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A Covariance-Tying Technique for HMM-Based Speech Synthesis

Keiichiro OURA†a), Heiga ZEN†, Nonmembers, Yoshihiko NANKAKU†, Akinobu LEE†,
and Keiichi TOKUDA†, Members

SUMMARY A technique for reducing the footprints of HMM-based
speech synthesis systems by tying all covariance matrices of state distri-
butions is described. HMM-based speech synthesis systems usually leave
smaller footprints than unit-selection synthesis systems because they store
statistics rather than speech waveforms. However, further reduction is es-
sential to put them on embedded devices, which have limited memory. In
accordance with the empirical knowledge that covariance matrices have a
smaller impact on the quality of synthesized speech than mean vectors, we
propose a technique for clustering mean vectors while tying all covariance
matrices. Subjective listening test results showed that the proposed tech-
nique can shrink the footprints of an HMM-based speech synthesis system
while retaining the quality of the synthesized speech.
key words: HMM, speech synthesis, decision tree, context-clustering, MDL
criterion, embedded device

1. Introduction

The most widely used speech synthesis technique is unit
selection synthesis [1]–[3], in which appropriate sub-word
units are selected from large speech databases. Although
this technique can synthesize high-quality speech, it re-
quires large databases of recorded speech. Furthermore, it
usually requires excessively large footprints to put it on em-
bedded devices such as mobile phones, PDAs, car naviga-
tion systems, and game machines.

Statistical parametric speech synthesis based on
HMMs [4], [5] has grown in usage. Figure 1 gives an
overview of a typical HMM-based speech synthesis sys-
tem. In this system, the spectrum, excitation, and du-
ration of speech are modeled simultaneously by context-
dependent HMMs, and speech parameter trajectories are
generated from the HMMs themselves under constraints be-
tween static and dynamic features [6]. One of the attractive
points of HMM-based speech synthesis is its small footprint.
HMM-based systems usually have smaller footprints than
unit selection systems, because they store statistics rather
than speech waveforms. However, further reduction is es-
sential to put these systems on embedded devices that have
little memory.

Speech parameters such as spectrum, excitation, and
duration depend on a variety of contextual factors such
as phoneme identities, accent types, and parts-of-speech.
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Fig. 1 Overview of HMM-based speech synthesis system.

In the HMM-based speech synthesis system, context-
dependent models are used to capture these contextual fac-
tors. If more combinations of these contextual factors are
taken into account, we should be able to obtain more ac-
curate models. However, as the number of contextual fac-
tors increases, the number of possible combinations also
increases exponentially. As a result, it is difficult to ro-
bustly estimate model parameters due to the lack of training
data. Furthermore, it is impossible for a finite set of train-
ing data to cover every possible combination of contextual
factors. Various parameter-tying techniques have been de-
veloped [7]–[11] to avoid this problem. Among them, a de-
cision tree-based context-clustering technique [12] has been
widely used. In the HMM-based speech synthesis system,
distributions of spectrum, excitation, and duration are clus-
tered individually because they have their own contextual
dependencies.

In this technique, top-down clustering is performed to
maximize the likelihood of model parameters with respect
to the training data by using questions about contexts. Then,
HMM identifies which of those clustered into the same leaf
node are tied. Unseen models can be generated by travers-
ing the decision trees. Various criteria [13]–[17] have been
proposed for selecting the questions to be used.

Conventionally, we construct an HMM stream-level ty-
ing structure in HMM-based speech synthesis, i.e., mean
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Fig. 2 Context-dependent parameter-tying structure built by conven-
tional and proposed clustering techniques.

vectors and covariance matrices have exactly the same
parameter-tying structure (Fig. 2 (a)). However, we empir-
ically know that covariance matrices have a smaller impact
on the quality of synthesized speech than mean vectors.
On the basis of this knowledge, a technique for context-
clustering mean vectors while tying all covariance matri-
ces (Fig. 2 (b)) should be tested in HMM-based speech syn-
thesis. If each parameter is stored in a single-precision
floating-point number and the dimensionality of Gaussian
distributions is 120, approximately 938 kBytes are required
to store 1,000 Gaussian distributions with diagonal covari-
ance matrices (statistics associated to the leaf nodes). How-
ever, tying all covariance matrices reduced it almost by half
(469 kBytes).

Semi-tied covariance [18] is one of the major
covariance-tying techniques. This technique is a simple ex-
tension of the standard diagonal or full covariance matrices
used with HMMs. Instead of having a distinct covariance
matrix for every distribution, each covariance matrix con-
sists of two elements, a component-specific diagonal covari-

ance element and a tied transform. It is important to make
the difference between the semi-tied covariance technique
and the proposed technique clear.

The rest of this paper is organized as follows. Sec-
tion 2 describes the decision-tree-based context clustering
technique. Context clustering for semi-tied covariance ma-
trices are presented in Sect. 3. Section 4 describes the pro-
posed decision tree-based context-clustering technique for
mean vectors while tying all covariance matrices. Subjec-
tive listening test results are shown in Sect. 5. Finally, con-
cluding remarks and future plans are presented in Sect. 6.

2. Decision Tree-Based Context Clustering

In the decision-tree-based context-clustering technique, top-
down clustering is performed to locally maximize the like-
lihood of model parameters with respect to the training data
using pre-defined questions about contexts. Then, mean
vectors and covariance matrices of HMM states clustered
to the same leaf (terminal) node are tied. As a result, an
HMM state-level tying structure can be constructed. The
mean vector and the covariance matrix associated to the leaf
node S , µS and ΣS , can be estimated using the ML criterion
as

µS =

T∑
t=1

∑
m∈MS

γm (t) ot

T∑
t=1

∑
m∈MS

γm (t)

, (1)

ΣS =

T∑
t=1

∑
m∈MS

γm (t) (ot − µS ) (ot − µS )�

T∑
t=1

∑
m∈MS

γm (t)

, (2)

where T is the total number of frames in the training data,
MS is a set of HMM states clustered to the leaf node S , and
γm (t) is the posterior probability of an HMM state m for an
observation vector at frame t, ot. The total log likelihood of
the Gaussian distribution of node S to the associated training
data is calculated as

L (S ) =
T∑

t=1

∑
m∈MS

γm (t) logN (ot;µS ,ΣS )

= −1
2

T∑
t=1

∑
m∈MS

γm (t)
{
n + log (2π |ΣS |)} , (3)

where n is the dimensionality of µS .
The minimum description length (MDL) criterion [13]

has been used in the HMM-based speech synthesis system
to automatically control the size of decision trees. When
cluster S is divided into S q+ and S q− by a question q, the
change of total description length by this split is calculated
as follows:
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Δq = L (S ) −
{
L
(
S q+

)
+L
(
S q−
)}

+ α
N
2

log Γ (S 0) , (4)

where S 0 denotes a root node, α is a heuristic weight† for
the penalty term of the MDL criterion, N is the number of
parameters increased by this split, and

Γ (S ) =
T∑

t=1

∑
m∈MS

γm (t) . (5)

If all covariance matrices are diagonal covariance ma-
trices, N = n + n. Note that the context-clustering based on
the MDL criterion can be viewed as that based on the ML
criterion with a threshold given by αN

2 logΓ (S 0).

3. Context Clustering for Semi-Tied Covariance Ma-
trices

In this section, we describe the semi-tied covariance tech-
nique since it will be evaluated as a conventional method in
Sect. 5. In the HMM-based speech synthesis system, there
is a choice of the form of the covariance matrices. When di-
agonal covariance matrices are used, elements of the feature
vector are assumed to be independent. On the other hand,
when full covariance matrices are used, all correlations are
explicitly modeled. However, when full covariance matrices
are used, the number of parameters per Gaussian component
increases exponentially. Compared with a diagonal covari-
ance matrix, the number of parameters per distribution in-
creases to n + n(n+1)

2 from n + n. Furthermore, the number
of training samples per distribution decreases. Due to this
massive increase in the number of parameters, diagonal co-
variance matrices are generally used in HMM-based speech
synthesis. Using the semi-tied covariance matrix is a good
solution to this problem.

Semi-tied covariance matrices are a simple extension
of the standard diagonal or full covariance matrices used
with HMMs. Instead of having a distinct covariance ma-
trix for every distribution, each covariance matrix consists
of two elements, a component-specific diagonal covariance
element, Σ(diag), and a tied transform, H. The form of the
covariance matrix of state S is defined as

Σ
(stc)
S = HΣ(diag)

S H�. (6)

The number of parameters increased by a split, N, becomes
n + n.

4. Context Clustering while Tying All Covariance Ma-
trices

The decision-tree-based context-clustering techniques used
in HMM-based speech synthesis systems construct an
HMM state-level tying structure, i.e., the same tying struc-
ture is used for both mean vectors and covariance matrices.
However, covariance matrices have less impact on the qual-
ity of synthesized speech than mean vectors. For example,

even if we manually modify values of covariance matrices,
the speech parameter trajectories generated from the origi-
nal and modified models are often close to each other. In
this paper, we construct the tying structure of mean vectors
using decision trees while tying all covariance matrices.

If all covariance matrices are tied, the total log likeli-
hood of the leaf node S to the associated training data is
calculated as follows:

L′ (S ) =
T∑

t=1

∑
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γm (t) logN
(
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)

= −1
2

T∑
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∑
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− 1
2
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∣∣∣∣
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(7)

where Σg is a globally tied covariance matrix, and ΣS is
defined in Eq. (2). Note that Σg is fixed in the context-
clustering process because the computational cost is large.

When cluster S is divided into S q+ and S q− by a ques-
tion q, the change of total description length by this split is
calculated as follows:

Δ′q = L′ (S ) −
{
L′
(
S q+

)
+L′

(
S q−
)}
+ α

N
2

logΓ (S 0) .

(8)

Unlike Eq. (4), the number of parameters N increased by
the split becomes n in this case because only mean vectors
are split. We can expect that the proposed technique can
efficiently reduce the footprints of HMM-based speech syn-
thesis systems while retaining the quality of the synthesized
speech.

5. Experiments

5.1 Experimental Condition

To evaluate the effectiveness of the proposed technique, sub-
jective listening tests were conducted. The first 450 sen-
tences of the phonetically balanced 503 sentences from the
ATR Japanese speech database B-set [19], uttered by male
speaker MHT, were used for training. The remaining 53 sen-
tences were used for evaluation. Speech signals were sam-
pled at 16 kHz and windowed with a 5-ms shift, and mel-
cepstral coefficients [20] were obtained from STRAIGHT

†The standard value of α is unity in the MDL criterion.
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spectra [21]. Feature vectors consisted of spectrum and ex-
citation parameters. The spectrum parameter vectors con-
sisted of 39 STRAIGHT mel-cepstral coefficients including
the zero coefficient and their delta and delta-delta coeffi-
cients. The excitation parameter vectors consisted of log
F0 and its delta and delta-delta. A seven-state (including
the beginning and ending null states), left-to-right, no-skip
structure was used for the hidden semi-Markov model [22].
The spectrum stream was modeled by single multi-variate
Gaussian distributions. The excitation stream was modeled
by multi-space probability distributions [23], each of which
consists of a Gaussian distribution for voiced frames and a
discrete distribution for unvoiced frames. State durations of
each model were modeled by a five-dimensional (equal to
the number of emitting states in each model) multi-variate
Gaussian distribution. The decision tree-based context-
clustering technique was separately applied to distributions
for spectrum, excitation, and state duration. A speech pa-
rameter generation algorithm considering global variance
(GV) [24] was used for parameter generation.

The MDL criterion [13] was used to control the size
of decision trees. We changed the heuristic weight for the
penalty term of α in Eq. (4) and Eq. (8) to construct acous-
tic models with various numbers of parameters. The weights
used here were 8.0, 4.0, 2.0, 1.0, 0.5, and 0.25. Although the
decision tree-based context-clustering technique was sepa-
rately applied to distributions for spectrum and excitation,
the same α was used.

Ten subjects participated in these listening tests. Ten
sentences were randomly selected from 53 sentences for
each subject. The subjects were asked to rate the natural-
ness of the synthesized speech on a scale from 1 (completely
unnatural) to 5 (natural). All experiments were carried out
using headphones in a soundproof room.

5.2 Semi-Tied Covariance Technique

To reduce the burden on listeners, the listening tests were
split into five parts.

To confirm the effect of the covariance matrix type for
naturalness and footprint, we evaluated the semi-tied covari-
ance technique in the first experiment. The following two
methods were evaluated.

BASELINE: The same structure tied by conventional
context-clustering was used for mean vectors and di-
agonal covariance matrices.

SEMI-TIED (baseline structure): Although the tying
structure of mean vectors was exactly the same as
the BASELINE system, all covariance matrices were
semi-tied.

Figure 3 shows the subjective listening test results. The
SEMI-TIED (baseline structure) system did not improve
compared with BASELINE system. Although elements of
the feature vector are assumed to be dependent in the semi-
tied covariance technique, the assumption seems to have lit-
tle impact on the quality of the synthesized speech.

Fig. 3 Subjective experimental results: Conventional method versus
semi-tied covariance method. The same mean tying structures are con-
structed.

5.3 Tied Covariance Technique

Next, a listening test was designed to confirm the empirical
knowledge that covariance matrices have little impact on the
quality of synthesized speech. The following two methods
were evaluated.

BASELINE: The same structure tied by conventional
context-clustering was used for mean vectors and di-
agonal covariance matrices.

PROPOSED0: Although the tying structure of mean vec-
tors was exactly the same as the BASELINE system,
all full covariance matrices were tied.

Figure 4 shows the subjective listening test results. The
PROPOSED0 system reduced scores slightly compared
with the BASELINE system. A large amount of memory
is required for full covariance matrices, even using the tying
technique. Furthermore, covariance matrices without diago-
nal elements have little impact on the quality of synthesized
speech. Therefore, it seems that the use of full covariance
matrices is not appropriate for the embedded devices.

Next, we replaced full covariance matrices with diag-
onal covariance matrices. The following two methods were
evaluated.

BASELINE: The same structure tied by conventional
context-clustering was used for mean vectors and di-
agonal covariance matrices.

PROPOSED1: Although the tying structure of mean vec-
tors was exactly the same as the BASELINE system,
all diagonal covariance matrices were tied.

Figure 5 shows the subjective listening test results. The
PROPOSED1 system achieved almost the same subjective
scores with almost half the number of parameters (foot-
prints) when α = 1.0. Tying diagonal covariance matrices
seems to be more efficient than reducing the size of decision
trees to achieve the same footprints.
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Fig. 4 Subjective experimental results: Conventional method versus tied
full covariance method. The same mean tying structures are constructed.

Fig. 5 Subjective experimental results: Conventional method versus tied
diagonal covariance method. The same mean tying structures are con-
structed.

The fourth listening test evaluated the performance of
the proposed clustering technique while tying all diagonal
covariance matrices. Note that the proposed clustering tech-
nique was not applied to full covariance matrices because
of its large computational cost. The following two methods
were compared.

BASELINE: The same structure tied by the conventional
context-clustering was used for mean vectors and diag-
onal covariance matrices.

PROPOSED2: Mean vectors were clustered by decision
trees while tying all diagonal covariance matrices us-
ing the technique described in Sect. 4.

Figure 6 shows the experimental results. The PROPOSED2
system significantly reduced the number of parameters. Fur-
thermore, it achieved slightly better subjective scores than
BASELINE. When each parameter was stored in a single-
precision floating-point number, the footprint of the BASE-
LINE system with α = 1.0 was about 813 kBytes. On the

Fig. 6 Subjective experimental results: Conventional method versus tied
diagonal covariance method. Different mean tying structures are con-
structed.

Fig. 7 Objective experimental results: Conventional method versus two
proposed methods.

other hand, that of the PROPOSED2 system with α = 1.0
was 649 kBytes. Furthermore, the PROPOSED2 system
with α = 2.0 consumed only 300 kBytes while retaining
the quality of synthesized speech close to the BASELINE
system with α = 1.0. Figure 7 shows the average log
probabilities per frame of the BASELINE, PROPOSED1,
and PROPOSED2 systems. In terms of ML estimation
of HMM parameters, tying all the covariance matrices de-
creased the likelihood function. The PROPOSED2 system
had a slightly higher probability than the PROPOSED1 sys-
tem because of the proposed context-clustering technique,
which constructs appropriate mean vector structures while
tying all covariance matrices.

The final listening test evaluated the performance of the
two proposed systems compared with the baseline system.
To guarantee the generalizability of the proposed method,
the first 450 sentences of the phonetically balanced 503 sen-
tences from the ATR Japanese speech database B-set [19],
uttered by male speaker MHT and female speaker FKN,
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Fig. 8 Subjective experimental results: Conventional method versus two
proposed methods. Their footprints were calculated on the assumption that
each parameter was stored in a single-precision floating-point number.

Table 1 Comparison of the number of leaf nodes.

Number of leaf nodes
Spectrum F0

Mean Covariance Mean Covariance

BASELINE 808 808 2015 2015
PROPOSED1 808 1 2015 1
PROPOSED2 1311 1 2210 1

were used for training speaker-dependent models. The re-
maining 2 sets of 53 sentences were used for evaluation.
Ten subjects participated in this listening test. Twenty sen-
tences were randomly selected from 106 sentences for each
subject. The BASELINE system with α = 1.0, the PRO-
POSED1 system with α = 1.0, and the PROPOSED2 sys-
tems with α = 1.0 and 2.0 were compared. Figure 8 shows
the subjective results. All proposed methods had a smaller
footprint than the BASELINE system while maintaining the
quality of the synthesized speech. The PROPOSED2 sys-
tem with α = 1.0 had better subjective scores than the PRO-
POSED1 system with α = 1.0. Table 1 shows the number
of leaf nodes of each system with α = 1.0. In the PRO-
POSED2 system, the number of mean parameters can be
increased even when the total number of parameters is de-
creased. It is supposed that the balance between model com-
plexities of mean parameters and covariance parameters can
be adjusted by using the proposed context-clustering tech-
nique, which constructs the appropriate mean vector struc-
ture while tying all covariance matrices.

6. Conclusion

A technique for reducing the footprints of HMM-based
speech synthesis systems by tying all covariance matrices is
described. Experimental results showed that the proposed
technique efficiently reduced the footprints of an HMM-
based speech synthesis system to less than half of its original
size while retaining the quality of the synthesized speech.
Future work includes using a separated clustering technique

for mean vectors and covariance matrices.
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