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Robust Object Tracking via Combining Observation Models

Fan JIANG†a), Student Member, Guijin WANG†b), Member, Chang LIU†c), Xinggang LIN†d),
and Weiguo WU††e), Nonmembers

SUMMARY Various observation models have been introduced into the
object tracking community, and combining them has become a promising
direction. This paper proposes a novel approach for estimating the con-
fidences of different observation models, and then effectively combining
them in the particle filter framework. In our approach, spatial Likelihood
distribution is represented by three simple but efficient parameters, reflect-
ing the overall similarity, distribution sharpness and degree of multi peak.
The balance of these three aspects leads to good estimation of confidences,
which helps maintain the advantages of each observation model and fur-
ther increases robustness to partial occlusion. Experiments on challenging
video sequences demonstrate the effectiveness of our approach.
key words: object tracking, combine observation models, feature fusion,
particle filter

1. Introduction

Object tracking is a crucial and basic task in computer vi-
sion. It is the foundation of many higher level applications,
such as visual surveillance, behavior analysis and human-
computer interaction. Tracking aims at distinguishing and
locating specific objects from continuously changing back-
grounds. The main barriers to robust object tracking are
illumination change, shape change, viewpoint change and
occlusion.

To handle these visual variations, a variety of fea-
tures have been introduced for target representation, in-
cluding color histograms [1], HOG (Histogram of Oriented
Gradients) [2] , Local Binary Patterns, Haar-like wavelets,
edgelets and so on. Based on these features, different ob-
servation models are constructed to evaluate the likelihood
between the tracking target and a candidate image window.
Generally speaking, observation models can be divided into
two categories: Generative models, like Kernel-based track-
ing [1], try to construct adaptive models in a specific feature
space; Discriminative models, like [3], [4], which consider
tracking as a classification problem, seek a decision bound-
ary best separating the object and the background.

Because of the complementary characteristics between
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different features, it is beneficial to integrate different fea-
tures together. Y. Li [5] proposed to organize three obser-
vation models in a cascade manner, in which the last one
plays the key role, while the information from the others
are not exploited sufficiently. Y. Lei [6] proposed a three-
level hierarchy to efficiently combine two parallel observa-
tion models in the particle filter framework. However, their
approach generally focused on a single object. Without any
spatial information, their algorithm is hard to be extended to
multiple objects cases. F. Tang [7] proposed a novel algo-
rithm based on semi-supervised learning, which combines
two discriminative models according to the accuracy of each
classifier. This strategy cannot be extended to generative
models, and furthermore, accuracy evaluated on previous
samples prevents the observation model from adapting to
the latest change.

We propose a novel strategy for combining different
observation models. Three simple but efficient parameters,
average likelihood, 3db bandwidth and peak-peak ratio, are
extracted from the spatial likelihood distribution, which rep-
resent the overall similarity, distribution sharpness and de-
gree of multi peak. They are further utilized to evaluate the
confidence of an observation model. Observation models
are then combined in the particle filter framework, which
performs MAP (maximum a posteriori) estimation frame by
frame. The novel combination framework based on spatial
information maintains the advantages of separate observa-
tion models and further makes our algorithm robust to par-
tial occlusion.

The rest of this paper is organized as follows: Sect. 2
introduces our method for confidence evaluation. Section 3
describes how to combine models in the particle filter frame-
work. Experimental results are shown in Sect. 4 and conclu-
sions are drawn in Sect. 5.

2. The Confidences of Observation Models

The idea of combining different observation models aims at
maintaining advantages while avoiding disadvantages. Ide-
ally, a good combination take effect when either individual
model works. Thus, the most important thing in a combi-
nation framework is how to evaluate the confidences of dif-
ferent observation models, indicating which model is more
reliable. Figure 1 demonstrates a commonly used combi-
nation framework. Likelihood distribution based on color
histogram feature and likelihood distribution based on HOG
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Fig. 1 A commonly used framework for combining different observation
models.

feature are calculated separately. They are then combined
into one spatial distribution according to their confidence.
Our combination is similar to this one, except in the particle
filter framework. (Sect. 3)

2.1 Parameters to Represent a Likelihood Distribution

Spatial information is employed to efficiently evaluate the
confidence of different observation models. In practice,
spatial likelihood distribution is encoded into the following
three parameters.

2.1.1 Average Likelihood

Observation likelihood represents the similarity between an
observation model and a candidate image win-dow, thus av-
erage likelihood shows the overall extent of matching.

Denote likelihood distribution as d(x, y), (x, y) ∈ P,
where P is the entire searching area. To avoid noise, average
likelihood d is calculated in a subset of P, with likelihood
exceeds one threshold:

d =
1
|R|
∑

(x,y)∈R
d(x, y) (1)

Where R =
{
(x, y)

∣∣∣(x, y) ∈ P, d(x, y) > th
}

and | · | denotes the
number of elements in the set. In practice, threshold th is set
to 0.7 times maximum.

2.1.2 3db Bandwidth

3db bandwidth is a widely used measure for distribution
sharpness, while distribution sharpness reflects its ability to
distinguish target from backgrounds. We adopt the normal-
ized 3db bandwidth in our approach:

S =
1
|P|
∑

(x,y)∈P
I
[
d(x, y) > th

]
(2)

Where th is a threshold and I[·] is an indicator function.

I
[
d(x, y) > th

]
=

{
1 d(x, y) > th
0 otherwise

(3)

Fig. 2 An example of bimodal distribution.

2.1.3 Peak-Peak Ratio

Peak-peak ratio (γ) is defined as the ratio between the dis-
tribution maximum (dmax) and the second largest extremum
(d−peak).

γ = d−peak/dmax (4)

This parameter reflects the degree of multimodal dis-
tribution. It decreases when the maximum has larger advan-
tage over the second peak and reaches zero when the distri-
bution is strictly unimodal. In tracking, a unimodal struc-
ture of likelihood distribution is preferred because bimodal
or multimodal structure generally indicates the existence of
interference. Figure 2 gives an example of bimodal distribu-
tion when tracking pedestrians using HOG feature.

2.2 Confidence Evaluation

After describing likelihood distribution from three differ-
ent perspectives, the confidence of an likelihood distribution
(con f ) can be obtained by comparing the current distribu-
tion parameters

{
d, S , γ

}
to the initial ones

{
d0, S 0, γ0

}
. By

introducing Gaussian kernels, confidence can be calculated
as:

con f =
e−cγe−k

[
1−min

(
1,d/d0

)]

S/S 0
(5)

Where c and k are constants. In Eq. (5), the first part
e−cγ corresponds to distribution shape, which will be max-
imized for a unimodal structure (γ = 0). The second part

e−k
[
1−min

(
1,d/d0

)]
corresponds to average likelihood. Larger

average likelihood will result in higher confidence. An av-
erage likelihood larger than the initial value (d > d0) is
considered to be good enough, thus maximizing the second
part. The last part S/S 0 in the denominator corresponds to
the distribution sharpness. On the whole, Eq. (5) achieves
a good balance among the three perspectives. Confidence
increases when d increases, S decreases and γ decreases.

3. Combination Using Particle Filter

Intuitively, likelihood distribution can be calculated pixel-
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Table 1 Tracking by combining observation models.

Input:

N weighted particles in previous frame:
{
Xi

t−1,w
i
t−1

}N
i=1

<1> Resample:

simulate particles
{
Xi

t−1,
1
N

}N
i=1

from
{
Xi

t−1,w
i
t−1

}N
i=1

<2> Prediction: for i = 1 . . .N

Simulate Xi
t ∼ p

(
Xt

∣∣∣Xi
t−1

)
, obtains

{
Xi

t

}N
i=1

<3> Observe: for each particle Xi
t

Get observations Li
1,t and Li

2,t , obtains
{
Xi

t , L
i
1,t , L

i
2,t

}N
i=1

<4> Estimate likelihood distribution:
Estimate d1,t(x, y) and d1,t(x, y) by Eq. (6)

<5> Evaluate confidence Con f1,t and Con f2,t by Eq. (5)
<6> Update particle weights through combination:

wi
t =

Con f1,t
Con f1,t +Con f2,t

Li
1,t +

Con f2,t
Con f1,t +Con f2,t

Li
2,t

Obtains weighted particles
{
Xi

t ,w
i
t

}N
i=1

for the next frame

Output:

Target location in the current frame Xt =

N∑
i=1

Xi
tw

i
t

N∑
i=1

wi
t

by-pixel using a sliding window in the searching area. How-
ever, this is not acceptable due to the computational cost, es-
pecially when there is scale change. To deal with this prob-
lem, we combine observation models in the particle filter
framework by the following steps.

• Estimate likelihood distributions from particles.
• Evaluate model confidences at a single scale.
• Combine models by updating particle weights.

Our tracking system follows the framework of SIR par-
ticle filter [8]. Target center (x, y) as well as a scale factor s
are chosen as the state vector, denoted as Xt = (xt, yt, st)

T .
Width-height ratio is regarded to be constant after initializa-
tion. In addition, we assume that targets move at constant
velocity.

3.1 Distribution Estimation by Particles

Our distribution is estimated around scale 1, which means
selecting particles with approximately the same size to the
target in the previous frame. These selected particles are

denoted as
{
Xi, Li

}M
i=1

, where Xi is the state vector, and Li is
the likelihood. Likelihood distribution can be estimated:

d(x, y) =

∑M
i=1 LiG

(
x, y
∣∣∣xi, yi,

∑)
∑M

i=1 G
(
x, y
∣∣∣xi, yi,

∑) (6)

Where G
(
x, y
∣∣∣xi, yi,

∑)
denotes a Gaussian distribution with

mean (xi, yi) and covariance
∑

. Each Gaussian distribution
corresponds to one particle. The ones closer to point (x, y)
contribute more in the ensemble.

3.2 The Entire Algorithm

Table 1 demonstrates the entire tracking algorithm which
combines two observation models.

4. Experimental Results

Basically, pedestrian tracking epitomizes the main problems
in object tracking, so we choose pedestrian tracking to eval-
uate our combination algorithm.

We implement the proposed tracking approach and test
it on a large number of video sequences. The evaluation
database consists of two parts. Some of them come from the
CAVIER dataset [9], with significant illumination change
and frequent inter-human occlusion. The others are cap-
tured by us, containing situations like pose changing and
occlusion by background.

4.1 Implementation Details

For pedestrian tracking, we adopt one generative color his-
togram model and one discriminative HOG model. HOG
feature is robust to illumination change but is sensitive to
pose change and dose not distinguish individuals. Color
histogram is able to distinguish pedestrians with different
clothes and also adapts to slight pose change, but it is seri-
ously affected by illumination change. The natural comple-
mentary makes HOG feature and color histogram suitable
for combination.

Our color histogram model is a 512 (8 × 8 × 8) di-
mensional vector in RGB space and updated online by
IPCA [10]. Its likelihood is evaluated by Bhattacharyya
coefficients [1]. The discriminative model is an offline
SVM classifier [2], without any online update. Even with
a discriminative model not updated online, our combination
framework is proved to work effectively.

4.2 Results

Among 199 pedestrians in 86 video sequences (over 50,000
frames), after manually assigning the initial positions,
our tracking algorithm successfully tracks 169 pedestrians,
achieving a correction rate of 84.9%. Correction rates for
only HOG model and only color histogram model are 67.4%
and 60.8%.

Figure 3 is an example on sequence ThreePast-
Shop2cor in CAVIAR dataset. There are some shops on the
left hand side, introducing significant illumination change.
Meanwhile, occlusion occurs frequently, further increasing
the difficulty of tracking. HOG observation model tracks to
a wrong pedestrian after occlusion (Fig. 3 (c) #475). Color
histogram observation model leads to the drift problem
(Fig. 3 (b) #475, #671) and lost its target after partial occlu-
sion (Fig. 3 (b) #1173). Our algorithm (Fig. 3 (a)) maintains
the advantage of both models and tracks to the end of the se-
quence. In addition, we compare our results to the recently
proposed MIL tracker [11], the code for which is publicly
available. Although they have developed an effective online
updating algorithm, using only haar-like features result in
their failure after occlusion (Fig. 3 (d)).

Figure 4 is an example of occlusion by background.
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Fig. 3 Tracking results in the CAVIAR ThreePastShop2cor video sequence. Figures with label ‘2x’
means its size doubles the origin.

Fig. 4 Tracking results during partial occlusion.

This video is captured by us. When the pedestrian becomes
occluded by the bushes, the confidence of both HOG chan-
nel and color histogram channel decrease. Nevertheless,
color histogram is more reliable comparatively and can still
be used for tracking.

5. Conclusion

In this paper, we propose a novel human tracking algorithm,
which combines different observation models. Experimen-
tal results on pedestrians have validated its robustness to
partial occlusion and its ability to maintain advantages. Al-
though our experiments are based on the combinative usage
of HOG model and color histogram model, our combina-
tion framework can be easily extended to other observation
models.
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