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PAPER

Orbital Systolic Algorithms and Array Processors for Solution of
the Algebraic Path Problem

Stanislav G. SEDUKHIN†a), Toshiaki MIYAZAKI†, and Kenichi KURODA†, Members

SUMMARY The algebraic path problem (APP) is a general framework
which unifies several solution procedures for a number of well-known ma-
trix and graph problems. In this paper, we present a new 3-dimensional (3-
D) orbital algebraic path algorithm and corresponding 2-D toroidal array
processors which solve the n × n APP in the theoretically minimal number
of 3n time-steps. The coordinated time-space scheduling of the computing
and data movement in this 3-D algorithm is based on the modular function
which preserves the main technological advantages of systolic processing:
simplicity, regularity, locality of communications, pipelining, etc. Our de-
sign of the 2-D systolic array processors is based on a classical 3-D→2-D
space transformation. We have also shown how a data manipulation (copy-
ing and alignment) can be effectively implemented in these array proces-
sors in a massively-parallel fashion by using a matrix-matrix multiply-add
operation.
key words: algebraic path problem, orbital systolic algorithms, array pro-
cessors, data manipulation

1. Introduction

The algebraic path problem (APP) is a general framework
which unifies several solution procedures for a number of
well-known matrix and graph problems such as matrix in-
version, transitive closure, all-pairs shortest paths, maxi-
mum reliability paths, minimum spanning tree, etc. The
APP has been studied extensively [1]–[8] because matrix
computations and graph problems are among the most im-
portant computational problems in the computer science and
engineering area. A summary of some results and historical
notes on the APP may be found in [7], and a wide variety of
APP applications are described in [5].

Due to the importance of the problem, there has been
considerable research on implementing the APP (or partic-
ular instances) on 2-D and 1-D systolic and SIMD array
processors, see extensive review in [8]–[10]. All 2-D im-
plementations take O(n) time-steps on O(n2) processing el-
ements (PEs). It is well known [11] that the theoretically
minimal time of implementing n3 operations of the APP on
an n×n array processor is 3n, but with technologically unde-
sirable global communication between processing elements.
The localization of communication required for a systolic
implementation has, to date, imposed a slowdown from 3n
to 4n and more.

Actually, the traditional systolic implementation of the
APP requires 5n − 4 time-steps which is the length of the
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longest path in a localized 3-D data dependence graph of
the APP algorithm [6], [12]. Deeper localization approaches
that reduced the running time from 5n to 4n [10], [11], [13],
[14] and the number of processing elements from n2 to
n2/3 [9], [15], [16] have been proposed independently by a
number of authors. However, all these optimized array
processors sacrifice VLSI requirements by allowing irreg-
ular connections, non planar implementation, unbounded or
bounded data broadcast, complicated control, etc.

Moreover, the main problem with these and other 2-
D systolic algorithms is that all initial data must be prop-
erly prepared and stored in advance in a special (time-space
skewed) form by using preprocessing in some additional and
nontrivial parallel memory which, finally, has to stream this
initial 2-D data into array processor through the boundary
processing elements. The existence of this buffering mem-
ory and the required time of preprocessing for a 2-D data
alignment are usually ignored in the well established tradi-
tional design and complexity analysis of the systolic algo-
rithms [17]. As a result, the existing 2-D systolic array pro-
cessors cannot be easily implemented in practice. These 2-
D array processors, however, were very attractive solutions
for a planar VLSI with the limited number of input/output
(I/O) pins. Nowadays, the advances in the 3-D VLSI tech-
nology [18], stacked memory [19]–[21], and Giga-size sen-
sor arrays [22] with a parallel read-out and embedded logic
allow realization of massively parallel array processors with
one I/O channel per PE. Moreover, the cost of floating-point
computing is extremely cheap now∗ and will definitely be
even cheaper in the future which makes array processors
with billions of cores technically implementable and eco-
nomically justified. However, this opening opportunity [24]
requires a design of the new fine-grained massively-parallel
algorithms and array processors which are based on the
concurrent access to all initial data items while preserving
the main technological advantages of the systolic process-
ing, i.e., simplicity, regularity, locality of communications,
pipelining, and balancing computations with I/O data. We
would like to use this opportunity to design the massively-
parallel algorithms and array processors for solving the APP.

Our main contributions are as follows:

1. We formally introduce a new 3-D algorithm for the
APP with a modular time-step scheduling function by
revising the well-known 2-D Guibas-Kung-Thompson

∗The cost of computing has dropped from the about
$1012/Gflop (1961) to $0.42/Gflop (2007) [23].

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers



SEDUKHIN et al.: ORBITAL SYSTOLIC ALGORITHMS AND ARRAY PROCESSORS FOR SOLUTION OF THE PATH PROBLEM
535

algorithm [25].
2. We systematically design the new 2-D toroidal systolic

array processors with a frontal plane I/O for solving the
APP in the theoretically minimal time.

3. We propose a new technique for massively-parallel
data manipulation such as data copying and alignment
which is based on a standard matrix multiplication al-
gorithm.

The rest of the paper is organized as follows. In Sect. 2
the Algebraic Path Problem and its applications are dis-
cussed in some detail. The 3-dimensional orbital APP al-
gorithm which is based on the modular scheduling of com-
putations and local data movements is introduced in Sect. 3.
Based on this 3-D orbital APP algorithm, a few time-step
optimal orbital systolic array processors are proposed in
Sect. 4. Finally, Sect. 5 concludes the paper.

2. The Algebraic Path Problem

Let G = (V, E,w) be a weighted graph, where V =

{1, 2, . . . , n} is a set of vertices, E ⊆ V × V is a set of edges,
and w : E → S is an edge-weight function that assigns
a weight from a closed semiring (S ,⊕,⊗, ∗, 0̄, 1̄). A closed
semiring (S ,⊕,⊗, ∗, 0̄, 1̄) is an algebraic structure in a set S
with two binary operations, addition ⊕ : S × S → S and
multiplication ⊗ : S × S → S , a unary operation called
closure ∗ : S → S , and the constants 0̄ and 1̄ in S .

A path p is an arbitrary sequence of connected vertices
(i, k1, k2, . . . , km, j) that begins with i and ends with j. The
weight of a path p is defined as the product of all edges of
the path:

w(p) = w(i, k1) ⊗ w(k1, k2) ⊗ . . . ⊗ w(km, j).

The weight of a path of length 0, which begins and ends in
the same vertex and does not contain edges, is defined to be
1̄.

Let P(i, j) be the set of all paths from i to j. The APP
is the problem to compute the sum of all paths from i to j
for all pairs (i, j):

di, j =
⊕

p∈P(i, j)

w(p). (1)

The APP can also be formulated in matrix form. Like
in [1], we introduce a matrix semiring (S n×n,⊕,⊗, ∗, Ō, Ī),
a set of n × n matrices S n×n over a closed scalar semir-
ing (S ,⊕,⊗, ∗, 0̄, 1̄) with two binary operations, matrix ad-
dition ⊕ : S n×n × S n×n → S n×n and matrix multiplication
⊗ : S n×n × S n×n → S n×n, a unary operation called closure of
a matrix ∗ : S n×n → S n×n, the zero n× n matrix Ō whose all
elements equal to 0̄, and the n × n identity matrix Ī whose
all main diagonal elements equal to 1̄ and 0̄ otherwise. Ma-
trix addition and multiplication are defined as usual in linear
algebra.

We associate a matrix A = [ai, j] in S n×n with the
weighted graph such that

ai, j =

⎧⎪⎪⎨⎪⎪⎩
w(i, j) if (i, j) ∈ E

0̄ if (i, j) � E.

If we define a matrix D = [di, j] in S n×n whose entries
are values of di, j for all pairs (i, j), the matrix D can be ex-
pressed in terms of the matrix A as follows (see [2] for de-
tails):

D = A∗ =
⊕

m≥0

Am = Ī⊕A⊕A2⊕A3⊕ · · · . (2)

Equation (2) is the matrix formulation of the APP. Thus, the
APP in matrix form can be stated as the problem to compute
A∗, the closure of a matrix A defined in (2). In addition, A∗
in (2) can be rewritten as follows:

A∗ = Ī⊕A⊕A2⊕A3⊕ · · ·
= Ī⊕A⊗(Ī⊕A⊕A2⊕A3⊕ · · · )
= Ī⊕A⊗A∗. (3)

The APP in matrix form can also be stated as the problem to
solve (3) for A∗.

Applications of the APP are obtained by specializing a
scalar closed semiring. Some of them are detailed below:

• Transitive and reflexive closure: the weights ai j are
taken from S = {0, 1}. ⊕ = ∨, ⊗ = ∧, a∗ = 1 for
all a in S , 0̄ = 0, and 1̄ = 1. The closure of a matrix
gives the transitive and reflexive closure.

• All-pairs shortest paths: the weights ai j are taken from
S = R+ ∪ {∞}, where R+ is the set of positive real num-
bers. ⊕ = min, ⊗ = +, a∗ = 0 for all a in S , 0̄ = ∞,
and 1̄ = 0. The closure of a matrix gives the all-pairs
shortest paths.

• Maximum cost paths: the weights ai j are taken from
S = R+ ∪ {+∞,−∞}, where R+ is the set of positive
real numbers. ⊕ = max, ⊗ = +, a∗ = 0 for all a in S ,
0̄ = −∞, and 1̄ = 0. The closure of a matrix gives the
maximum cost (critical) paths, or +∞ if there are paths
of unbounded cost [1].

• Maximum capacity paths (also called tunnel problem
or network capacity problem [7]): the weights ai j are
taken from S = R+∪{∞}, where R+ is the set of positive
real numbers. ⊕ = max, ⊗ = min, a∗ = ∞ for all a in
S , 0̄ = 0, and 1̄ = ∞. The closure of a matrix gives the
maximum capacity paths.

• Maximum reliability paths: the weights ai j are taken
from S = [0, 1] and can be considered as reliabilities
of the information transport between the two connected
vertices. ⊕ = max, ⊗ = ×, a∗ = 1 for all a in S , 0̄ = 0,
and 1̄ = 1. The closure of a matrix gives the most
reliable paths, i.e., the path with the highest probability
between any two vertices in a graph.

• Minimum cost spanning tree: the weights ai j = a ji are
taken from S = R+∪{∞}, where R+ is the set of positive
real numbers. ⊕ = min, ⊗ = max, a∗ = 0 for all a in
S , 0̄ = ∞, and 1̄ = 0. Let D = (di j) is the closure of
a matrix, then its entries di j = a(0)

i j are the edges of the
minimum cost spanning tree [4].
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• Inverse of a real non-singular matrix: the weights ai j

are taken from S = R. ⊕ and ⊗ are the conventional
arithmetic + and × operations on R respectively, a∗ =
(1 − a)−1 for all a in R with a � 1 (a∗ is undefined for
a = 1), 0̄ = 0, and 1̄ = 1. The closure of a matrix gives
(I − A)−1 (see [2] for details).

3. 3-Dimensional Orbital APP Algorithm

3.1 The Generic APP Algorithm

After initialization, a(0)
i, j = ai, j, 1 ≤ i, j ≤ n, the generic

algorithm for solution of the APP can be represented in the
following compact form:

Algorithm 1
for k = 1 : n do

for all 1 ≤ i, j ≤ n do
a(k)

i, j ← a(k−1)
i, j ⊕ a(k−1)

i,k ⊗ (a(k−1)
k,k

)∗ ⊗ a(k−1)
k, j ;

end for all
end for

However, to resolve data dependency, the Algorithm 1 can
be rewritten as follows [11], [13].

Algorithm 2
for k = 1 : n do

for all 1 ≤ i, j ≤ n do

a(k)
i, j ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
a(k−1)

i, j

)∗ : i = j = k;

a(k)
i,k ⊗ a(k−1)

i, j : i = k � j;

a(k−1)
i, j ⊗ a(k)

k, j : j = k � i;

a(k−1)
i, j ⊕ a(k)

i,k ⊗ a(k−1)
k, j : (i � k)&( j � k);

end for all
end for

As it can be seen from the Algorithm 2, there are
four different types of computations, depending on the in-
dex conditions. It was proven [11] that the time-minimal
scheduling function for the Algorithm 2 is

step
(
a(k)

i, j

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3k − 2 : i = j = k;
3k − 1 : i = k � j;
3k − 1 : j = k � i;
3k : (i � k)&( j � k),

(4)

where step
(
a(k)

i, j

)
assigns a time-step of computing the ele-

ment ai, j on k-th iteration, assuming that each elementary
computation in the Algorithm 2 is performed in one step.
From (4) we can conclude that the running time for any par-
allelization of this algorithm is at least 3n. This schedule as-
sumes an unbounded number of O(n2) processing elements
with a global communication: in particular, broadcast of the
pivot a(k)

k,k =
(
a(k−1)

k,k

)∗, the pivot column {a(k)
i,k |1 ≤ i ≤ n}, and

the pivot row {a(k)
k, j|1 ≤ j ≤ n} on each k-th iteration are nec-

essary. Possible localization and regularization of a global
communication leads to increasing the running time from 3n
to 5n [6], [12].

3.2 The Algorithm for the Idempotent APP

For the APP with an idempotent semiring, where a = a ⊕ a,
the closure operation is

(
a(k−1)

k,k

)∗
= 1̄. Moreover, because

a(k−1)
k,k = 0̄ for any k ∈ {1, 2, . . . , n} then for i = k, a(k)

k, j =

a(k−1)
k, j ⊕ a(k−1)

k,k ⊗ a(k−1)
k, j ≡ a(k−1)

k, j , and for j = k, a(k)
i,k = a(k−1)

i,k ⊕
a(k−1)

i,k ⊗a(k−1)
k,k ≡ a(k−1)

i,k . Therefore, for an idempotent semiring
the Algorithm 1 can be simplified as follows:

Algorithm 3
for k = 1 : n do

for all (1 ≤ i � k ≤ n)&(1 ≤ j � k ≤ n) do
a(k)

i, j ← a(k−1)
i, j ⊕ a(k−1)

i,k ⊗ a(k−1)
k, j ;

end for all
end for

The modified Algorithm 3 requires only n(n − 1)2

“multiply-add” operations which is less than n3 operations
in the classical Floyd-Warshall algorithm for the transitive
closure of a directed graph. In the Algorithm 3 there ex-
ist only one type of computing a(k)

i, j , which depends on the

previously computed elements a(k−1)
i, j , a

(k−1)
i,k , and a(k−1)

k, j .
It is well known that there is the straightforward rela-

tion between paths problem and matrix-matrix multiplica-
tion (MMM) [26]. In spite of that, in the MMM algorithm,
any nested order of the i, j, k loops is permissible [27] while
in the APP algorithm, an iteration loop k has to be the out-
ermost one. Therefore, the APP Algorithm 3 has more strict
data dependencies than the MMM algorithm and these de-
pendencies should be resolved to update the entire n × n
matrix A(k) = [a(k)

i, j ] in the Algorithm 3 before moving on to
the next (k + 1) iteration [28].

3.3 The Guibas-Kung-Thompson Algorithm

Among all existing 2-D systolic array processors for the
APP there exist a not trivial systolic design for the reflex-
ive transitive closure of an n × n boolean matrix A due to
Guibas, Kung, and Thompson (GKT) [25]. A systolic sys-
tem for GKT algorithm is shown in Fig. 1. The GKT al-
gorithm is based on three-pass matrix-matrix multiplication
C ← C+A×A′, and, therefore, requires 3n3 “multiply-add”
operations, i.e., three times more than the classical Floyd-
Warshall algorithm. However, only 5n − 2 time-steps are
needed for GKT algorithm to implement all these operations
and obtain the solution matrix A∗ ≡ C = [ci, j] on an n × n
toroidal array processor. The side-around (toroidal) connec-
tions are needed to return an n × n matrix A + I = [ai,k],
where I is the identity matrix, and its copy A′ = [a′k, j] for
the second and third passes. After completion, the resulting
elements of a matrix C = [ci, j], which is a zero matrix ini-
tially, are resided in PE〈i, j〉, 0 ≤ i, j < n, (see Fig. 1). Note
that here, in contrast to a matrix multiplication, all elements
ai,k, a′k, j, and ci, j are updated at every pass.
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Fig. 1 A systolic system architecture for the GKT algorithm and PE function on each time-step.

To control the actions of the PE〈i, j〉, the GKT algo-
rithm uses the boolean control signals r and s such that r = 1
and s = 1 for the diagonal elements of the matrices A and A′,
respectively, and r = s = 0 otherwise. The detailed proof
of the validity of this algorithm can be found in [29]. The
GKT algorithm for the transitive closure can be extended to
solve the other APP applications with an idempotent semir-
ing. However, as it was mentioned before, the problem with
this and other 2-D systolic algorithms is that all initial data
should be properly organized in advance and stored in the
parallel memory with a not trivial behavior (see Fig. 1).

3.4 A New 3-D Orbital APP Algorithm

Because the GKT algorithm is based on the three-pass ma-
trix multiplication in the corresponding semiring:

C ← C ⊕ A ⊗ A′ ⇐⇒ ci, j = ci, j ⊕
n−1∑

k=0

ai,k ⊗ a′k, j,

we can use our previously proposed [30] 3-D orbital matrix-
matrix multiply-add algorithms to solve the APP with idem-
potent semirings. Like the GKT algorithm we use as input
an (n × n) matrix A = [ai,k] = A⊕Ī, its copy A′ = [a′k, j] = A,
and a matrix C = [ci, j] all elements of which are initially
equal to 0̄. The boolean control signals r and s are also
added to the elements of matrices A and A′, respectively. We
can choose one of the allowable for the 3-D orbital MMA
algorithm modular time-step scheduling functions, for ex-
ample,

step
(
c(k)

i, j

)
= (αT · p) mod n = (−i − j + k) mod n, (5)

where p = (i, j, k)T , αT = (−1,−1, 1), T is a transpose sign,
and start processing from the step

(
c(k)

i, j

)
= 0. Note that

here, i, j, k ∈ [0, n − 1] and, in general, a scheduling vector
αT ∈ (±1,±1,±1) (see [30] for details). Moreover, in (5) we
assume that elementary computation c(k)

i, j ← c(k−1)
i, j ⊕ai,k⊗a′k, j

is performed within one time-step.
The 3-D parallel algorithm for the idempotent APP

and given scheduling function (5) is shown as Algorithm 4,
where a statement points(i, j, k) = [0 ≤ i, j, k < n]&[(k −
j − i) mod n] and “‖” means that the statements connected
by ‖ are independent on each other and can be performed in
parallel. The main part of this algorithm (lines 2–17) is a
simple matrix-matrix multiply-add in the 3-D toroidal index
space I = {(i, j, k)T |0 ≤ i, j, k < n}, but with different to
the matrix multiplication reassignments (lines 6–14) which
are depend on the index conditions. We realistically assume
that an elementary unit of processing (lines 4–15), which in-
cludes both computing and data rolling, is implemented in
one time-step, which is independent on the problem size.

The initial distribution of matrices A, A′, and C in a 3-
D n×n×n toroidal index space I = {(i, j, k)T |0 ≤ i, j, k < n}
is predefined by the selected time-step function at the initial
step, i.e., each active by the time-step function step(c(k)

i, j ) = 0
an index point p = (i, j, k)T ∈ I has to have initially the el-
ements ai,k = ain, a′k, j = a′in, and ci, j = cin = 0̄ which are
input data for the first pass. The distribution of active com-
putations on each time-step in the 3-D toroidal index space
is shown in Fig. 2. The toroidal side-around connections are
not shown for simplicity and directions of data rolling are
symbolically represented by an orbital sign above the pic-
ture.

On each time-step at each of n2 active index point
p = (i, j, k)T ∈ I we have to implement a “multiply-
add” operation (line 5 in the Algorithm 4) and, after cor-
responding assignments (lines 6–15), cyclically shift (roll)
output data to the neighbor index points depending on the
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Algorithm 4
1: for pass = 1 : 3 do
2: for step = 0 : n − 1 do
3: for all points(i, j, k) = step do
4: begin
5: cout ← cin ⊕ ain ⊗ a′in;
6: case(rs) :
7: % black element update: i = j = k (�)
8: (11): aout ← cout ‖ a′out ← cout;
9: % red element update: j = k � i (��)

10: (01): aout ← ain ‖ a′out ← cout;
11: % white element update: (i � k)&( j � k) (�)
12: (00): aout ← ain ‖ a′out ← a′in;
13: % blue element update: i = k � j (��)
14: (10): aout ← cout ‖ a′out ← a′in;
15: end
16: end for all
17: end for step
18: end for pass

given scheduling function. Because for the scheduling func-
tion (5), αT = (−1,−1, 1), ai,k = aout is moved opposite to
the j-axis (orbit), a′k, j = a′out is propagated opposite to the
i-axis, and ci, j = cout is cyclically shifted along the k-axis
(see Fig. 2).

After n “compute-and-roll” time-steps the all updated
elements of matrices A, A′, and C will be located at the
same index points from which we have started processing,
i.e., all data is ready for the second and third passes. Totally,
three passes are required to finalize the Algorithm 4.

Theorem 1: The 3-D orbital Algorithm 4 solves the idem-
potent APP in 3n “compute-and-roll” steps.

Proof At each step (line 2), the innermost loop (lines 4–16)
activate simultaneously n2 index points. If a combination of
“computing” (line 5) and “rolling” data (lines 6–15) for all
active points is performed in a single step then n steps are
needed to implement one pass of the algorithm. Because
three passes are required (see the outermost loop (lines 1–
18)), totally 3n “compute-and-roll” steps are needed to solve
the idempotent APP by the Algorithm 4. �

Recall that 3n steps is the theoretically low bound
which follows from the Eq. (4). Because at each step, n2

“compute-and-roll” operations are performed, totally, 3n3

“multiply-add” operations are needed to complete the APP
Algorithm 4, i.e., to find a solution A∗ = C.

4. 2-D Orbital Array Processors for the APP

It is straightforward to find the all admissible data distri-
butions for the 2-D toroidal array processors by using the
appropriate 3-D→2-D linear projections. These linear pro-
jections map the 3-D index space of the algorithm into 2-D
array processor space while keeping the same time complex-
ity of implementation. For example, three initial data distri-
butions for a 2-D n × n toroidal array processor, which are
obtained by projection of a 3-D index space I of the APP
Algorithm 4 (see Fig. 2) along i-, j-, and k-axis (orbits) are
shown in Fig. 3 for n = 4. Obviously, each active index point

p = (i, j, k)T ∈ I is mapped into either PE( j, k) or PE(i, k)
or PE(i, j) for i-, j- or k-projection, respectively. In Fig. 3,
the PE with a label (i jk) has initially elements ai,k = ain,
a′k, j = a′in, and ci, j = cin = 0̄. It is easy to proof the following

Theorem 2: Each 2-D n × n orbital array processor shown
in Fig. 3 solves the idempotent APP in 3n “compute-and-
roll” steps.

Proof Any linear projection of the 3-D index space I
along/opposite the basis vectors ei = (1, 0, 0)T , e j =

(0, 1, 0)T , ek = (0, 0, 1)T guarantees that on each “compute-
and-roll” time-step no more than one active index point will
be mapped into each PE, i.e. all n2 active index points are
mapped into n2 different PEs of a planar array processor. It
is follows from the simple condition that the scalar product
αT · ex � 0 where ex ∈ {ei, ej, ek}, α is a scheduling vector,
and α = (−1,−1, 1)T for our example. Moreover, the linear
projections of a cubical-like index space I along/opposite
i-, j-, or k-axis define the planar array processors with the
minimal number of n×n toroidally connected PEs. To com-
plete the Algorithm 4, there are 3n such “compute-and-roll”
steps. �

As it can be seen from Fig. 3, only projection along j-
axis satisfies the distribution of an input matrix A = [ai,k]
among PEs in a canonical form while other projections re-
quire initial skewing of this matrix. For projection along j-
axis, the different data distributions on each” compute-and-
roll” step are demonstrated in Fig. 4. This projection, how-
ever, requires the matrices A′ and C to be initially skewed.
The matrix A′ = [a′k, j], which is a copy of the matrix
A = [ai,k], should be distributed within an array processor in
(k, j)-fashion. This matrix can be produced (copied) in the
required skewed form by using a matrix-matrix multiplica-
tion A′ ← AT × I+A′ before the main processing, where I is
the identity matrix, i.e., a′k, j =

∑n−1
i=0 ai,k · ei, j, where initially

A′ is set to zero matrix and ei, j ∈ I with ei, j = 1 if i = j and
ei, j = 0, otherwise. In this operation, a matrix A, which was
loaded in a canonical form, is involved in a computing in the
transposed form but no real transpose is needed. We assume
that the identity matrix I is permanently resided in our array
processor {PE(i, k)|0 ≤ i, k < n} such that ei, j ∈ I is stored in
PE(i, k). It is not difficult to see that a matrix I is distributed
in skewed form. Recall that on each time-step every PE(i, k)
involves in a processing (compute-and-roll) the active index
point p = (i, j, k)T ∈ I, i.e., three scalar operands: ei, j, ai,k

and a′k, j. Practically, a real scalar multiplication by the con-
stants “0” and “1” can be easily avoided. After loading of
a matrix A into array processor, a copying of a matrix A′
with a required skewing is implemented on the same array
processor by using the same time-step function. i.e., the ele-
ments ei, j and a′k, j will be rolled while an element ai,k is fixed
in PE(i, k). Of course, this preprocessing stage requires ad-
ditionally n time-steps. After n compute-and-roll steps each
PE(i, k) contains the elements of an index point (i, j, k)T , i.e.,
it has the required elements a′k, j = ak, j and ai,k, and an array
processor is ready to start the main processing as it was de-
scribed above.
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Fig. 2 Distribution of active computations in a 3D toroidal index space on each step under the
scheduling function step(c(k)

i, j ) = (−i − j + k) mod n.

Fig. 3 Three initial data distributions as 2-D projections of the 3-D index space along i-, j-, and k-axis
as well as coordinates and input/output data of each PE.

After 3n time-steps, the resulting matrix C = [ci, j]
will be stored in the array processor in a skewed (i, j)-
form, as it is depicted in Fig. 3( j). Therefore, by comple-
tion of the main processing, it might be desirable to re-
turn a resulting matrix C into canonical (i, k)-form and per-
form a data-parallel output. This post-processing stage can

be done by using one more matrix-matrix multiplication
C′ ← C×IT +C′, where c′i,k =

∑n−1
j=0 ci, j ·ek, j and C′ = [ci,k] is

a zero matrix initially. Here, we assume again that the iden-
tity matrix I is permanently resided in an array processor in
a skewed (k, j)-fashion. This matrix is involved in a comput-
ing in the transposed form with ek, j = e j,k. Obviously, after
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Fig. 4 Data distributions on each time-step of computing for a 2-D pro-
jection along j-axis.

Fig. 5 2-D Frontal Plane Array Processor for the APP obtained by a pro-
jection of the 3-D index space along j-axis. The side-around toroidal con-
nections are not shown for simplicity.

n “compute-and-roll” time-steps, the elements c′i,k = ci,k will
be correctly located in PE(i, k), 0 ≤ i, k < n, in a canonical
form and ready for parallel output (see Fig. 5).

It can be shown that if a matrix A is loaded in the canon-
ical form then a projection along i-axis also requires pre- and
post-processing for data copying and alignment while a pro-
jection along k-axis will demand only two pre-processing
stages since the resulting matrix C is resided inside an array
processor in the canonical form as in the famous Cannon’s
algorithm for matrix multiplication [31]. Thus, for any dis-
cussed projection, the total 5n time-steps are needed to solve
the APP. This total time includes not only the minimal pos-

sible 3n time-steps to implement the APP algorithm itself,
but also an additional time for the required copying and data
alignment which is usually missed in the traditional systolic
algorithms complexity analysis.

5. Conclusion

In this paper we have introduced a new 3-D orbital algo-
rithm for the APP with a modular time-step scheduling func-
tion which guaranties the minimal time of the APP solu-
tion while preserving a systolic style of processing: sim-
plicity, regularity, locality of communications, pipelining,
etc. The new 2-D toroidal systolic array processors with a
frontal plane I/O have been systematically designed as lin-
ear projections of the 3-D APP algorithm. We have also pro-
posed a new technique for massively-parallel data manipu-
lation such as data copying and alignment which is based
on a matrix-matrix multiply-add operation. We guess that
the frontal plane systolic array processors can be relatively
easily implemented and efficiently used for many important
applications with multidimensional data streams.
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