of an SSoD
policy if the state does not contain any user set that covers all
the permissions needed to accomplish the sensitive task. In
particular, an empty access control state satisfies any safety
requirements of SSoD policies. Similarly, without the safety
requirement, the availability requirement can be satisfied by
giving all permissions to all users, which allows each single
user to accomplish any task.

SSoD policies focusing on safety properties can be
viewed as a tool for restricting access, while availability
policies focusing on availability properties can be viewed
as a tool for enabling access. There may exist conflicts be-
tween SSoD policies and availability policies. In the exam-
ple of ordering and paying for goods given by Clark and
Wilson [3], there are four steps as follows: (1) ordering the
goods and recording the details of the order; (2) recording
the arrival of the invoice and verifying that the details on
the invoice match the details on the order; (3) verifying that
the goods have been received and the features of the goods
match the details on the invoice; and (4) authorizing pay-
ment to the supplier against the invoice. Let’s assume that
there are four users {Alice, Bob,Carl,Doris} who prepare to
accomplish the task.

The security officer may define many policies that re-
quire safety and availability properties in this example and
these policies may be inconsistent. For example, he may de-
fine two policies, one requiring that no user can perform all
the four steps while the other allowing the existence of a user
who can perform all the four steps. Clearly, the two policies
are inconsistent as they cannot be satisfied simultaneously.
However, it is not easy to check whether a set of policies
with the safety and availability requirements is consistent.
In practice, the security officer may define a number of poli-
cies with the safety and availability requirements. For ex-
ample, with respect to safety requirements, he may require
that (a) the cooperation of at least three users is needed to
perform all four steps, (b) no single user can perform both
step (1) and (2), (c) no single user from {Bob,Carl,Doris}
can perform both step (3) and (4), and (d) no less than three
users can perform all of the step (1), (2) and (3). On the
other side, as to availability requirements, he may require
that (e) at most three users together perform all four steps,
(f) either Alice or Bob needs to perform both steps (1) and
(4), and (g) at most two users from {Alice, Bob,Carl} need

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

492
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.3 MARCH 2010

to perform all of the steps (1), (2) and (3). Checking whether
these requirements are consistent is thus not straightforward.
(We will show that these requirements of safety and avail-
ability are consistent in Sect. 4.3.)

In many cases, it is desirable for an access control
system to satisfy both safety and availability requirements.
However, these policies may conflict with each other due
to their opposite focuses. Therefore, it is very important
to study the problem of consistency checking for the co-
existence of safety policies with availability policies, which
determines whether there exists an access control state sat-
isfying all of these policies. The investigation will help the
security officer to specify reasonable access control policies
when both safety and availability policies coexist. Our con-
tributions in this paper are as follows:

• We formally define the SSoD policies and availabil-
ity policies, and the consistency checking problem
for the co-existence of SSoD policies with availability
policies, which express requirements about safety and
availability in the context of access control systems.
• We study the computational complexities of the consis-

tency checking problem, and present criteria for deter-
mining consistency for a number of special cases, and
show that the general case of the problem and several
subcases are intractable (NP-hard) and in the Polyno-
mial Hierarchy (NPNP).
• We present an algorithm for consistency checking

problem. The algorithm uses a pruning technique that
reduces the number of combinations that need to be
considered. Our algorithm also takes advantage of ex-
isting SAT solvers. The experimental results show that
our algorithm can efficiently solve instances of nontriv-
ial sizes. And the running example shows the validity
of our algorithm.

The rest of this paper is organized as follows. In Sect. 2,
we define SSoD policies and availability policies, and con-
sistency checking problem. In Sect. 3, we study computa-
tional complexities of the consistency checking problem.
Section 4 proposes an algorithm to verify that the prob-
lem can be solved in reasonable amount of time for general
cases. And the evaluation and illustration of the algorithm
will be given in Sect. 5. We discuss related work in Sect. 6.
Finally, we summarize this paper and present some ongoing
and future work in Sect. 7.

2. Safety and Availability Checking Problems

In this section, we give formal definitions for SSoD policies,
availability policies, and the consistency checking problem
for their co-existence.

2.1 Static Separation-of-Duty (SSoD) Policies

An SSoD policy typically constrains the assignment of per-
missions to users, which precludes any group of users from
possessing too many permissions. The concrete formulation

of SSoD policy in the context of access control must base
on the following requirements [6]:

• An SSoD policy must be a high-level requirement.
• An SSoD policy must be described in terms of restric-

tions on permissions.
• An SSoD policy must capture restrictions on user set

involved in the task.

Definition 1. An SSoD policy ensures that at least k users
from a user set are required to perform a task that requires
all these permissions. It is formally defined as

• P and U denote the set of permissions and the set of
users, respectively.
• UP ⊆ U ×P, is a user-permission assignment relation.
• auth PUP[u] = {p ∈ P|(u, p) ∈ UP}.
• ∀(P,U, k) ∈ S S oD,∀U′ ⊆ U : |U′| < k ⇒⋃

u∈U′ auth pUP(u) � P.

Where P = {p1, · · · , pm}, U = {u1, · · · , un}, each pi in P is a
permission, u j in U is a user, m, n, and k are integers, such
that 2 ≤ k ≤ min(m, n), min returns the smaller value of the
two. We write an SSoD policy as ssod 〈P,U, k〉.

SSoD policies can be defined in any access control sys-
tem in which there are users and permissions. We assume
that an access control state ε is given by a binary relation
UP ⊆ U × P, where U denotes the set of users, and P de-
notes the set of all permissions. UP determines the per-
mission to user assignment relation. We say that an ac-
cess control state ε is safe with respect to an SSoD policy
e = ssod 〈{p1, · · · , pm}, {u1, · · · , un}, k〉, if in state ε no k − 1
users from {u1, · · · , un} together have all the permissions in
{p1, · · · , pm}, and we write it as sa f ee(ε). Observe that if no
k-1 users together have all the permissions in a policy, then
no set of fewer than k users together have all the permis-
sions. An access control state ε is safe with respect to a set
E of SSoD policies, which we denote by sa f eE(ε), if and
only if, ε is safe with respect to every policy in the set E.

Definition 2. Given an access control state ε and a set E of
SSoD policies, determine whether sa f ee(ε) is true is called
the safety checking problem (SCP).

Theorem 1. SCP is coNP-complete.

Proof. Consider the complement of SCP, i.e., given an ac-
cess control state ε and a set E of SSoD policies, determine
if sa f eE(ε) is false, which is denoted by SCP.

We first show that SCP is in NP. If an access con-
trol state ε is not safe with respect to an SSoD policy
e = ssod 〈{p1, · · · , pm}, {u1, · · · , un}, k〉, there must exist k-1
users in {u1, · · · , un} that together have all the m permissions
in {p1, · · · , pm}. If one correctly guesses the k-1 users that
together have all the m permissions in the policy, verifying
that the guess is correct can be done in polynomial time:
compute the union of the k-1 users’ permissions and check
whether it is a superset of the set of permissions in the SSoD
policy. But when verifying problem of sa f ee(ε), one only

LI et al.: CONSISTENCY CHECKING OF SAFETY AND AVAILABILITY IN ACCESS CONTROL
493

needs to compute the set of permissions of every size-(k-1)
user sets in {u1, · · · , un}, and check whether it is a superset
of {p1, · · · , pm}. The running time for this straightforward
algorithm grows polynomially in the number of users and
permissions and exponentially only in k. Therefore, SCP is
in NP.

We now show that SCP is NP-hard by reducing the
NP-complete set covering problem [7] to SCP. In the set
covering problem, the inputs are a finite set S , a family
F = {S 1, · · · , S l} of subsets of S , and a budget B. The goal
is to determine whether there exist B sets in F whose union
is S . This problem is NP-complete. The reduction is as
follows. Given S , F and B, construct an SSoD policy e as
follows: for each element in S , we create a permission for
it, let k be B+1 and let m be the size of S . We construct an
SSoD policy e = ssod 〈S , {u1, · · · , un}, B + 1〉, and construct
an access control state as follows. For each different subset
S i(1 ≤ i ≤ l) in F, create a user ui ∈ {u1, · · · , un}, to which
all permissions in S i are assigned. The resulting SSoD con-
figuration is not enforceable if and only if B sets in F cover
S . �

2.2 Availability Policies

In order to ensure the tasks to be performed smoothly, it
is also important to analyze the maximum number of users
needed to complete a task. Take the example that we dis-
cussed in Sect. 1, if all of the users in {Alice, Bob,Carl,
Doris} cannot work together to perform all the four steps,
then the task cannot be completed in the current system con-
figuration, although the safety requirement that the cooper-
ation of at least three users in {Alice, Bob,Carl,Doris} is
needed to perform all the four steps can be satisfied. Ob-
viously, it is probably not what the designers of the safety
policies desire. In this way, we introduce the notion of avail-
ability policies which express requirements about enabling
access rather than restricting access.

Definition 3. An availability policy (AP) ensures that at
most t users from U are required to complete a task that
requires all these permissions in P. It is formally defined as

• P and U denote the set of permissions and the set of
users, respectively.
• UP ⊆ U ×P, is a user-permission assignment relation.
• auth PUP[u] = {p ∈ P|(u, p) ∈ UP}.
• ∀(P,U, k) ∈ AP,∃U′ ⊆ U : |U′| ≤ t ⇒⋃

u∈U′ auth pUP(u) ⊇ P.

Where P = {p1, · · · , pm}, U = {u1, · · · , un}, each pi in P is a
permission, u j in U is a user, m, n, and k are integers, such
that 2 ≤ k ≤ min(m, n), min returns the smaller value of the
two. We write an availability policy as ap 〈P,U, t〉.

Availability policies can also be defined in any ac-
cess control system in which there are users and permis-
sions. The permissions in an availability policy are the per-
missions needed to carry out a sensitive task and the pol-

icy guarantees that at most t users from {u1, · · · , un} are re-
quired to perform a task that requires all these permissions
in {p1, · · · , pm}. It is necessary to make sure that the task
can be completed, especially when it is a critical task. We
say that an access control state ε satisfies an availability pol-
icy f = ap 〈{p1, · · · , pm}, {u1, · · · , un}, t〉, if in state ε there
exists a subset of {u1, · · · , un} of size no more than t that to-
gether have all the permissions in {p1, · · · , pm}, and we write
it as sat f (ε). Observe that if no t users together have all the
permissions in a policy, then no set of fewer than t users to-
gether can also have all the permissions. An access control
state ε satisfies a set F of availability policies, which we de-
note by satF(ε), if and only if ε is safe with respect to ever
policy in the F.

Definition 4. Given an access control state ε and a set F
of availability policies, determine whether satF(ε) is true is
called the availability checking problem (ACP).

Theorem 2. ACP is NP-complete.

Proof. We first show that ACP is in NP. satF(ε) is true if
and only if every availability policies in F can be satisfied
in an access control state ε. For each fi = ap 〈Pi,Ui, ti〉 in
F, which mandates that the users in Ui together cover all
permissions in Pi and each set has at most ti users. If the
set of ti users is given, the verification can be done in poly-
nomial time: compute the union of the ti users’ permissions
and check whether it is a superset of Pi.

We now show that ACP is NP-hard by reducing the NP-
complete set covering problem to ACP. The proof is similar
to the proof that SCP is NP-hard in Theorem 1: For each
fi = ap 〈Pi,Ui, ti〉 in F, each permission in Pi is mapped to
an element in S , each user ui in Ui is mapped to a subset S i,
and let ti be B. �

2.3 Consistency Checking Problem for SSoD and Avail-
ability Policies

SSoD policies and availability policies may conflict with
each other due to their opposite focuses. In this section,
we address the problem of consistency checking for SSoD
and availability policies. Obviously, availability policies are
a natural complement to SSoD policies in access control.
Neither kind of policies by itself is sufficient to capture both
safety and availability requirements. When SSoD and avail-
ability policies coexist, both safety and availability require-
ments may not be able to be satisfied simultaneously. Con-
sequently, we formally define our notion of the consistency
between SSoD and availability policies. (We will study the
computational complexity of the consistency checking prob-
lem in Sect. 3.)

Definition 5. Given a set E of SSoD policies and a set F
of availability policies, determine whether there exists an
access control state ε that sa f eE(ε)∧satF(ε) is true is called
the consistency checking problem (CCP).

494
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.3 MARCH 2010

Let Q = E ∪ F, if Q is inconsistent, it implies that
there does not exist an access control state ε such that
sa f eE(ε) ∧ satF(ε) is true. Thus, for any state ε, there
exists at least an SSoD policy e in E and an availability
policy f in F such that sa f ee(ε) ∧ sat f (ε) is false. Let
e = ssod 〈P,U, k〉, f = ap 〈P′,U′, t〉, the degree to which
permissions are shared by P and P′, and users are shared by
U and U′, four possibilities may be considered.

• Disjoint/Disjoint (D/D): Permission sets for SSoD and
availability policies are disjoint, user sets for SSoD and
availability policies are also disjoint.

P ∩ P′ = ∅ ∧ U ∩ U′ = ∅
• Disjoint/Shared (D/S): Permission sets for SSoD and

availability policies are disjoint, user sets for SSoD and
availability policies are shared.

P ∩ P′ = ∅ ∧ U ∩ U′ � ∅
• Shared/Disjoint (S/D): Permission sets for SSoD and

availability policies are shared, user sets for SSoD and
availability policies are disjoint.

P ∩ P′ � ∅ ∧ U ∩ U′ = ∅
• Shared/Shared (S/S): Permission sets for SSoD and

availability policies are shared, user sets for SSoD and
availability policies are also shared.

P ∩ P′ � ∅ ∧ U ∩ U′ � ∅
In fact, not all these four possibilities must be consid-

ered, only the fourth one. Theorem 3 asserts that if there is
an SSoD policy ei = ssod 〈Pi,Ui, ki〉, where there exists a
permission p ∈ Pi ∧ p � R (R denotes the union of permis-
sions other than ei in all policies in Q), then ei does not affect
the consistency of Q−{ei}. Similarly, if there exists an avail-
ability policy f j = ap

〈
P
′
j,U

′
j, t j

〉
, where there exists a user

u ∈ U
′
j ∧ u � S (S denotes the union of users in all policies

other than f j in Q), then f j does not affect the consistency
of Q-{ fi}.
Theorem 3. Let Q = {e1, · · · , em, f1, · · · , fn}, where ei =

ssod 〈Pi,Ui, ki〉 (1 ≤ i ≤ m), f j = ap
〈
P
′
j,U

′
j, t j

〉
(1 ≤ j ≤ n).

If ∃ea ∈ Q(Pa − R � ∅), where R =
⋃m

i=1,i�a Pi ∪ ⋃n
j=1 P

′
j,

then let Q
′
= Q′ − {ea}; If ∃ fb ∈ Q(U

′
b − S � ∅), where

S =
⋃m

i=1 Ui ∪ ⋃n
j=1, j�b P

′
j, then let Q

′
= Q′ − { fb}; Q is

consistent if and only if Q
′

is consistent.

Proof. It is clear that if Q is consistent then Q
′

is consis-
tent as Q

′ ⊆ Q. We now show that if Q
′

is consistent then
Q is consistent. Q

′
is consistent implies that there exists an

access control state ε satisfies all policies in Q
′
. We now

construct a new state ε
′

that satisfies both Q
′

and Q as fol-
lows: for each ei ∈ Q/Q

′
, where ei = ssod 〈Pi,Ui, ki〉, add

all users in Ui to ε, but do not assign any permissions in
Pi ∩ R

′
(R
′
=
⋃m

p=1 Pp ∪ ⋃n
q=1 P

′
q denotes the union of per-

missions in all policies in Q
′
). In this way, ε

′
satisfies ei as

no less than ki in Ui together have Pi, and note that adding
new users will not lead to violation of policies in Q

′
. For

each f j ∈ Q/Q
′
, where f j = ap

〈
P
′
j,U

′
j, t j

〉
, add all users in

U
′
j to ε, and assign all permissions in P

′
j to each of U

′
j ∩ S

′

(S
′
=
⋃m

p=1 Up ∪⋃n
q=1 U

′
q denotes the union of users in all

policies in Q
′
). In this way, ε

′
satisfies f j as there exists one

user less than t j in U
′
j together have all permissions in P

′
j,

and note that adding new users, and assigning permissions
to these new users will not lead to violation of policies in
Q
′
. Therefore, Q is consistent. �

3. Computational Complexities of CCP

The following theorem summarizes the computational com-
plexity results for CCP and its various subcases.

Theorem 4. The computational complexities of the static
consistency checking problem are as follows.

• CCP〈1, 1〉 is in P, where CCP〈1, 1〉 denotes the subcase
of CCP for which there is a single SSoD policy, and a
single availability policy.
• CCP〈1, n〉 is coNP-hard, where CCP〈1, n〉 denotes the

subcase of CCP for which there is a single SSoD policy,
and an arbitrary number of availability policies.
• CCP〈m, 1〉 is NP-hard, where CCP〈m, 1〉 denotes the

subcase of CCP for which there is an arbitrary number
of SSoD policies, and a single availability policy.
• CCP〈m, n〉 is in NPNP, where CCP〈m, n〉 denotes the

most general case of CCP for which there is an arbi-
trary number of SSoD and availability policies.

Proof. The proof of Theorem 4 consists of four parts. The
first part is Lemma 1, which shows that CCP〈1, 1〉 can be
solved in linear time. In the second part, Lemma 2 shows
that CCP〈1, n〉 is coNP-hard. In the third part, Lemma 4
shows that CCP〈m, 1〉 is NP-hard. In the last part, Lemma 6
shows that CCP〈m, n〉 is in NPNP. �

Lemma 1. CCP〈1, 1〉 can be solved in linear time.

Proof. Given a single SSoD policy e=ssod 〈P,U, k〉, and
a single availability policy f=ap

〈
P
′
,U

′
, t
〉
. According to

Theorem 3, we consider only the case where P ∩ P′ �
∅ ∧U ∩U′ � ∅, and create three subcases to check whether
Q = {e, f } is consistent as follows:

The first subcase is that U
′
� U : we can construct a

state ε that assign all permissions in P
′

to u, and do not as-
sign any permission in P to the users in U. Thus, ε satisfies
both e and f , Q is consistent.

The second subcase is that P � P
′
, then we can con-

struct a state ε as follows: for each p ∈ P ∧ p � P
′

that, do
not assign p to any user in U, and assign all permissions in
P
′

to each user in U
′
. Thus, ε satisfies both e and f , and Q

is also consistent.
The third case is that U

′ ⊆ U ∧ P ⊆ P
′
: let e

′
=

ssod
〈
P,U

′
, k
〉
, f

′
= ap

〈
P,U

′
, k
〉

and Q
′
= {e′ , f

′ }. Q is

LI et al.: CONSISTENCY CHECKING OF SAFETY AND AVAILABILITY IN ACCESS CONTROL
495

consistent if and only if Q
′

is consistent. For the “only if”
part, assume that state ε satisfies both e and f .sa f ee(ε) be-
ing true implies that there exist no less than k users in U
together have all permissions in P. It is clear that no less
than k users in U

′
together have all permissions in P as

U
′ ⊆ U. In other words, sa f ee′ (ε) is also true. sa f e f (ε)

being true implies that there is no more than t users in U
′

together have all permissions in P
′
. Then these t users to-

gether can also have all permissions in P as U
′
. In other

words, sa f e f ′ (ε) is also true. Therefore, if F is consistent,
then Q

′
is consistent. For the “if” part, assume that state

ε satisfies both e
′

and f
′

that both sa f ee′ (ε) and sa f e f ′ (ε)
are true. We then construct a new access control state ε as
follows: Firstly, add all the users in U ∩ U

′
to ε, but do

not assign any permission in P to them. Secondly, add all
the permissions in P ∩ P

′
to ε, and assign all permissions in

P ∩ P
′

to each user in U
′
. e = ssod 〈P,U, k〉 can be written

as ssod
〈
P,U

′ ∪ {U ∩ U
′ }, k
〉

as there is no permissions in

P being assigned to any user in U ∩ U
′
, then there exist no

less than k users in U that together have all permissions in
P. Thus, sa f ee(ε) is true. Similarly, sa f ee(ε) is also true.
Therefore, if Q

′
is consistent, then Q is consistent. e

′
re-

quires that no less than k users in U
′

together have all per-
missions in P, and f

′
requires that no more than t users in U

′

together have all permissions in P. These two requirements
are in conflict if and only if k > t, thus F

′
is consistent when

k ≤ t. Therefore, Q is consistent.
Together with the above discussions, we now give a

linear-time algorithm for checking whether Q = {e, f } is
consistent as follows: Q is consistent if and only if (U

′
�

U ∧ P � P
′
) ∨ (k ≤ t); otherwise, Q is inconsistent. �

Lemma 2. CCP〈1, n〉 is coNP-hard.

Proof. We reduce the NP-complete set covering problem
to CCP〈1, n〉. In the set covering problem, the input is a
finite set S , n subsets of S : S 1, · · · , S n, and a budget B,
the goal is to determine whether the union of B subsets
is the same as S . The reduction is as follows. We con-
struct an SSoD policy e = ssod 〈P,U, B + 1〉, and B avail-
ability policies fi = ap 〈Pi,Ui, 1〉 (1 ≤ i ≤ B), where
P = {p1, · · · , pm} corresponds to S and Pi corresponds to
S i. Let Q = {e, f1, · · · , fn}, we prove that F is inconsistent if
and only if the answer to the set covering problem is “yes”
as follows (Lemma 3 asserts that only the availability pol-
icy fi = ap 〈Pi,Ui, ti〉 affects the consistency of Q where
Pi ⊆ P ∧ Ui ⊆ U.

For the “only if” part, we show that if Q is inconsis-
tent, then the answer to the set covering problem is “yes”.
If a state satisfies each fi in Q, then e cannot be satisfied
such that there exist no more than B users in the state who
together have all permissions in P. Let ε be a state with n
users u1, · · · , un such that ui ∈ Ui, and assign all permissions
in Pi to ui. Obviously, ε satisfies each availability policy fi in
Q. But there exist no more than B users that together have
all permissions in P. Thus, the answer to the set covering
problem is “yes” based on above reduction.

For the “if” part, we show that if the answer to the set
covering problem is “yes”, then Q is inconsistent. If there
exist no more than B elements in {P1, · · · , Pn} whose union
is P, let ε be a state that satisfies each fi in Q. For each fi,
let ui ∈ Ui and assign all permissions in Pi to ui. In this
case, there are no more than B users in U who together have
all the permissions in P. Thus, ε does not satisfy the SSoD
policy e, which implies that no state satisfies all policies in
Q. In other words, Q is inconsistent. �

Lemma 3. Q = {e, f1, · · · , fn}, where e = ssod 〈P,U, k〉, and
fi = ap 〈Pi,Ui, ti〉 (1 ≤ i ≤ n). If Ui � U, let Q

′
= Q − { fi},

and if Pi � P, let f
′
i = ap 〈Pi ∩ P,Ui, ti〉, Q

′
= (Q − { fi}) ∪

{ f ′i }. Q is consistent if and only if Q
′

is consistent.

Proof. If Ui � U, there must exist a user u ∈ Ui ∧ u �
U, and then all the permissions in Pi can be assigned to u,
thus fi can be satisfied, and it does not conflict with e. In
other words, the policy fi where Ui � U does not affect the
consistency of Q; therefore, we can delete fi in Q which
makes Q

′
= Q-{ fi}. As the above discussion, we consider

only the case where Ui ⊆ U. If Pi � P, for each permission
p ∈ Pi ∧ p � P that we do not assign p to any user in
Ui, and it does not violate the safety requirement of e and
the availability requirement of fi. Therefore, we need not
to consider p, and let f

′
i = ap 〈Pi ∩ P,Ui, ti〉, Q

′
= (Q −

{ fi}) ∪ { f ′i }. Therefore, Q is consistent if and only if Q
′

is
consistent. �

Lemma 4. CCP〈m, 1〉 is NP-hard.

Proof. We reduce the NP-complete set splitting problem [8]
to CCP〈m, 1〉. In the set splitting problem, the input are a
finite set S = {s1, · · · , sm}, m subsets of S : S 1, · · · , S m, and
we need to determine whether there exist Q1 and Q2 such
that Q1 ∪ Q2 = S and there does not exist S i (1 ≤ i ≤ m)
such that S i ⊆ Q1 or S i ⊆ Q2. The reduction is as follows.
We construct an availability policy f = ap 〈P,U, 2〉, and m
SSoD policies ei = ssod 〈Pi,Ui, 2〉 (1 ≤ i ≤ m), where
P = {p1, · · · , pm} corresponds to S and Pi corresponds to
S i. Let Q = {e1, · · · , em, f }. We prove that Q is consistent if
and only if the answer to the set splitting problem is “yes”
as follows (Lemma 5 asserts that only the SSoD policy ei =

ssod 〈Pi,Ui, ki〉 affects the consistency of Q where Pi ⊆ P∧
Ui ⊆ U.).

For the “only if” part, we show that if Q is consistent,
then the answer to the set splitting problem is “yes”. Let a
state ε satisfy all policies in Q. ε satisfying f implies that
there exist two users u1 ∈ U and u2 ∈ U in ε such that u1 and
u2 together have all permissions in P. Furthermore, ε satis-
fying ei implies that neither u1 nor u2 has all permissions in
Pi. Let R1 = {si|(u1, pi) ∈ UP} and R2 = {si|(u2, pi) ∈ UP}.
Then R1 ∪ R2 = S and there does not exist S i (1 ≤ i ≤ m)
such that S i ⊆ R1 or S i ⊆ R2. Thus, the answer to the set
splitting problem is “yes”.

For the “if” part, we show that if the answer to the set
splitting problem is “yes”, then Q is consistent. Assum-
ing that R1 and R2 exist. We construct a state ε containing

496
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.3 MARCH 2010

only two usersu1 and u2 such that auth pε(ui) = {p j|(p j ∈
Ri} (1 ≤ i ≤ 2). Then u1 and u2 together have all permis-
sions in P as R1 ∪ R2=S which implies that ε satisfies f .
Since there does not exist S i (1 ≤ i ≤ m) such that S i ⊆ R1

or S i ⊆ R2, neither u1 nor u2 has all permissions in Pi, which
implies that ε satisfies ei. Therefore, ε satisfies all policies
in Q, in other words, Q is consistent. �

Lemma 5. Q = { f , e1, · · · , en}, where f = ap 〈P,U, t〉, and
ei = ssod 〈Pi,Ui, ki〉 (1 ≤ i ≤ n). If Pi � P, let Q

′
= Q−{ei},

and if Ui � U, let e
′
i = ssod 〈Pi,Ui ∩ U, ki〉, Q

′
= (Q−{ei})∪

{e′i}. Q is consistent if and only if Q
′

is consistent.

Proof. If Pi � P, there must exist a user p ∈ Pi ∧ p � P,
and then does not assign p to any user in Ui that ensures
ei be satisfied and does not affect the satisfaction of f . In
other aspect, if Ui � U (we only consider the cases in which
Pi ⊆ P), we do not assign any permissions in Pi to each
user uwhere u ∈ Ui ∧ u � U, and it does not violate the
safety requirement of ei and the availability requirement of
f . Therefore, we need to consider only the cases where Pi ⊆
P ∧ Ui ⊆ U. �

Lemma 6. CCP〈m, n〉 is NPNP.

Proof. Let Q = {e1, · · · , em, f1, · · · , fn}, where ei =

ssod 〈Pi,Ui, ki〉 (1 ≤ i ≤ m), f j = ap
〈
P
′
j,U

′
j, t
′
j

〉
(1 ≤

j ≤ n). We construct a nondeterministic Oracle Turing ma-
chine [9] M that makes use of an NP oracle machine to de-
termine whether Q is consistent. The access control state
can have all users in U=(

⋃m
i=1 Ui) ∪ (

⋃n
j=1 U

′
j), in order to

satisfy all SSoD policies in Q, the number of users must
not be less than max(k1, · · · , km), and in order to satisfy all
availability policies in Q, the number of users must not be

more than
∑n

j=1

∣∣∣∣P
′
j

∣∣∣∣. Let M first nondeterministically se-

lects an integer π such that max(k1, · · · , km) ≤ π ≤ ∑n
j=1

∣∣∣∣P
′
j

∣∣∣∣
and then generates a size-π user set U

′ ⊆ U. Then M con-
structs a state ε by nondeterminnistically assigning a subset
of
⋃n

j=1 P
′
j to u ∈ U. Then M nondeterministically con-

structs n sets U
′
1, · · · ,U

′
n of users in ε. And then, checking

whether users in U
′
j (1 ≤ j ≤ n) together have all permis-

sions in P
′
j and

∣∣∣∣U
′
j

∣∣∣∣ ≤ t
′
j. If the answer is “no”, M is re-

jected; Next, M invokes the NP oracle to check whether
ε violates any SSoD policies in Q (Theorem 1 shows that
checking whether a state violates a set of SSoD policies is
coNP-complete, similar to the proof of Theorem 1, it is easy
to prove that checking whether a state violates an SSoD pol-
icy is in NP). If the oracle machine answers “yes”, M is re-
jected; otherwise, M is accepted, because a state ε is found
that satisfies all the policies in Q, and hence Q is consistent.
Therefore, CCP〈m, n〉 is NPNP. �

4. An Algorithm for CCP

The fact that CCP〈m, n〉 is intractable (NPNP) means that

there exist difficult problem instances that take exponential
time in the worst case. Many instances that will be encoun-
tered in practice may still be efficiently solvable. For exam-
ple, efficient algorithms for CCP〈m, n〉 exist when m and n
are small. We now design an algorithm for CCP, which is
described in details in this section. Our goal here is to ver-
ify that CCP can be solved in reasonable amount of time for
general cases, even though the problem is NPNP in general.
We first give a straightforward algorithm as follows, which
is based on the idea of Lemma 6. We then employ a number
of improvements based on the straightforward algorithm.

Straightforward Algorithm: Straightforward Algo-
rithm Given a set E of SSoD policies and a set F of availabil-
ity policies, where E={e1, · · · , em}, F={ f1, · · · , fn}, where
ei=ssod 〈Pi,Ui, ki〉 (1 ≤ i ≤ m), f j=ap

〈
P
′
j,U

′
j, t
′
j

〉
(1 ≤ j ≤

n). Let P=(
⋃m

i=1 Pi ∪ (
⋃n

j=1 P
′
j), U=(

⋃m
i=1 Ui ∪ (

⋃n
j=1 U

′
j),

for each ui ∈ U, and each pi ∈ P, we have a propositional
variable v(i, j). This variable is true if pi is assigned to ui. All
of the variables compose an access control state, and there
are 2(|P|∗|U |) such states. A straightforward algorithm is to
enumerate all possible states, and for each such state, deter-
mine that whether it satisfies all SSoD policies in E, and all
availability policies in F.

Our improved algorithm is based on this idea but we
add the following improvements that greatly reduce the run-
ning time.

• We perform static pruning to reduce the number of
SSoD and availability policies that need to be consid-
ered based on Theorem 3, Lemma 7 and Lemma 8.
• We preprocess the input and reduce the number of ac-

cess control states we need to consider.
• We translate SCP and ACP into two SAT instances,

which enable us to benefit from the extensive research
on SAT and to use existing SAT solver.

Static Pruning: In the following, we describe a static
pruning technique that aims at reducing the number of
policies that need to be taken into account. By Theorem
3, given a policy set Q = {e1, · · · , em, f1, · · · , fn}, where
ei=ssod 〈Pi,Ui, ki〉 (1 ≤ i ≤ m), f j=ap

〈
P
′
j,U

′
j, t j

〉
(1 ≤ j ≤

n). The following policies need not be considered, as these
policies do not affect the consistency of Q. ∀ei ∈ Q(Pi−R �
∅) and ∀ f j ∈ Q(U

′
j−S � ∅), where R=

⋃m
x=1,x�i Px∪⋃n

y=1 P
′
y,

and S=
⋃m

x=1 Ux ∪⋃n
y=1,y� j U

′
y.

Furthermore, we observe that many policies need not
be considered either. There is a partial order relation among
these policies such that an SSoD policy e1 is more restrictive
than another SSoD policy e2, or an availability policy f1 is
more restrictive than another availability policy f2. Then we
need not to consider e2 and f2. We now explain this pruning
technique.

Definition 6. Let e1 and e2 be two SSoD policies, f1 and
f2 be two availability policies. We say that e1 is at least
as restrictive as e2(denoted by e1 � e2) if ∀ε(sa f ee1 (ε) ⇒
sa f ee2 (ε)). We say that f1 is at least as restrictive as
f2(denoted by f1 � f2) if ∀ε(sat f1 (ε)⇒ sat f2 (ε)).

LI et al.: CONSISTENCY CHECKING OF SAFETY AND AVAILABILITY IN ACCESS CONTROL
497

The � relation among SSoD policies or availability
policies is a partial order. When neither e1 � e2 nor e2 � e1,
we say e1 and e2 are incomparable. In the following, we
show how to compare two SSoD policies or availability poli-
cies.

Lemma 7. For any SSoD policies e1=ssod 〈P1,U1, k1〉 and
e2=ssod 〈P2,U2, k2〉, e1 � e2 if and only if (U1 ⊇ U2)∧(k1 ≥
k2 + |P1 − P2|).
Proof. For the “if” part, given (U1 ⊇ U2) ∧ (k1 ≥ k2 +

|P1 − P2|), we show that ∀ε(¬sa f ee2 (ε) ⇒ ¬sa f ee1 (ε)).
There are two cases for (U1 ⊇ U2) ∧ (k1 ≥ k2 + |P1 − P2|):
(1)P1 ⊆ P2, (2)P1 ⊃ P2. ¬sa f ee2 (ε) being true means that
there exist k2-1 users in U2 together have all the permissions
in P2. For case (1), there also exists k2-1 users in U1 together
have all the permissions in P1 as (P1 ⊆ P2) ∧ (U1 ⊇ U2),
and (k1 ≥ k2 + |P1 − P2|) ⇒ (k1 − 1) ≥ (k2 − 1). There-
fore, there exists k1-1 users in U1 together have all the
permissions in P1, in other words, ¬sa f ee1 (ε) is true, and
∀ε(¬sa f ee2 (ε) ⇒ ¬sa f ee1 (ε)) is true. For case (2), there
also exist k2-1 users in U1 together have all the permis-
sions in P1 ∪ {P2 − P1} as (U1 ⊇ U2). At most |P1 − P2|
users together have all the permissions in {P2 − P1}, and
(k1 ≥ k2 + |P1 − P2|)⇒ (k2 − 1) ≤ (k1 − 1)− |P1 − P2|. Con-
sequently, there exists k1-1 users in U1 together have all the
permissions in P1, sa f ee1 (ε) is also false.

For the “only if” part, given e1 � e2, we show that
(U1 ⊇ U2) ∧ (k1 ≥ k2 + |P1 − P2|) is true. Suppose,
for the sake of contradiction, that ¬((U1 ⊇ U2) ∧ (k1 ≥
k2 + |P1 − P2|)) is true. In other words, both U1 ⊇ U2 and
k1 ≥ k2 + |P1 − P2| are false. Let e1 and e2 are two SSoD
policies, where e1=ssod 〈P1,U1, k1〉, e2=ssod 〈P2,U2, k2〉.
If U1 ⊇ U2 is false, then ∃u ∈ U2/U1, assuming that
sa f ee1 (ε) is true, but assign all the permissions in P2 to u,
then sa f ee2 (ε) is false as k2 > 1. Therefore, U1 ⊇ U2 is
true. If k1 ≥ k2 + |P1 − P2| is false, then k1 < k2 + |P1 − P2|.
If P1 ⊆ P2, then k1 < k2 ⇒ k1 ≤ k2 − 1. sa f ee1 (ε) being
true means that at least k1 users in U1 together have all the
permissions in P1. We assume that there exist k1 users in
U1 together having all the permissions in P1 in ε, then there
exist k2-1 users in U2 together have all the permissions in
P2 as to ε (let U1=U2, and these k1 users also have all the
permissions in {P2−P1}), then sa f ee2 (ε) is false. If P1 ⊃ P2,
let k1 < k2 + |P1 − P2|, given an access control state ε that
sa f ee1 (ε) is true, for each permission in {P2 − P1}, assign it
to |P1 − P2| different users, and these users are not assigned
any other permissions in P1, then k1-|P1 − P2| users together
have all the permissions in P1. Therefore, there exist less
than k2 users in U2 together have all the permissions in P2

(let U1=U2), therefore, sa f ee2 (ε) is false. This contradicts
the assumption that e1 � e2. �

Lemma 8. For any SSoD policies f1=ap 〈P1,U1, t1〉 and
f2=ap 〈P2,U2, t2〉, f1 � f2 if and only if (P1 ⊇ P2) ∧ (U1 ⊆
U2) ∧ (t1 ≤ t2).

Proof. For the “if” part, given (P1 ⊇ P2)∧(U1 ⊆ U2)∧(t1 ≤

t2), we show that ∀ε(sat f1 (ε) ⇒ sat f2 (ε)) is true. sat f1 (ε)
being true means that there exists no more than t1 users in
U1 together have all the permissions in P1. Since (P1 ⊇
P2) ∧ (U1 ⊆ U2) ∧ (t1 ≤ t2), then there also exists no more
than t2 users in U2 together have all the permissions in P2,
in other words, sat f2 (ε) is also true.

For the “only if” part, given f1 � f2, we show that
(P1 ⊇ P2) ∧ (U1 ⊆ U2) ∧ (t1 ≤ t2) is true. Suppose, for the
sake of contradiction, that ¬(P1 ⊇ P2)∧(U1 ⊆ U2)∧(t1 ≤ t2)
is true, thus ¬(P1 ⊂ P2) ∨ (U1 ⊃ U2) ∨ (t1 > t2) is
true. Let f1 and f2 are two availability policies, where
f1=ap 〈P1,U1, t1〉, f2=ap 〈P2,U2, t2〉. If P1 ⊂ P2 is true,
then ∃p ∈ P2/P1. Assuming that there exists an access con-
trol state ε, and sat f1 (ε) is true. Let p not be assigned to
any user in U2, that does not affect sat f1 (ε). But sat f2 (ε) is
false, because no t2 users together have all the permissions in
P2. This contradicts the assumption that f1 � f2; therefore,
P1 ⊂ P2 is false, and P1 ⊇ P2 is true. If U1 ⊃ U2 is true,
then ∃u ∈ U1/U2. We now construct a state ε by assigning
all the permissions in P1 to u, and do not assign any permis-
sions in P1 to any other users in U1. That makes sat f1 (ε) is
true as u has all the permissions, but sat f1 (ε) is false, because
there exists no size-t2 user set covering all the permissions in
P2(P1 ⊇ P2). This contradicts the assumption that f1 � f2,
therefore, U1 ⊃ U2 is false, and U1 ⊆ U2 is true. If t1 > t2 is
true, we now construct a state ε that t1 users in U1 together
have all the permissions in P1, but do not assign any other
permissions to any user in U2 − U1, that makes sat f1 (ε) is
true, but sat f2 (ε) is false, because there does not exist no
more than t2 users in U2 together having all the permissions
in P2 (t1 > t2). This contradicts the assumption that f1 � f2;
therefore, t1 > t2 is false, and t1 ≤ t2 is true. Consequently,
if f1 � f2, then (P1 ⊇ P2) ∧ (U1 ⊆ U2) ∧ (t1 ≤ t2). �

Preprocessing: Theorem 2 shows that determining
whether an access control state ε satisfies a set F of avail-
ability policies is NP-complete. But it is also easy to elimi-
nate many states that do not satisfy all the availability poli-
cies in F. Given a state ε, and a availability policy set F, for
each fi ∈ F, where fi=ap 〈Pi,Ui, ti〉, if

⋃
u∈Ui

Perm(u) � Pi,
then we know that the state does not satisfy fi, and ε needs
not be considered.

Reduction to SAT: After employing preprocessing and
static pruning techniques to reduce the number of access
control states, SSoD policies and availability policies that
need to be considered, the next key step to solve CCP is to
determine whether a given access control state satisfies a set
of SSoD and availability policies. Let ei=ssod 〈Pi,Ui, ki〉,
f j= ap

〈
P
′
j,U

′
j, t j

〉
, given a state ε, sa f eei (ε) being true

means that there does not exist less than ki users in Ui to-
gether have all the permissions in Pi, and sat f j (ε) being true
means that there exists no more than t j users in U

′
j together

having all the permissions in P
′
j. Obviously, SSoD policies

are a natural complement to availability policies. If there
exist no more than ki-1 users in Ui together having all the
permissions in Pi, then sa f eei (ε) is false, but sat fi (ε) is true,
where fi= ap 〈Pi,Ui, ki − 1〉. Consequently, we regard SCP

498
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.3 MARCH 2010

as a reverse problem of ACP, and observe that ACP can be
translated into a SAT instance. In this way, we can use al-
gorithms for SAT to solve ACP. The SAT solver we use
is SAT4J [10], and it supports Pseudo-Boolean constraints,
which are linear inequalities with integer coefficients.

The translation works as follows. Given an availability
policy f=ap 〈P,U, t〉, for each ui ∈ U, we have a proposi-
tional variable vi. This variable is true if ui is a member
of size-t user set U

′ ⊆ U to cover all the permissions in
P. Then we have the following two kinds of constraints.
For each p ∈ P, let ui1 , ui2 , · · · , uix be the users who are
authorized for the permission p. We add the first con-
straint vi1 + vi2 + · · · , vix ≥ 1, which ensures that all the
permissions in P are covered by U

′
. There are m (m =

|P|) such constraints. Then we add the second constraint
vi1 + vi2 + · · · , vix ≤ t(n = |U |), which ensures that

∣∣∣U ′ ∣∣∣ ≤ t.
There is only one such constraint.

5. Evaluation and Illustration

5.1 Implementation and Evaluation

We prototyped the algorithm described in Sect. 4 and have
performed some experiments using randomly generated in-
stances. Our prototype is written in Java, we use SAT4J,
an open source satisfiability library in Java. The Pseudo
Boolean constraints used in our prototypes are supported
by SAT4J. The experiments were carried out on a machine
with an Intel(R) Core(TM)2 Duo CPU T5750 running at
2.0 GHz, and with 2 GB of RAM running Microsoft Win-
dows XP Professional.

The methodology that we use in generating test in-
stances of SSoD and availability policies is as follows. In
practice, the number of permissions involved in an access
control system will not be very large. However, the number
of users in the system may be large. In this way, we as-
sume that there are 20 permissions and 50 users in an access
control system. The number of permissions involved in an
SSoD policy will not be very large, and the number of users
in the policy may be large. In order to approximate realis-
tic instances, we generate an SSoD policy e=ssod 〈P,U, k〉
for testing using combinations of the following approaches.
The generation of an availability policy f=ap 〈P,U, t〉 is es-
sentially the same as follows.

• |P|=X, where X is a random integer variable, 2 ≤
X ≤ 20, with a distribution of the density function

f (x)= e−(x−4)2√
2π

, we write X˜N(4,1).
• |U |=Y , where Y is a random integer variable, 2 ≤

Y ≤ 50, with a distribution of the density function

f (y)= e−(y−5)2√
2π

, we write Y˜N(5,1).
• k is a random integer in [2,min(|P| , |U |)].
• When |P| and |U | are generated, then randomly select
|P| integers {i1, · · · , ix} from [2, 20] to be the right suffix
for the permissions {pi1 , · · · , pix }=P. Also randomly se-
lect |U | integers { j1, · · · , jy} from [2, 50] to be the right
suffix for the users {u j1 , · · · , u jy }=U.

Static pruning is very effective: Table 1 shows the ef-
fect of static pruning for increasing values of m (number of
SSoD policies) and n (number of availability policies). The
number of SSoD and availability policies after static prun-
ing is fewer, for example, for m = 2, and n = 2, 4, or 6, there
is no SSoD or availability policies that need to be checked
with static pruning. The SSoD and availability policies be
decreased by about 68% through static pruning, where the
total number of policies is 224, and the number of remain-
ders is 71. Furthermore, the basic idea of static pruning is
to reduce the number of policies that need to be taken into
account by Theorem 3, Lemma 7 and Lemma 8. Generally,
the SSoD policies with many permissions will not be con-
sidered, and the availability policies with many users will
not be considered too.

Preprocessing is also effective: Table 2 shows the ef-
fect of preprocessing for increasing values of m (number of
SSoD policies) and n (number of availability policies). The
access control states that need to be considered will be de-
creased by about 20%˜30% through static pruning. Obvi-

Table 1 A table that shows static pruning is effective (the number of
SSoD and availability policies should be considered). The columns are
values for n (number of availability policies) and rows are values for m
(number of SSoD policies). For each cell in the table, the entry above the
dotted line is the number of SSoD and availability policies that need to be
checked with static pruning in effect, and the number below the dotted line
is the number of SSoD and availability policies that need to be checked
without static pruning.

����m
n

2 4 6 8 10

2 0 0 0 2 2
4 6 8 10 12

4 0 2 2 3 4
6 8 10 12 14

6 2 2 3 4 4
8 10 12 14 16

8 2 3 3 4 4
10 12 14 16 18

10 4 4 5 5 6
12 14 16 18 20

Table 2 A table that shows preprocessing is effective (the number of
access control states should be considered). The columns are values for
n (number of availability policies) and rows are values for m (number of
SSoD policies). For each cell in the table, the entry above the dotted line is
the number of access control states that need not to be considered with pre-
processing in effect, and the number below the dotted line is the number of
access control states that need not to be considered without preprocessing.

����m
n

2 4 6 8 10

2 0 0 0 73 127
0 0 0 256 512

4 0 79 149 430 3932
0 256 512 2048 16384

6 37 317 2129 7208 12451
128 1024 8192 32768 65536

8 69 471 2213 23593 141557
256 2048 16384 131072 524288

10 1269 1802 15834 136314 325058
4096 8192 65536 524288 1048576

LI et al.: CONSISTENCY CHECKING OF SAFETY AND AVAILABILITY IN ACCESS CONTROL
499

Fig. 1 This graph shows the effect on running time (in milliseconds) as
the number of SSoD policies m and the number of availability policies n
increase.

ously, the preprocessing does scale well when the number
of SSoD and availability policies grows.

The algorithm scales reasonably well with m and n
when m and n are not very large: Our experimental results
are presented in Fig. 1. The running time of our algorithm
depends on the number of SSoD and availability policies,
the total number of access control states which are need to
be considered, and the time spent in the SAT solver, which
is greatly influenced by the number of permissions and users
in an SSoD or availability policy. Our improved algorithm is
able to solve CCP〈m, n〉 in reasonable amount of time when
m and n are not very large. For example, for m = 6 and
n = 4, the algorithm takes only about 1.4 seconds. However,
as m and n become larger, the algorithm stops scaling. For
example, for m = 10 and n = 10, the algorithm takes about
3 hours, which is unacceptable. In particular, the algorithm
takes less than 1 second, where the number of SSoD and
availability policies that need to be checked is only 2. Via
Lemma 1, we know that given two policies e=ssod 〈P,U, k〉
and f=ssod

〈
P
′
,U

′
, t
〉
, let Q={e, f }, Q is consistent if and

only if(U
′
� U ∨ P � P

′
) ∨ (k ≤ t); otherwise,Q is in-

consistent. In this way, we need not spent any time in the
SAT solver, which can greatly improving the performance
of our algorithm. However, as m and n becomes larger, the
number of the access control states need to be considered
will increase enormously. Consequently, lots of time will be
spent in the SAT solver. As CCP needs to be performed only
when the access control state of the system changes, which
is not expected to happen frequently, relative slow running
time may be acceptable in some situations. Further research
is needed on improving the performance of the algorithm.

5.2 Illustration and Analysis

We now give a running example to show the validity of our
algorithm for consistency checking problem.

Example 1: Consider the task of ordering and paying for
goods discussed in Sect. 1. We have a permission corre-

sponding to each step in the task; these permissions are
order, goods, invoice, and payment. A set E of SSoD
policies {e1, e2, e3, e4} and a set F of availability poli-
cies { f1, f2, f3} exactly meet the safety requirements (i.e.,
{(a), (b), (c), (d)}) and the availability requirements (i.e.,
{(e), (f), (g)}) respectively. We have the following expres-
sions.

• E={e1, e2, e3, e4}.
• e1 = ssod < {order, goods, invoice, payment}, {Alice,

Bob,Carl,Doris}, 3 >.
• e2=ssod < {order, goods}, {Alice, Bob,Carl,Doris},

2 >.
• e3=ssod < {goods, invoice}, {Bob,Carl,Doris}, 2 >.
• e4=ssod < {order, goods, invoice}, {Alice, Bob,Carl,

Doris}, 3 >.
• F={ f1, f2, f3}.
• f1=ap < {order, goods, invoice, payment}, {Alice,

Bob,Carl}, 3 >.
• f2=ap < {order, payment}, {Alice, Bob}, 1 >.
• f3=ap < {order, goods, payment}, {Alice, Bob,Carl},

2 >.

We now implement the proposed algorithm to resolve
the consistency checking problem of a set E of SSoD
policies and a set F of availability policies. Let Q=E ∪
F={e1, e2, e3, e4, f1, f2, f3}.

Firstly, we perform static pruning to reduce the number
of these policies that need to be considered. Via Theorem 3,
e1 ∈ Q(P1 − R = {payment} � ∅), where

• R={order, goods, invoice},
• P1={order, goods, invoice, payment},

Obviously, e1 does not affect the consistency of Q. Let
Q
′
=Q − {e1}. Via Lemma 7, both (U4 ⊇ U2) ∧ k4 ≥ k2 +

|P4 − P2|) and (U4 ⊇ U3) ∧ k4 ≥ k3 + |P4 − P3|) are true,
where

• U2={Alice, Bob,Carl,Doris},
• U3={Bob,Carl,Doris},
• U4={Alice, Bob,Carl,Doris},
• P2={order, goods},
• P3={goods, invoice},
• P4={order, goods, invoice},
• k2=2, k3=2, k4=3.

Let Q
′
= Q

′
-{e2, e3}. Via Lemma 8, (P

′
1 ⊇ P

′
2) ∧ (U

′
1 ⊆

U
′
2) ∧ (t1 ≤ t2), where

• P
′
1={order, goods, invoice, payment},

• P
′
2={order, payment},

• U
′
1={Alice, Bob,Carl},

• U
′
2={Alice, Bob},

• t1=3, t2=1.

Then let Q
′
=Q

′
-{ f2}. Based on the above discus-

sion, Q={e1, e2, e3, e4, f1, f2, f3} is consistent if and only if
Q
′
={e4, f1, f3} is consistent.

Secondly, a straightforward algorithm is to enumerate

500
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.3 MARCH 2010

all possible states, and there are 216 such states. We then
perform preprocess to reduce the number of access control
states that need to be considered. For each fi ∈ { f1, f3},
the access control state ε needs not to be considered, if⋃

u∈Ui
Perm(u) � Pi, where

• P
′
1={order, goods, invoice, payment},

• P
′
3={order, payment, payment},

• U
′
1={Alice, Bob,Carl},

• U
′
3={Alice, Bob,Carl}.

There exist 27120 such access control states that should
not be considered. Only 10640 access control states need to
be considered, which are decreased by about 71.82%. This
shows the preprocessing is effective. Thirdly, we reduce the
consistency checking problem to SAT solver. Finally, There
exist 72 access control states in which sa f ee4 (ε)∧sat{ f1, f3}(ε)
is true. Therefore, the policies in Q

′
are consistent, thus the

set E of SSoD policies and the set F of availability policies
are consistent.

6. Related Work

While policy analysis has been the main research area in ac-
cess control for several decades, almost all previous work
in access control analysis focused on safety property, which
determines whether an access control system can reach a
state where an unsafe access is allowed. Based on the under-
standing that security analysis is a critical problem for trust
management, Li et al. [1] proposed the notion of security
analysis, which generalizes safety analysis in the context of
a trust management framework. They also studied the se-
curity analysis in the context of role-based access control
(RBAC), where they gave a precise definition of a family of
security analysis problems in RBAC. It is more general than
safety analysis that is studied in the literature [11]. Zhang
et al. investigate the safety property with pre-authorization
policies in usage control (UCON) [12].

One example of security policy is separation-of-duty
(SoD) policy, which is a very important principle in infor-
mation security. The concept of SoD can be traced back
to 1975 when Saltzer and Schroeder [13] took it as one of
the design principles for protecting information, under the
name “separation-of-privilege”. Since Clark and Wilson [3]
applied SoD principle to the data objects to ensure integrity
and control frauds along with well-formed transactions as
two major mechanisms for controlling fraud and error. Later
on, SoD has been vastly studied by various researchers as a
principle to avoid frauds. There exists a wealth of litera-
ture on SoD policies in the context of RBAC [14]. It has
been recognized that “one of RBAC’s great advantages is
that SoD rules can be implemented in a natural and efficient
way”. The specification of SoD policies is a very important
issue. It should be noted that most existing approaches on
separation-of-duty only consider constraint sets with exact
two elements. The distinction between the SSoD policy ob-
jectives and the SMER (statically mutually exclusive role)
constraints, as a mechanism to enforce them, is sometimes

not clearly made [15]. Motivated by the work of Li et al [16],
we formally define SSoD policies. Besides, we consider the
total number of available users as a limitation factor through
referring to the Jason’s work [4].

The security policy focusing on safety properties is
mostly viewed as a tool for restricting access. An equally
important aspect of access control is to enable access. In this
way, we introduce the notion of availability policies in this
paper, which state properties about enabling access in access
control. Li et al introduces the related concept of availabil-
ity policies in [1], [11], which discriminates whether a user
always possesses certain permissions across state changes.
Unlike the availability policies in the work by Li et al, the
availability policies in this paper state that the cooperation
of at most a certain number of users is required to complete
a task which ensures that the task does not become stuck and
therefore cannot be completed. The availability policy is a
high-level requirement, and it is expressed in terms of re-
strictions on permission set and user set. It does not specify
a permission requirement on any individual user. A similar
concept is resiliency policy [17], which requires an access
control system to be resilient to the absence of users. How-
ever, the resiliency policy does not consider the total num-
ber of available users as a limitation factor, since the num-
ber of users in any organization is bounded in practice. The
requirement of resiliency policy is to tolerate absent users
and the overall ability of groups of users to perform critical
tasks.

Both security policies and availability policies are very
important. In many cases, it is desirable for access con-
trol system to have both of them. In practice, the security
officer may design many security policies and availability
policies in an access control system. Due to their opposite
focus, these policies may conflict with each other. Conse-
quently, this paper attempts to address the problem of con-
sistency checking for safety and availability in the context of
access control, which is very important for security officers,
although it may become a challenging task.

7. Conclusions and Future Work

In this paper, we give the formal definition of SSoD poli-
cies, and introduce the notion of availability policies. It is
desirable for an access control system having both SSoD
and availability policies. However, these policies may con-
flict with each other due to their opposite focuses. This pa-
per addresses the problem of consistency checking for the
co-existence of SSoD and availability policies. We show
that the general case of the consistency checking problem
and several subcases are intractable (NP-hard), and is in the
Polynomial Hierarchy (in NPNP). Although the consistency
checking problem is intractable in general, many instances
that will be encountered in practice may still be efficiently
solvable. Therefore, we design an algorithm for solving this
problem in general case. The algorithm can efficiently solve
instances of nontrivial sizes that belong to the intractable
cases of the problem.

LI et al.: CONSISTENCY CHECKING OF SAFETY AND AVAILABILITY IN ACCESS CONTROL
501

In the future research, we intend to address the prob-
lem of consistency checking for the co-existence of other
policies with conflict focuses. For example, a cardinality
constraint focuses on the restriction of the role cardinality of
a relationship. A cardinality constraint may specify a min-
imum or maximum number of related entities. It may con-
flict with both SSoD and availability policies. This problem
seems to be particularly interesting in role-based access con-
trol systems. Another open area lies in the design techniques
for resolving the inconsistency in optimal way. This paper
explores the co-existence of SSoD and availability policies.
When these policies are inconsistent, conflicts are thus re-
solved by withdrawing one or more policies till the conflicts
are corrected. Resolution of policy conflicts by manual in-
tervention of policy administrator is a slow and ad hoc pro-
cess. Thus, an optimal conflict resolution technique is very
important.

Acknowledgments

We would like to thank Dr Yong Zeng at Concordia Uni-
versity for his many suggestions that improved the content
and presentation of this paper. This work is supported by
National Natural Science Foundation of China under Grant
60873225, 60773191 and 70771043, National High Tech-
nology Research and Development Program of China under
Grant 2007AA01Z403.

References

[1] N. Li, J.C. Mitchell, and W.H. Winsborough, “Beyond proof-of-
compliance: Security analysis in trust management,” J. ACM,
vol.52, no.3, pp.474–514, May 2005.

[2] N. Li and M.V. Tripunitara, “Security analysis in role-based access
control,” Proc. 9th ACM Symposium on Access Control Models
and Technologies (SACMAT), pp.126–135, Yorktown Heights, New
York, USA, June 2004.

[3] D.D. Clark and D.R. Wilson, “A comparison of commercial and mil-
itary computer security policies,” Proc. 8th IEEE Symposium on Se-
curity and Privacy (SP), IEEE Computer Society Press, pp.184–195,
Oakland, California, USA, April 1987.

[4] J. Crampton, “Specifying and enforcing constraints in role-based ac-
cess control,” Proc. 8th ACM Symposium on Access Control Models
and Technologies (SACMAT), pp.43–50, Villa Gallia, Como, Italy,
June 2003.

[5] J.A. Solworth, “Approvability,” Proc 1st ACM Symposium on In-
formation, Computer and Communications Security (ASIACCS),
pp.231–241, Taipei, Taiwan, March 2006.

[6] J. Lu, R. Li, Z. Lu, J. Hu, and X. Ma, “Specification and enforcement
of static separation-of-duty policies in usage control,” Proc. 12th In-
formation Security Conference (ISC), pp.403–410, Pisa, Italy, Sept.
2009.

[7] C.H. Papadimitriou, Computational Complexity, Addison Wesley
Longman, 1994.

[8] M.R. Garey and D.S. Johnson, Computers and intractability: A
guide to the theory of NP-completeness, W.H. Freeman, ISBN 0-
7167-1045-5, New York, 1979.

[9] N. Li and Q. Wang, “Beyond separation of duty: An algebra for
specifying high-level security policies,” Proc. 13th ACM Confer-
ence on Computer and Communication Security (CCS), pp.356–
369, Alexandria, Virginia, USA, Nov. 2006.

[10] D.L. Berre (project leader), SAT4J: A satisfiability library for Java,

URL http://www.sat4j.org/, Jan. 2006.
[11] N. Li and M.V. Tripunitara, “Security analysis in role-based access

control,” Proc. 9th ACM Symposium on Access Control Models and
Technologies (SACMAT), pp.126–135, June 2004.

[12] X. Zhang and R. Sandhu, “Safety analysis of usage control au-
thorization models,” Proc. 1st ACM Symposium on Information,
Computer and Communications Security (ASIACCS), pp.243–254,
Taipei, Taiwan, March 2006.

[13] J.H. Saltzer and M.D. Schroeder, “The protection of information in
computer systems,” Proc. IEEE, vol.63, no.9, pp.1278–1308, Sept.
1975.

[14] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-based ac-
cess control models,” Computer, vol.29, no.2, pp.38–47, Feb. 1996.

[15] D.F. Ferralolo, J.A. Cuigini, and D.R. Kuhr, “Role-based access con-
trol (RBAC): Features and motivations,” Proc. 11th Annual Com-
puter Security Applications Conference (ACSAC), pp.12–14, New
Orleans, Dec. 1995.

[16] N. Li, M.V. Tripunitara, and Z. Bizri, “On mutually exclusive roles
and separation-of-duty,” Proc. ACM Transactions on Information
and System Security, vol.10, no.2, pp.1–36, May 2007.

[17] N. Li, M.V. Tripunitara, and Q. Wang, “Resiliency policies in access
control,” Proc. 13th ACM Conference on Computer and Commu-
nication Security (CCS), pp.113–123, Alexandria, Virginia, USA,
Nov. 2006.

Ruixuan Li received the B.S., M.S., and
Ph.D. degrees from College of Computer Sci-
ence and Technology at Huazhong University
of Science and Technology in 1997, 2000, and
2004, respectively. Since 2004, He has been
an Associate Professor of College of Computer
Science and Technology at Huazhong Univer-
sity of Science and Technology. His research
interests include distributed system security, in-
formation retrieval, peer-to-peer computing, and
social network.

Jianfeng Lu received the B.S. degree from
College of Computer Science and Technology
at Wuhan University of Science and Technology
in 2005. He is a PhD candidate in the Intelli-
gent and Distributed Computing Lab, College of
Computer Science and Technology, Huazhong
University of Science and Technology, and is
expected to graduate in June 2010. His research
interests include access control, policy analysis,
separation-of-duty, and secure interoperation.

Zhengding Lu is currently a professor in
College of Computer Science and Technology
at Huazhong University of Science and Tech-
nology, and is the director of the Intelligent
and Distributed Computing Laboratory. His re-
search interests include distributed computing,
distributed database, distributed system security,
and multimedia information systems.

502
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.3 MARCH 2010

Xiaopu Ma received his M.S. degree in
School of Computer Science and Engineering
from University of Electronic Science and Tech-
nology of China in 2004. Now he is a Ph.D. can-
didate in the Intelligent and Distributed Com-
puting Lab, College of Computer Science and
Technology, Huazhong University of Science
and Technology. His research interests include
distributed system security, access control, and
multidomain interoperation.

