
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.3 MARCH 2010
635

LETTER

Efficient Window Processing over Disordered Data Streams

Hyeon-Gyu KIM†a), Member, Woo-Lam KANG†, and Myoung-Ho KIM†, Nonmembers

SUMMARY Bursty and out-of-order tuple arrivals complicate the pro-
cess of determining contents and boundaries of sliding windows. To pro-
cess windows over such streams efficiently, we need to address two issues
regarding fast tuple insertion and disorder control. In this paper, we focus
on these issues to process sliding windows efficiently over disordered data
streams.
key words: data streams, window processing, disorder control

1. Introduction

Continuous query processing over data streams has attracted
a lot of interest recently. Since data streams are so large or
often inherently unbounded, queries on the streams cannot
be easily answered if they involve blocking operators such
as joins or aggregations which operators cannot start pro-
cessing until the entire inputs are ready. A common solution
for this issue is to restrict the range of stream queries into
a sliding window that contains the most recent data of the
stream [1], [2].

For example, consider a query that asks for the max-
imum value of sensor readings over the latest 30 seconds.
This query can be specified as Q1 which is a SQL-like query
with window specification “[RANGE 30 seconds]”. The
query is manipulated for each tuple arrival. Whenever a
new tuple with timestamp t arrives, a window operator in a
stream query processor, also called a DS MS (Data Stream
Management System), determines the window interval by
(t − 30, t] and organizes a collection of tuples belonging to
the window which is called a window extent [6]. Then, the
aggregate function MAX finds the maximum sensing value
among the tuples in the window extent.

Q1. SELECT MAX(value)

FROM Sensors [RANGE 30 seconds]

To determine contents and boundaries of sliding win-
dows clearly, window operators generally assume that
stream tuples arrive in an increasing order of the window-
ing attribute - an attribute by which window ranges are de-
termined (e.g., tuples’ generation timestamps). However,
stream tuples may not arrive in the order due to various
sources of disorder such as network transmission delays,
merging unsynchronized streams, data prioritization and so

Manuscript received November 5, 2009.
†The authors are with the School of Electrical Engineering

and Computer Science, the Division of Computer Science, KAIST,
373–1 Kusong-dong, Yusong-gu, Daejeon 305–701, South Korea.

a) E-mail: hgkim@dbserver.kaist.ac.kr
DOI: 10.1587/transinf.E93.D.635

on. These out-of-order tuples may lead to inaccurate query
results since conventional window operators usually discard
those tuples.

Existing approaches use a buffer to fix disorder in
stream tuples before transferring those tuples to window op-
erators. They generally focus on avoiding tuple discards
as many as possible. Consequently, the approaches tend to
keep the buffer size larger than necessity. On the other hand,
users may want to have faster results (with less accuracy)
according to application requirements. Such faster results
can be provided by adjusting the buffer size properly (e.g.,
smaller). However, existing approaches have not addressed
this issue even though a method for controlling disorder is
necessary in processing data streams as discussed in [6], [7].

To process sliding windows efficiently over disordered
streams, we also need a mechanism for fast insertion of
input tuples while keeping their windowing attribute order
in the buffer. Aurora [1] which is one of the well-known
DSMSs uses a bubble sort to order incoming tuples. But,
if the number of tuples in the buffer becomes large (due
to bursty tuple arrivals), conventional sorting mechanisms
with logarithmic complexity may not be feasible in provid-
ing query responses in a timely manner.

In this paper, we propose a method for processing slid-
ing windows efficiently over disordered data streams, re-
garding two issues described above - (i) fast tuple insertion
and (ii) disorder control.

2. Backgrounds

There has been substantial research in the problem of pro-
cessing disordered data streams. Aurora [1] uses a fixed-size
buffer to deal with disorder in stream tuples. Assuming that
the max delay is known in advance, it uses a buffer whose
size is large enough to cover the max delay. If we don’t
have any prior knowledge about the max delay, the fixed-
size buffer may not be used properly because it is hard to
decide the buffer size; too small buffer may cause many tu-
ples to be discarded, while too large buffer results in high
latency because input tuples reside in the buffer long time.

Many other DSMSs including STREAM [3] use a dy-
namic buffer. When using the buffer, we need to iden-
tify which tuples can be outputted from the buffer at a cer-
tain time; otherwise, the buffer will grow infinitely with-
out any output. Existing approaches generally determine
those tuples based on the maximum network delay seen in
the stream. Let the max delay in the stream be m. Then, at

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

636
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.3 MARCH 2010

time t, the buffer keeps tuples whose timestamps are larger
than t − m, and other tuples in the buffer are delivered to a
window operator. The k-ordering mechanism [3], the skew
bound estimation in [8], the timestamp mechanism in Gi-
gascope [5] are similar to this approach.

Note that if a new tuple with timestamp smaller than
t−m arrives after sending out those tuples (with timestamps
≤ t − m), it is discarded from the buffer. The timestamp
t − m is called a heartbeat [5], [8] or a punctuation [6] in
the literature. The heartbeat h is an assertion indicating that
no more tuples with timestamps smaller than h will be seen
in the future. Therefore, given heartbeat h, it is possible to
process tuples with timestamps smaller than h. If new tuples
with values smaller than h arrive after that processing, they
will be discarded.

The heartbeat can be estimated internally by DSMSs
or can be given externally from other remote stream sources
such as routers. Ding et al. [4] and Jin Li et al. [6] assume
that the heartbeats are externally given and propose methods
for processing join or aggregate queries gracefully based on
the given heartbeats. However, external stream sources may
not provide heartbeats in real-world applications. In addi-
tion, the heartbeats themselves can be out-of-ordered when
the stream sources are in remote locations.

When estimating the heartbeat internally, existing ap-
proaches generally focus on avoiding tuple discards as many
as possible. Consequently, they tend to keep the buffer size
larger than necessity. For example, the adaptive method pro-
posed by Srivastava et al. [8] estimates the max delay m by
(m1 + m2)/2, where m1 is the max delay seen in the stream
at time t and m2 is the second max delay in a time interval
[t, t + W] (Fig. 1). We can easily see that m is kept large in
most of time since it is determined by two largest values of
network delays seen in the stream in a certain period of time.
Moreover, there is no explicit method to control the amount
of tuple discards in this method. To control tuple drops, we
need to adjust W properly, but they did not discuss how to
determine it.

Recently, Liu et al. [7] proposed two out-of-order han-
dling techniques, conservative and aggressive strategies, to
enable users to control the quality of query results accord-
ing to application requirements. The conservative strategy
can be used to avoid tuple discards as many as possible to

Fig. 1 Estimation of the max delay in the adaptive method proposed by
Srivastava et al. [8].

obtain accurate query results. On the other hand, the aggres-
sive strategy is targeted to provide faster results. However,
they do not provide a fine-grained control. In their method,
users can simply choose one of the two choices and cannot
control the amount of tuple discards in the level of a “per-
centage”; the percentage of tuples delivered (or discarded)
is one of the popularly used QoS (Quality of Service) pa-
rameters in DSMSs [1].

3. Window Processing

In this section, we discuss how to process sliding windows
efficiently over disordered data streams. To simplify our
discussion, we only focus on the processing of time-based
windows whose ranges are determined by tuples’ generation
timestamps. Extension to the processing of other windows
is straight-forward and we will briefly discuss it if needed.

Our method uses a dynamic buffer to fix disorder of
stream tuples and estimates a heartbeat to determine tuples
that can be outputted from the buffer. We generate window
extents based on the output tuples. Figure 2 shows the struc-
ture of our window operator which consists of three main
parts: the record store, the disorder controller and the win-
dow generator. The record store receives input tuples and
provides a pool of tuples over which the window generator
produces window extents. The disorder controller estimates
the heartbeat by monitoring input tuples.

The record store again consists of the slack buffer and
the window buffer. The slack buffer includes input tuples
whose timestamps are larger than the current heartbeat h,
while the window buffer has tuples whose timestamps are
smaller than or equal to h. The slack buffer needs to be or-
ganized to accept input tuples efficiently while keeping their
timestamp order. The buffer size may significantly grow due
to bursty tuple arrivals. In this case, ordering tuples based
on conventional sorting mechanisms with logarithmic com-
plexity can be an exhausting job.

Fortunately, we can handle each incoming tuple in con-
stant time. Many DSMSs assume that tuples’ timestamps
are values from a discrete, ordered time domain such that
the values can be represented as nonnegative integers start-
ing from zero (e.g., seconds) [2]. Based on this assumption,
we can easily group input tuples according to their times-

Fig. 2 Structure of our window operator.

LETTER
637

tamps by using an array whose elements correspond to tu-
ples’ timestamps. Actually, we organize the slack buffer as
a circular array whose element has a set of tuples with the
same timestamp. Then, we map an input tuple to one of ele-
ments directly by array indexing based on the tuple’s times-
tamp. The window buffer has the same structure of the slack
buffer.

Whenever a new tuple arrives in the buffer, we first
check its windowing attribute value to determine whether
we accept it or not. The determination is conducted based
on the heartbeat h estimated by the disorder controller. If the
tuple’s timestamp t is smaller than h, the tuple is discarded.
If t is equal to h, we directly output the tuple to the window
buffer. Otherwise, we keep it in the slack buffer.

Tuples in the slack buffer are delivered to the window
buffer when the heartbeat h increases than before. Given a
new heartbeat h′, we output tuples with timestamp smaller
than h′ to the window buffer. Note that the heartbeat must
monotonically increase, which is required to guarantee the
timestamp order of tuples outputted from the slack buffer.
The disorder controller may estimate the new heartbeat h′
whose value is smaller than the previous one h. In this case,
we keep h′ to be equal to h.

4. Heartbeat Estimation

As discussed earlier, existing approaches generally estimate
the heartbeat based on the maximum network delay seen in
data streams. The network delay of the i-th input tuple si can
be calculated by ui - ti where ui is an arrival time of si and ti
is its generation timestamp. Then, the approaches keep the
maximum value of network delays seen so far. Given the
max delay m, the heartbeat at the arrival of si is estimated
by ui − m.

Note that the method can be used when input tuples
have their generation timestamps and can be applied to time-
based windows only. It cannot be used for other types
of windows whose windowing attributes are not generation
timestamps. For example, consider a query that asks an av-
erage service time of the latest 100 orders which can be
served by different stores located in different places. The
query can be specified as Q2, where Services denotes an in-
put stream that unions service results relayed from different
stores. Each result consists of < orderID, serviceTime, . . .>
where orderID is an ID issued when the order is received
and serviceTime is a period of time between reception and
completion of the order. We assume that the orders are se-
quentially issued in one cite to which their results are also
relayed.

Q2. SELECT AVG(serviceTime)

FROM Services [RANGE 100 tuples,

WATTR orderID]

Since orders are served in different places, the arrivals
of their results can be out-of-ordered. But, we cannot use
the existing method to fix disorder of the stream Services
because the windowing is not conducted based on tuples’

timestamps; the windowing attribute is orderID in this case.
Moreover, there is no way to control disorder of stream tu-
ples in the method. According to application requirements,
users may want to control the amount of tuple discards not
to exceed a predefined bound.

To resolve these issues, we use the mean of tuples’ win-
dowing attribute values for the heartbeat estimation. More
specifically, whenever a tuple si arrives, we calculate its dis-
tance from the current mean µ by |ai−µ|, where ai is the win-
dowing attribute value of si. Similar to the existing method,
we keep the maximum value of tuples’ distances seen in the
streams so far. Given the maximum distance d, the heartbeat
at the arrival of si is estimated by µ − d.

In this way, our method doesn’t have any restriction: µ
can be obtained simply by monitoring values of the window-
ing attribute of input tuples. Therefore, its usage is not lim-
ited to certain types of windows, and it can cover any causes
of disorder including tuples’ transmission delays, merging
unsynchronized streams (as in the case of Q2), and so on.

The proposed method also enables users to control the
amount of tuple discards occurring in the estimation pro-
cess. To support disorder control, we provide an optional pa-
rameter DRATIO which denotes a percentage of tuple drops
permissible during the query execution. By specifying the
parameter, users can control the quality of query results ac-
cording to application requirements; a small value of the
drop ratio provides more accurate query results at the ex-
pense of high latency, while a large value gives faster results
with less accuracy.

Q3. SELECT AVG(serviceTime)

FROM Services [RANGE 100 tuples,

WATTR orderID,

DRATIO 1%]

To satisfy DRATIO, we currently use a heuristic
method. We use an offset value to adjust the estimated heart-
beat to be delayed or forwarded. For example, if a drop ratio
shown in the estimation process becomes greater than the
specified DRATIO, we increase the offset to delay the heart-
beat. On the other hand, if the drop ratio is less than the
specification, we decrease it to forward the heartbeat value.
The offset is refreshed periodically in our method (e.g., ev-
ery second).

We have conducted two experiments to see availability
of our estimation method. We implemented a data generator
to synthesize data sets based on user-specified parameters
including an arrival rate of input tuples, a standard deviation
of disorder, the maximum value of disorder, and so on. Our
experiments were conducted on Intel Pentium IV 2.4 MHz
machine, running Window XP, with 1 G main memory.

The first compares our method and the existing method
based on the max delay [8] in terms of buffer sizes and drop
ratios. For this experiment, we set DRATIO to 0% which
value can be used to save tuple discards as many as possible
(i.e., the best effort strategy). We had two results: the buffer
sizes of both methods converge to the same value as the
data size increases (Fig. 3 (a)) and our method shows smaller

638
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.3 MARCH 2010

Fig. 3 Existing vs. our methods: (a) buffer size (upper) and (b) number
of tuple drops (below).

Fig. 4 Our method: Specified drop ratios vs. percentages of tuple drops.

tuple drops during the estimation (Fig. 3 (b)). The second
checks whether our method observes a user-specified drop
ratio. The results in Fig. 4 show that it does not violate the
given drop ratios. These results show that our method can
be used instead of the existing method without deterioration
of accuracy while providing a method for disorder control.

5. Conclusion

In this paper, we proposed a method to process sliding win-
dows efficiently over disordered data streams. We first pro-
posed the structure and algorithm for processing windows
over disordered streams. Then, we provided an estimation
method that can substitute the existing method without dete-
rioration of accuracy while providing a method for disorder
control, which we observed through our experiments.

Acknowledgments

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MEST) (No. 2009-0083055).

References

[1] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S.
Lee, M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: A new model
and architecture for data stream management,” VLDB Journal, vol.12,
no.2, pp.120–139, 2003.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” Proc. ACM PODS 2002, pp.1–16,
Madison, Wisconsin, United States, 2002.

[3] S. Babu, U. Srivastava, and J. Widom, “Exploiting k-constraints to
reduce memory overhead in continuous queries over data streams,”
ACM Trans. Database Syst. (TODS), vol.29, no.3, pp.545–580, 2004.

[4] L. Ding and E.A. Rundensteiner, “Evaluating window joins over
punctuated streams,” Proc. ACM CIKM 2004, pp.98–107, Washing-
ton, DC, United States, Nov. 2004.

[5] T. Johnson, S. Muthukrishnan, V. Shkapenyuk, and O. Spatscheck, “A
heartbeat mechanism and its application in gigascope,” Proc. VLDB
Conf. 2005, pp.1079–1088, Trondheim, Norway, Sept. 2005.

[6] Jin Li, D. Maier, K. Tufte, V. Papadimos, and P.A. Tucker, “Se-
mantics and evaluation techniques for window aggregates in data
streams,” Proc. ACM SIGMOD 2005, pp.311–322, Baltimore, Mary-
land, United States, June 2005.

[7] M. Wei, M. Liu, M. Li, and K. Claypool, “Supporting a spectrum of
out-of-order event processing technologies: From aggressive to con-
servative methodologies,” Proc. ACM SIGMOD 2009, pp.1031–1033,
Providence, Rhode Island, United States, June 2009.

[8] U. Srivastava and J. Widom, “Flexible time management in data
stream systems,” Proc. ACM PODS 2004, pp.263–274, Paris, France,
June 2004.

