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Testable Critical Path Selection Considering Process Variation

Xiang FU†a), Nonmember, Huawei LI†b), Member, and Xiaowei LI†c), Nonmember

SUMMARY Critical path selection is very important in delay testing.
Critical paths found by conventional static timing analysis (STA) tools are
inadequate to represent the real timing of the circuit, since neither the testa-
bility of paths nor the statistical variation of cell delays caused by process
variation is considered. This paper proposed a novel path selection method
considering process variation. The circuit is firstly simplified by eliminat-
ing non-critical edges under statistical timing model, and then divided into
sub-circuits, while each sub-circuit has only one prime input (PI) and one
prime output (PO). Critical paths are selected only in critical sub-circuits.
The concept of partially critical edges (PCEs) and completely critical edges
(CCEs) are introduced to speed up the path selection procedure. Two path
selection strategies are also presented to search for a testable critical path
set to cover all the critical edges. The experimental results showed that
the proposed circuit division approach is efficient in path number reduc-
tion, and PCEs and CCEs play an important role as a guideline during path
selection.
key words: testable critical path selection, process variation

1. Introduction

Static timing analysis (STA) had been widely adopted in
commercial EDA tools before the 90-nm era. However, as
the dimension size of devices continues to shrink, the per-
formance of devices becomes more and more vulnerable to
process variation [1]. Because of the lack of predictability
on delay variation of semiconductor devices, the conven-
tional STA tools fail to find a complete critical path set that
could represent the real timing of the circuit, or the found
critical path set has poor testability.

Researchers have been driven to investigate appropri-
ate model to tackle the statistical variation. In [2], the non-
systematic process variation is classified into two classes,
within-die variation and die-to-die variation. The within-
die variation further contains two categories, spatially cor-
related and independent. Several research works have been
conducted to develop proper models to handle both gate de-
lay variations [3] and interconnection delay variations [4].

Confronting the problem of process variation, statisti-
cal STA (SSTA) is a possible solution. SSTA, which is in
contrast with traditional deterministic STA (DSTA), adopts
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the delay variation information of gates and interconnec-
tions. Early work of SSTA is proposed in [5]. These re-
search works focus on path-based approaches [5], [6]. How-
ever, the countless paths in modern ASIC circuits hindered
the development of such approaches. Recent years witness
the maturation of SSTA, and block-based SSTA becomes
popular. The block-based methods follow the DSTA al-
gorithm more closely. The arrival time at each node is
computed by traversing the circuit graph in a topological
manner. It’s a linear approach and efficient in CPU time.
Works on block-based SSTA approaches can be found in
[7], [8]. These papers mainly concentrate on the propaga-
tion of mean delay and delay deviation of cells.

The testability of paths should also be considered when
selecting critical paths. As we know, the total number of
paths is exponential to the size of a circuit, while most
of the paths are robustly untestable, or even non-robustly
untestable, as reported by previous automatic test pattern
generation (ATPG) research in delay testing [9]. In previous
works, the testability of paths has been considered in both
crosstalk induced delay testing [10] and small delay defect
testing [11], [12]. In [13], an approach to reduce the number
of paths to be tested is proposed, even though the final path
set is reduced significantly, the rigorous test on short paths
will result in over-testing.

This paper focuses on finding the testable critical paths
considering process variation. A critical path, in this paper,
is defined as a path which has the potential to be the longest
path under certain conditions caused by process variation.
The proposed testable critical path selection method in-
cludes two procedures.

In the first procedure, the circuit under test (CUT)
is simplified by eliminating non-critical edges at the logic
level, and then divided into sub-circuits, while each sub-
circuit has only one prime input (PI) and one prime output
(PO). The maximum delay of each sub-circuit is estimated
using a statistical timing model at the logic level. If the esti-
mated maximum delay has the potential to be larger than the
original circuit’s maximum delay obtained by STA, this sub-
circuit is regarded as critical and should be retained for crit-
ical path selection. By sub-circuit partition, the concept of
partially critical edges (PCEs) and completely critical edges
(CCEs) are introduced, and critical paths considering pro-
cess variation can be efficiently identified.

In the second procedure, non-robust delay test gener-
ation is done on selected paths in critical sub-circuits, and
two path selection strategies are presented to find the least
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number of testable paths that cover as many critical edges as
possible.

Experimental results on ISCAS’89 benchmark circuits
showed that the proposed circuit division approach is effi-
cient in path number reduction, and PCEs and CCEs play an
important role as a guideline during path selection.

The rest of the paper is organized as follows. Sec-
tion 2 provides the motivation of this work. In Sect. 3, the
proposed SSTA flow on critical path analysis is introduced.
Section 4 describes the two testable path selection strate-
gies. Experimental results on ISCAS’89 benchmark circuits
are shown in Sect. 5. Finally, we present our conclusions in
Sect. 6.

2. Motivation

The conventional DSTA approach is based on the classic
critical path identification algorithm. For a circuit with fixed
timing, the signal latest arrival time and the minimum re-
quired time (definition 1 and definition 2) of an edge can
be calculated by one time traverse and back traverse of the
circuit graph.

Definition 1: The signal latest arrival time of an edge
is defined as the longest sub-path delay starting from any
PI(PPI) to the edge, and denoted as Tarrival latest.

Definition 2: The signal minimum required time of an
edge is defined as the longest path delay of the whole circuit
minus the longest sub-path delay starting from the edge to
any PO(PPO), and denoted as Treq min.

Based on the above definition, the paths constructed by
the edges which have equal Tarrival latest and Treq min are the
longest paths of the circuit with fixed timing. The criterion
is simple and efficient. This makes the conventional STA
tools very good at finding the longest path in fixed timing
mode. However, due to process variation, the timing of fab-
ricated circuits varies from one to another. So paths which
are not the longest in one circuit may be the longest in an-
other one, and may escape from the critical path set if fixed
timing is used in STA. An example of conventional DSTA
is displayed in Fig. 1. In Fig. 1, the edge delay, signal latest
arrival time and minimum required time are displayed in the
format of delay, <Tarrival latest,Treq min>.

Given a slack threshold slack thsld, if the Tarrival latest

and Treq min of an edge do not satisfy Eq. (1), the edge is a

Fig. 1 An example of conventional DSTA.

non-critical edge, and all the paths through the edge are not
critical. This kind of edges can be eliminated, and a circuit
skeleton solely constructed by critical edges is extracted.

Treq min − Tarrival latest ≤ slack thsld (1)

If we want to find paths each of which has a slack not
larger than 1, let the slack thsld of the circuit in Fig. 1 be 1,
then there are three edges and two nodes (highlighted in red)
can be removed. However, after all of the non-critical edges
are eliminated, the circuit skeleton (constructed by the black
arches and nodes) still has short paths. For instance, path
PI2-A1-A4-A7-PO, whose on-path edges all satisfy Eq. (1),
is not a critical path. The on-path edges of path PI2-A1-A4-
A7-PO such as A1-A4 and A4-A7 are different from edges
such as A3-A4 and A4-A6. Apparently, the definition of
Tarrival latest and Treq min cannot tell the difference between
these two kinds of edges. In this paper, edges like A1-A4
and A4-A7 are defined as partially critical edges (PCEs), be-
cause there are short paths through this kind of edges, but
not all. Edges like A3-A4 and A4-A6 are defined as com-
pletely critical edges (CCEs), through which all paths are
critical. The identification of PCEs and CCEs is discussed
in the next section.

Exhaustive enumeration of the whole path set will no
doubt find all the long paths. However, it’s timing consum-
ing or even impossible to enumerate the whole path set. On
the other hand, the CPU efficiency of conventional DSTA
is an advantage that we cannot resist. Divide and conquer
is a good solution for this problem. If a non-critical edge
is eliminated, all paths through the edge needn’t to be con-
sidered in critical path selection. We observed through ex-
periments that the number of non-critical edge is usually
pretty high, and lots of paths can be excluded at the early
stage. The circuit skeleton can be further divided into the
sub-circuits according to the PI(PPI)/PO(PPO) pairs. The
sub-circuit, which is also named as the logic cone of the
PI(PPI)/PO(PPO) pair in this paper, becomes so simple that
enumerating its whole path set becomes possible. What’s
more, one can reduce a given subset of paths effectively by
removing paths that have non-critical edges, which meets
the need of practice in timing verification and delay testing.

3. The Proposed SSTA Flow

The proposed SSTA flow is shown in Fig. 2. Firstly, the
SSTA for the whole circuit is performed. Secondly, an early
stage path reduction scheme by eliminating the non-critical
edges and a circuit partition procedure which divides the
circuit skeleton into sub-circuits between the PI(PPI) and
PO(PPO) pairs are performed. Thirdly, an SSTA procedure
is further executed in each cone. This SSTA procedure iden-
tifies whether the extracted logic cone is critical or not. If it
is not critical, the next PI(PPI)/PO(PPO) pair in the circuit
skeleton is selected; else, the PCEs and CCEs in the logic
cone are identified, and the path selection procedure is per-
formed.
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Fig. 2 The proposed SSTA flow.

Table 1 Delay variations of basic gates.

Gate Type Mean(μ) Standard Deviation(σ)

BUFF 4 0.3

INV 2 0.2

NOR,NAND 3 0.3

OR,AND 4 0.3

3.1 SSTA Timing Model and Path Selection Criterion

In the proposed method, block-based SSTA is adopted. For
simplicity, only independent within-die variation is consid-
ered. This means the delay variations of gates (also called as
timing edges), are assumed to be independent to each other.
If two paths have a big ratio of common part, the delay dis-
tribution of the two paths will be probably dependent on
each other. Several techniques take the spatial correlation
into consideration [14]. It’s more accurate than the SSTA
methods that regard the timing edges as independent.

The delay variation of a cell is assumed to obey Gauss
distribution, and is denoted as (μ, σ), where μ is the mean
value of the cell delay, and σ is the delay standard devia-
tion of the cell delay. In the experiments of this paper, the
mean delay and delay standard deviation of each type of
basic logic gate are educed from the approximate normal-
ized delay value of a 0.18-um library, and are listed in Ta-
ble 1. Although the propagation delay of a rising transition
is different from that of a falling transition in practice, the
proposed SSTA doesn’t take the difference into account for
simplicity. As a result, the limitation of the proposed SSTA
method is the lack of accuracy. However, we must add that
the strength of our path selection method is not lessened by
using the simple delay model. One can use other more accu-
rate methods to model the delay and delay variations at the
logic level, which is not the focus of this paper.

As we can see in Table 1, the standard deviation σ of a
certain gate is assumed to be around 10% of the normal de-
lay value. Thus, 3σ equals 30% of the normal delay value.
It should be noted that, as the number of on-path gates in-
creases, the variation of the path delay decreases since paths
with more gates are less sensitive to process variation. In

Fig. 3 Probability distribution function of the paths.

the experiment of the proposed method, a 5–10% path delay
variation is obtained.

Since the delay variations of on-path gates of a path are
assumed to be independent to each other, the SSTA could
treat the delay of a path, which is total delay of the on-path
gates, with an approximation of Gaussian distribution. The
mean delay μp, and delay standard deviation σp, of a path p
with n gates can be calculated by Eqs. (2) and (3).

μp =

n∑
i=1

μi (2)

σp =

√√
n∑

i=1

σ2
i (3)

where μi, σi (i = 1, . . . , n) are the mean delay and delay
standard deviation of the i-th on-path gate respectively. The
probability distribution function (PDF) of the path delays
can be simply illustrated in Fig. 3. The paths highlighted in
red are the critical paths identified by the conventional STA
tools. path1 has a mean delay of μ, and the corresponding
delay standard deviation is σ.

The mean delay μ of path1 plus 3σ exceeds the mean
delay of a critical path, path4. So path1 has the potential
to be the longest path, and should be considered. The path
selection criterion of critical paths can be further described
as follows: If the delay of a path p satisfies Eq. (4), the path
is critical.

μp + 3σp ≥ μmax circuit (4)

where μmax circuit is the maximum mean delay of the circuit,
which is equal to the maximum delay calculated by STA.

In this paper, for simplicity, we assume that paths shar-
ing the same PI(PPI) and PO(PPO) have a unified σp value
which equals the delay standard deviation of the longest path
between the PI(PPI)/PO(PPO) pair (denoted as σcone).

3.2 Path Number Reduction and Circuit Partition

Path reduction in early stage is of great importance. If the
Tarrival latest and Treq min of an edge do not satisfy Eq. (5), the
edge is a non-critical edge.

Treq min − Tarrival latest ≤ 3σmax circuit (5)
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where, σmax circuit is the maximum delay standard deviation
of the circuit. The non-critical edges can be eliminated,
and a circuit skeleton, which solely constructed by critical
edges, is extracted. The PI(PPI)s and the PO(PPO)s in the
circuit skeleton are defined as critical PI(PPI)s and critical
PO(PPO)s.

To further reduce the path set, the circuit skeleton
can be divided into path groups which share the same
critical PI(PPI) and critical PO(PPO). For a certain crit-
ical PI(PPI)/PO(PPO) pair, the logic cone between the
PI(PPI)/PO(PPO) pair is the intersection of the fan-out cone
of the PI(PPI) and the fan-in cone of the PO(PPO).

If a PI(PPI) or a PO(PPO) is not a critical one, no path
through the PI(PPI) or PO(PPO) is critical. But this doesn’t
mean there must be a critical path through a critical PI(PPI)
or critical PO(PPO) because the slack threshold used in
Eq. (5) is the maximum delay deviation of the whole cir-
cuit (3σmax circuit). It’s a conservative value. In the proposed
SSTA flow (Fig. 2), to further identify whether there exists a
critical path in the logic cone of each PI(PPI)/PO(PPO) pair,
an SSTA procedure is performed exclusively on the logic
cone while both the PI(PPI) and the PO(PPO) are critical.
Let the delay standard deviation of the longest path in the
cone be σcone, and the maximum mean delay of the cone
be μmax cone. If σcone and μmax cone satisfy Eq. (6), the logic
cone is a critical one. Only when a logic cone is critical, is
the path selection procedure in the cone invoked.

μmax cone + 3σcone ≥ μmax circuit (6)

3.3 Identifications of PCEs and CCEs

Though in a critical logic cone, there may exist paths that
are not critical. Since the information of shorter paths is
lost during the calculation of Tarrival latest and Treq min, the
conventional DSTA can not exclude shorter paths through
critical edges efficiently. From the definitions of Tarrival latest

and Treq min of an edge, we can know that the slack of the
longest path through the edge, which is also the minimum
slack of all paths through the edge, can be calculated by
Eq. (7).

slack min = Treq min − Tarrival latest (7)

In order to get the maximum slack of all paths through
the edge, the definitions of signal earliest arrival time and
maximum required time are introduced.

Definition 3: The signal earliest arrival time of an
edge is defined as the shortest delay starting from any
PI(PPI) to the edge, and denoted as Tarrival earlist.

Definition 4: The signal maximum required time of an
edge is defined as the longest path delay of the whole cir-
cuit minus the shortest delay starting from the edge to any
PO(PPO), and denoted as Treq max.

Since Tarrival earlist and Treq max are affected by the
shorter paths, Tarrival earlist and Treq max are calculated on
the extracted circuit skeleton, without considering the non-

Fig. 4 CCEs and PCEs of circuit in Fig. 1.

critical edges. The slack of the shortest path through a cer-
tain edge, which is also the maximum slack of all the paths
through the edge, can be calculated by Eq. (8). Thus, the
slacks of all paths though the edge belong to a span from
slack min to slack max.

slack max = Treq max − Tarrival earliest (8)

Given a slack threshold slack thsld, the following con-
ditions should be considered.
slack max < slack thsld (condition 1)
slack min ≤ slack thsld ≤ slack max (condition 2)
slack min > slack thsld (condition 3)

In condition 1, the slack max is smaller than
slack thsld. This means that all of the paths through this
edge are critical, and such edge is considered as com-
pletely critical edge (CCE). In condition 2, slack min is not
larger than slack thsld, while slack max is not smaller than
slack thsld. This means that there are paths through the edge
are not critical, but not all. Such edge is defined as partially
critical edge (PCE). In condition 3, slack min is larger than
slack thsld, so no path through the edge is critical. Such
edge is defined as non-critical edge (NE).

The circuit in Fig. 4 is the circuit skeleton of the cir-
cuit in Fig. 1 after the process of critical PI(PPO)/PO(PPO)
identification and non-critical edge elimination. The
Tarrival earlist and Treq max are displayed below the Tarrival latest

and Treq min. Let slack thsld be 1. In Fig. 4, the PCEs are
the edges highlighted in red, while the CCEs are the black
edges. In the experiments of this paper, to identify the PCEs
and CCEs in the circuit skeleton, slack thsld is specified to
3σmax circuit.

However, identification of the CCEs and PCEs in the
critical logic cones is different from what it is in the cir-
cuit skeleton. As mentioned above, the circuit skeleton
is further partitioned into several logic cones. Each logic
cone has only one PI(PPI) and only one PO(PPO), and an
SSTA is performed on it exclusively. During this phase, the
Treq max cone, Treq min cone, Tarrival latest cone, Tarrival earlist cone

of each edge in the cone are re-calculated, without consider-
ing the edges that don’t belong to the current logic cone. The
slack min cone and slack max cone of the edges are calcu-
lated according to Eqs. (7) and (8), and the slack thsld cone
is specified to 3σcone in stead of 3σmax circuit.

As a result, according to the path selection criterion
(Eq. (4)), if a path contains at least one CCE, the path is
definitely a critical path. However, if a path is constructed
solely by PCEs, the path may be a critical path, or may not.
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Thus, one more justification procedure is needed to justify
whether the mean delay of the path satisfies the critical path
selection criterion. Therefore, uncovered CCEs gain higher
priority during path selection to reduce the requirement of
justification procedures.

As we can see, the identification of CCEs and PCEs
in the logic cones is more accurate than the identification
in the circuit skeleton. Since there is only one PI(PPI) and
only one PO(PPO) in the logic cone, the longest (or short-
est) path through an edge in the logic cone is not necessarily
longer (or shorter) than the longest (or shortest) path through
the same edge in the circuit skeleton. The slack min cone
(or slack max cone) of the edge in the logic cone is there-
fore larger (or smaller) than or equal to, the slack min (or
slack max) of the same edge in the circuit skeleton. The
slack span of the edge in the logic cone, which is from
slack min cone to slack max cone, tends to be narrower
than the slack span in the circuit skeleton, which is from
slack min to slack max. The result of a narrower slack span
is that there will be fewer edges satisfying condition 2 in the
logic cones and more edges satisfying condition 1 or con-
dition 3. In other words, the PCE ratio of a logic cone will
be lower than the PCE ratio of the circuit skeleton. The ex-
perimental results of this paper validate the above analysis,
while the PCE ratio of circuit skeleton is much higher than
the average PCE ratio of the logic cones. High ratio of PCEs
will call for lots of critical path justification procedures, and
will lower the efficiency of path selection procedure.

4. Path Selection and ATPG

As mentioned before, in a critical logic cone, there may ex-
ist paths that are not critical. So after a critical logic cone
is identified, we can further get a total, testable and critical
path set in the cone, for timing analysis during design, or
for delay testing. For the purpose of test cost reduction, it is
also desirable to find a minimum testable critical path set to
cover all the PCEs and CCEs, or cover the PCEs and CCEs
as many as possible. A combinational ATPG is performed
to justify whether the selected path is testable. In the ATPG
procedure, non-robust path sensitization criterion [15] is uti-
lized. For a physical path, there are two logical path delay
faults (PDFs). The two PDFs correspond to the propagation
of a rising transition and a falling transition at the path input
respectively. If not specified, a path refers to a physical path
in this paper. A path is said to be testable only when both of
two logical PDFs are testable.

In this section, two path selection strategies are pro-
posed. The first one is a greedy strategy, and the second
one is a pseudo exhaustive strategy. The two strategies are
appropriate to different kinds of circuits.

4.1 Greedy Path Selection Strategy

As it is shown in the SSTA flow, the path selection procedure
is only executed on the logic cones which have critical paths.
The logic cones are the simplified sub-circuits that only con-

Fig. 5 Path selection flow of the greedy strategy.

Table 2 Priority lookup table in greedy path selection strategy.

Edge Type Priority

Have CCE=0 Have CCE=1

Uncovered CCE 1 2

Covered CCE 2 4

Uncovered PCE 3 1

Covered PCE 4 3

tain CCEs and PCEs. In the path selection procedure, these
CCEs and PCEs are marked as uncovered edges initially,
and stored according to their topological order. The path
selection flow of the greedy approach is shown in Fig. 5.

For each uncovered edge, it is treated as a seed edge
firstly. The path grows up from the seed edge by choos-
ing edges from its fan-out edges and fan-in edges till the
PI(PPI) and PO(PPO) are reached. If an edge with multi-
ple fan-outs (or fan-ins) is encountered, the path selection
procedure needs to judge which edge should be selected. A
priority lookup table is established to help the edge selec-
tion, as shown in Table 2.

Since only one CCE is enough to assert that the se-
lected path is critical, the priority of uncovered CCEs is
higher if no CCE has been selected. But when a CCE has
been selected, the uncovered PCEs take a priority over the
others. In this way, the greedy strategy can find a path set
with minimum path number to cover all of the critical edges.
If there is no CCE in the selected path, a critical justification
procedure is performed to justify the selected path is criti-
cal or not. If the path is not critical, the corresponding edge
is marked as a hard-to-test (HTT) edge. In the proposed
flow, the ATPG procedure is performed to justify whether
the selected path is testable or not. If the selected path is not
testable, the seed edge is marked as an HTT edge too. If the
selected path is critical and testable, all the on-path edges
are marked as covered edges.

The greedy strategy is efficient when the PCE ratio is
not too high and most of the paths are testable. However,
when the PCE ratio is high and the testability is low, most
of the edges are marked as HTT edges, even though there
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Fig. 6 Path selection flow of the pseudo exhaustive strategy.

Fig. 7 Paths classification of the circuit.

are testable critical paths through these edges. To solve this
problem, a pseudo exhaustive strategy is developed.

4.2 Pseudo Exhaustive Path Selection Strategy

The main defect of the greedy strategy is that it cannot assert
whether all paths through a certain edge are untestable. It
stops when a certain edge is marked as an HTT edge. But
actually, for some HTT edges, there may exist paths that are
critical and testable through them. Exhaustive search will
help us to find out these paths.

In contrast with the greedy strategy, the pseudo exhaus-
tive strategy flow (Fig. 6) stops till a testable critical path
though a certain edge is found. If no path is found to be crit-
ical and testable, the edge can be marked as untestable. The
untestability of edges can be propagated. If all the fan-in
edges of a certain edge are marked as untestable, the edge
can also be marked as untestable. This property can help to
accelerate this strategy.

Unlike the greedy strategy, the pseudo exhaustive strat-
egy needs a fan-in stack and fan-out stack to store the cur-
rent path information. It is inflexible for the pseudo exhaus-
tive strategy to choose fan-out (or fan-in) edges in a way
like the greedy strategy does. But in the pseudo exhaus-
tive strategy, the CCEs have a higher priority to be pushed
into the stack when an edge with multiple fan-outs (or fan-
ins) is encountered. This makes the paths first found by the

pseudo exhaustive strategy are the paths containing CCEs.
As a result, there is no need for critical path justification at
the beginning. Apparently, the pseudo exhaustive strategy
guarantees to find the maximum covered edge set, while the
greedy strategy fails to do this.

The paths in a critical logic cone can be classified in a
way as shown in Fig. 7. The PCE paths are the paths solely
constructed by PCEs, while the CCE paths are the paths that
contain at least one CCE. The untestable critical paths play
the same role during path selection as the non-critical paths
in the critical logic cone do. If a critical path is found to
be untestable, the path needs to be re-selected or the corre-
sponding seed edge is marked as an HTT edge.

5. Experimental Results

The proposed path selection strategy has been implemented
in Visual C++ and run on Windows XP at a 2.6 GHz
Pentium 4 processor with 512 MB memory. In the pro-
posed flow, SSTA is performed for the whole circuit at
first. The main purpose of this step is to identify the crit-
ical PI(PPI)/PO(PPO)s and eliminate the non-critical edges.
Since the computational complexity of the proposed SSTA
approach is linear to the number of timing edges, the CPU
time of this step is negligible in comparison with the path
selection and ATPG procedure. After this step, the circuit
skeleton is divided into logic cones sharing the same criti-
cal PI(PPI) and PO(PPO). For each critical logic cone, the
PCEs and CCEs are identified. The circuit information of
the circuit skeleton and the critical logic cones are listed in
Table 3.

The first column of Table 3 shows the circuit name.
In the two sub-columns of Column 2, the total path num-
ber and the critical path number finally recorded are listed.
The total edge number is listed in Column 3. Column 4 and
Column 5 show the information of the circuit skeleton and
critical logic cones respectively. In the three sub-columns
of the Column 4 and Column 5, the path number, the crit-
ical edge number and the PCE ratio are listed from left to
right. Column 6 shows the critical logic cone number. The
testable critical path number is showed in the last column,
this number is obtained by exhaustive test generation on all
the critical paths.

As we can see, because most of the edges are non-
critical, the circuit skeleton is much simpler than the orig-
inal one. From the path number in the circuit skeleton, we
can see that a large percentage of paths in the original cir-
cuit are excluded from further path selection. On average,
only 3% paths are remained after SSTA for the whole cir-
cuit. As the number of critical logic cones is small and the
cone logic is simplified, enumeration of all paths of the logic
cones becomes possible.

In Table 3, a clear trend can be seen that, the PCE ratio
and the number of paths are reduced significantly if we di-
vide the circuit into logic cones that share the same PI(PPI)
and PO(PPO). Obviously, the significant reduction of the
PCE ratio will contribute to the speed-up of the path selec-
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Table 3 Critical information after the SSTA flow.

Circuit
name

Path # Total
Edge #

circuit skeleton Critical logic cones Critical
cone#

Testable
critical
path #Total critical path # Edge #

PCE
ratio

path # Edge #
PCE
ratio

C880 8642 291 906 765 136 100% 392 136 36.9% 16 218

S208 145 4 218 4 29 0 4 29 0 2 4

S344 355 6 361 8 42 80.9% 6 42 0 3 4

S444 535 20 471 24 53 64.2% 20 53 0 10 6

S953 1156 17 1005 27 112 95.5% 17 112 0 12 17

S1196 3098 40 1128 58 130 42.3% 40 118 0 11 9

S1423 44726 68 1502 160 133 100% 101 133 78.8% 6 4

S5378 13542 192 5523 384 155 100% 384 155 100% 12 192

S38584 1,080,723 9168 40162 19845 479 100% 18285 479 66.7% 6 0

Table 4 Experimental results of the two proposed strategies.

Circuit
name

Greedy Strategy Pseudo Exhaustive Strategy

Total
Selected
path #

Critical
Path #

CCE
Path #

Testable
Critical
Path #

CPU
time (s)

Coverage
Total
Selected
path #

Critical
Path #

CCE
Path #

Testable
Critical
Path #

CPU
time (s)

Coverage

C880 45 28 24 21 0.36 97.0% 92 57 43 26 0.44 100%

S208 3 3 3 3 0.18 100% 3 3 3 3 0.17 100%

S344 6 6 6 4 0.22 97.6% 6 6 6 4 0.19 97.6%

S444 16 16 16 2 0.35 56.6% 18 18 18 4 0.25 64.2%

S953 11 11 11 11 0.31 100% 11 11 11 11 0.31 100%

S1196 23 23 23 6 0.66 64.4% 27 27 27 6 0.38 64.4%

S1423 52 34 14 1 0.98 72.1% 101 67 44 3 0.41 75.9%

S5378 63 23 0 23 0.57 96.8% 59 31 0 31 0.63 100%

S38584 623 451 106 0 62.5 0 18285 9168 384 0 390 0

tion procedure in logic cones.
Some circuits, such as C880, S1423 and S38584, have

a 100% ratio of PCE if we don’t cut the circuit down.
A 100% ratio of PCE means, for any path selected from
the circuit skeleton, a critical path justification procedure is
needed additionally. If the justification fails, the path must
be re-selected. On the other hand, for circuits like S208,
S344, S444, S953 and S1196, the PCE ratio is 0 if we cut
down the circuits in the proposed way. A zero ratio of PCE
means any paths in the critical logic cone are critical. In this
situation, the path set in the logic cones is the very critical
path set finally recorded. However, S5378 is an exception,
no PCE ratio reduction can be seen after the circuit skeleton
is partitioned. This is because most of the edges in S5378
have both short and long paths through them. The control-
lability of S5378 is high, and most of the paths are robustly
testable. Anyway, for most of the circuits, the information
in Table 3 shows the efficiency of the circuit partition proce-
dure from another aspect.

In this paper, two path selection strategies are pro-
posed. The experimental results of the two strategies are
listed in Table 4. As shown in Fig. 7, there are non-critical
paths in a critical logic cone so long as there are PCEs in the
logic cone. It is inevitable for the path selection procedure to
encounter the non-critical paths or untestable critical paths,
so the total selected paths during the path selection proce-
dure can also be classified in the same way. For each strat-
egy, the number of total selected paths, the number of the se-
lected critical paths, the number of selected CCE paths, the
final number of selected testable critical paths, the CPU pro-

cessing time and the critical edge coverage of the selected
testable critical paths are listed in each sub-columns from
left to right.

For small circuits such as S208, S344 and S953, no
difference can be seen between the proposed two strategies.
But for the other circuits except S5378, the paths selected
by the greedy strategy are fewer than the paths selected by
pseudo exhaustive strategy. Take C880 for example, 4 edges
are marked as HTT edges in the greedy strategy. In order
to cover the 4 HTT edges, the pseudo exhaustive strategy
selects 92 paths, while the greedy strategy only selects 45
paths. The same phenomenon can be found in S1423. Lots
of extra paths are selected in order to cover several HTT
edges. The reason for this is that such circuit has both low
testability and a visible PCE ratio. It is hard to find critical
and testable paths to cover these HTT edges. For S5378,
the paths selected by the greedy strategy are more than the
pseudo exhaustive strategy. This is caused by two reasons.
First, for a certain critical edge, it may reside in more than
one critical cones. As a result, it is used as a seed edge
for several times in different logic cones till it is covered,
and several paths through this edge are selected. Same sit-
uation also happens on S38584, when there are 479 criti-
cal edges, but 623 paths are selected by the greedy strategy.
Second, the PCE ratio of S5378 is 100% though all paths in
the candidate path set are testable. Some edges are marked
as HTT edges due to the critical path justification failure and
the greedy strategy fails to achieve 100% critical edge cov-
erage.

The testable path justification rule, which requires both
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of the two logical PDFs are testable, is too tight or pes-
simistic for circuits whose long paths have poor testability.
For large circuits like S38584, all of the critical paths found
by the proposed method fail to satisfy this rule. Since all
the critical paths found in S38584 are untestable, the pseudo
exhaustive strategy turns up to an enumeration strategy. For-
tunately, our later experiments show that for parts of the crit-
ical paths of S38584 found by the proposed method, there is
one testable PDF (ether rising or falling), and the other one
is untestable. So the testable path justification rule can be re-
laxed when either PDF of the path is testable to improve test
coverage. On the other hand, test coverage can also be im-
proved considering second-longest paths by increasing the
slack thsld of the circuit.

CCEs play an important role during path selection. In
the selected critical paths, the CCE path number is consid-
erable high. In the critical paths found by each strategy, lots
of paths are directly justified as critical because of the CCEs
they contain. This validates the efficiency brought by the
classification of PCEs and CCEs.

6. Conclusion

In this paper, a novel path selection method considering pro-
cess variation is introduced. The non-critical edges are elim-
inated and a circuit skeleton solely constructed by critical
edges is extracted. Then, the circuit skeleton is divided into
logic cones between the PI(PPI)/PO(PPO) pairs. Critical
logic cones are identified, and enumeration of paths in the
cones becomes possible. The concept of PCEs and CCEs are
introduced and used in the path selection strategy. The ex-
perimental results showed that the proposed circuit division
approach is efficient in path number reduction, and PCEs
and CCEs play an important role as a guideline during path
selection.
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