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Adaptive Spread-Transform Dither Modulation Using a New
Perceptual Model for Color Image Watermarking∗

Lihong MA†a), Member, Dong YU††, Gang WEI†, Jing TIAN†††, and Hanqing LU††††, Nonmembers

SUMMARY Major challenges of the conventional spread-transform
dither modulation (STDM) watermarking approach are two-fold: (i) it ex-
ploits a fixed watermarking strength (more particularly, the quantization
index step size) to the whole cover image; and (ii) it is fairly vulnerable to
the amplitude changes. To tackle the above challenges, an adaptive spread-
transform dither modulation (ASTDM) approach is proposed in this paper
for conducting robust color image watermarking by incorporating a new
perceptual model into the conventional STDM framework. The proposed
approach exploits a new perceptual model to adjust the quantization index
step sizes according to the local perceptual characteristics of a cover image.
Furthermore, in contrast to the conventional Watson’s model is vulnerable
to the amplitude changes, our proposed new perceptual model makes the
luminance masking thresholds be consistent with any amplitude change,
while keeping the consistence to the properties of the human visual system.
In addition, certain color artifacts could be incurred during the watermark
embedding procedure, since some intensity values are perceptibly changed
to label the watermark. For that, a color artifact suppression algorithm is
proposed by mathematically deriving an upper bound for the intensity val-
ues according to the inherent relationship between the saturation and the
intensity components. Extensive experiments are conducted using 500 im-
ages selected from Corel database to demonstrate the superior performance
of the proposed ASTDM approach.
key words: Color image watermarking, perceptual model, spread-
transform dither modulation, amplitude scaling, requantization.

1. Introduction

Digital watermarking of multimedia content has become a
very active research area over the last decade, due to the
fact that it is potential for the protection of ownership rights
and policing information piracy of multimedia elements [1],
[2]. With the rapid development of digital technology and
the popularization of Internet, the storage and copy of the
digital products have appeared as convenient and easy jobs.
How to effectively protect the copyright of digital products
has become a very significant issue. For that, the watermark-
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ing technique has played an important role in the copyright
protection, to identify the content owner, and in the authen-
tication, to determine whether the data has been altered in
any manner from its original form.

Over the last decade, a variety of watermarking ap-
proaches have been developed. They can be classified
into the spatial-based approach and the frequency-based ap-
proach. The first approach embeds the watermark into the
pixels of a cover image via directly changing the intensity
values of the pixels, while the second one embeds the wa-
termark into a certain band of frequency. Recently, various
quantization-based watermarking approaches [3], such as
quantization index modulation (QIM) and spread-transform
dither modulation (STDM), have been proposed to use a
structured lattice code to provide a high coefficient wa-
termarking performance. However, this method exploits
a fixed watermarking strength to the whole image, which
could cause poor transparency performance in certain re-
gions of the watermarked image. Furthermore, it is extreme
sensitive to the amplitude changes, which are commonly in-
curred in image processing (e.g., image enhancement). In
view of this, an adaptive spread-transform dither modula-
tion (ASTDM) approach is proposed in this paper by in-
corporating a new perceptual model into the conventional
STDM framework to tackle the following three challenges.

The first challenge is to overcome the drawback of
the conventional STDM approach that a fixed watermarking
strength is applied to the whole cover image. Motivated by
various perceptually-optimized watermarking schemes that
exploit the properties of the human visual system (HVS) [4],
[5], a new perceptual model is proposed in this paper and
is further incorporated into the conventional STDM frame-
work. The basic idea behind is to adjust the watermarking
strength (i.e., the adaptation of the quantization step sizes)
according to the local characteristics (i.e., the distortion vis-
ibility threshold determined by the perceptual model) of a
cover image. More watermark information could be em-
bedded into the regions that have higher distortion visibility
thresholds.

The second challenge is to improve the robustness
of the conventional STDM approach to resist the ampli-
tude changes. For that, various solutions have been de-
veloped [6]–[12]. Eggers et al. [6] estimated the ampli-
tude scaling by “securely embedding SCS pilot watermark”.
However, this method requires to perform a signal cali-
bration; thus it may lead to the security weaknesses. Lee
et al. [7] proposed to exploit the Expectation-Maximization
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(EM) algorithm [8] to compute a global scaling factor. How-
ever, this method yields a fairly high computational load.
Furthermore, the global optimum of the EM algorithm is
not guaranteed. Lagendijk and Shterev [9] presented another
method based on the characteristic signal functions; how-
ever, this method requires the prior knowledge of both the
host signal and the noise. Perez-Gonzalez et al. developed a
gain-invariant adaptive quantization step size at both the wa-
termark embedder and the watermark decoder [10]. Zhu and
Tang [11] proposed a gain-invariant quantization via divid-
ing the host signal by a statistical feature extracted from the
target content. Li and Cox proposed an amplitude scaling in-
variant method by using a perceptual model [12]. However,
this method sacrifices the transparency performance, since it
changes the perceptual model’s luminance masking thresh-
old within the watermark embedding procedure; thus it is
not consistent with perceptual characteristics of the HVS.
In view of this, a new perceptual model is proposed which
scales linearly with the amplitude while keeping consistent
with the properties of the HVS..

The third challenge is how to exploit the conventional
STDM approach for handling the color image data. Most
of the approaches mentioned above address the gray image
only, without the consideration of the color fidelity issue. In
this paper, the watermark embedding is proposed to be per-
formed on the intensity component of the color cover image
in the hue, saturation and intensity (HSI) color space, in-
stead of the red, green and blue (RGB) color space. Since
the intensity values are changed to embed the watermark,
certain color artifacts could be incurred in the watermarked
image. To deal with that, an upper bound for the intensity
values is mathematically derived to remove the above color
artifacts, according to the inherent relationship between the
saturation and the intensity components.

The rest of this paper is organized as follows. Sec-
tion 2 provides a brief introduction to the conventional QIM
and STDM watermarking approaches. A new perceptual
model is proposed in Sect. 3, and then incorporated into the
conventional STDM framework to develop an ASTDM ap-
proach in Sect. 4, followed by the development of the pro-
posed color artifact suppression algorithm. Extensive ex-
perimental results are provided in Sect. 5 to demonstrate the
superior performance of the proposed ASTDM approach.
Finally, Sect. 6 concludes this paper.

2. Quantization Index Modulation and Spread-
Transform Dithering Modulation

2.1 Quantization Index Modulation

Suppose that a host image X, which is with a size of MN×1
representing an M × N image in the lexicographic-ordered
vector form, is to be embedded with one bit message infor-
mation m, which is either 1 or 0 (i.e., m ∈ {0, 1}). The con-
ventional QIM method [3] quantizes the host image by ap-
plying the chosen dithered quantizers according to the mes-
sage bit m and produces a watermarked image Y via [3]

Y = Q�(X − dm) + dm, (1)

where Q�(.) is a quantizer defined as [3]

Q�(s) = � · round
( s
�
)
, (2)

in which the function round(.) performs rounding a value
to its nearest integer; dm is a pseudo-randomly generated
dither vector with a same size as X, each entry of which is
determined by [3]

dm =

{ −�4 , m = 0;
�
4 , m = 1.

(3)

On the other hand, the watermark detector decodes a mes-
sage m̂ according to [3]

m̂ = arg min
m∈{0,1}

dist(Y,Λm), (4)

where Λm is the lattice set determined by the quantizers, the
function dist(.) represents the L2-norm distance.

2.2 Spread-Transform Dithering Modulation

Instead of directly performing quantization to the host sig-
nal, spread-transform dither modulation (STDM) [3] first
projects the host signal to a dithering vector that is de-
rived from the original host signal, and then performs the
dithering modulation on this dithering vector. Due to its
vector quantization mechanism, STDM has superiority in
anti-requantization attacks carried out in a specific direction.
Given a host vector X, the message information to be em-
bedded m, and a projection axis p, the watermarked signal
is [3]

Y =
{

X + (Q0(XT p) − XT p)p m = 0;

X + (Q1(XT p) − XT p)p m = 1.
(5)

where the superscript T denotes vector transpose. On the
other hand, the watermark decoder projects the received Y
onto the direction p and decides whether quantizer Q0 or Q1

was used [3]

m̂ = arg min
m∈{0,1}

dist(YT p,Λm), (6)

where Λm is the lattice set formed by the quantizers. Note
that the distortion, which is incurred due to the watermark
embedding, takes place in the direction p only; no other
component of X is modified. Therefore, the watermark em-
bedder can allocate the entire distortion budget in the direc-
tion p only.

The projection axis (i.e., p in (6)) used in the conven-
tional STDM approach could be determined by a private
key [13]. Denote an MN × 1 host vector as X, and the
N × 1 watermark sequence m = {m1,m2, . . . ,mN}, where
mi ∈ {0, 1}. Then the host vector is divided into N sub-
vectors Xi with a length of M × 1, each of which is embed-
ded with 1-bit message mi. The MN × 1 private vector K is
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also divided into M sub-vectors. Now Q0 and Q1 quantize
the projected host vector onto the axis Ki, and compute the
i-th watermarked vector Yi by

Yi = Xi +

(
Qk

(
XT

i Ki

)
− XT

i Ki

)
Ki

||Ki||2 , (7)

where the function ||.|| is the L2-norm distance. When a wa-
termark bit m = 1 is embedded, the quantizer Q1 is used to
quantize the projection of Xi in the direction Ki. The other
quantizer Q0 is used while the message m is 0. Therefore
the quantizer Qk(.), where k = 0, 1, is defined as

Qk(s) = � · round

(
s − �

di
+ di

)
, k = 0, 1, (8)

where the dither factor di is selected as

di = ±�4 , for mi = 0, 1. (9)

On the other hand, the watermark detector calculates the
nearest quantized point to Yi and decodes the message in-
formation as

m̂i = arg min
mi∈{0,1}

dist(YT
i Ki,Λmi ), (10)

where Λm is the lattice set determined by the quantizers, the
function dist(.) represents the L2-norm distance.

3. Proposed New Perceptual Model

The motivation of using a perceptual model to perform wa-
termarking is to embed more information at the regions
where the changes are less perceptible to the HVS [5].
Therefore, the perceptual model serves as the foundation
for adaptively adjusting the quantization step sizes used
in the proposed ASTDM approach. In this section, the
conventional Watson’s model and Li and Cox’s perceptual
model [12], plus our proposal of a new perceptual model
will be presented.

3.1 Conventional Watson’s Model

The conventional Watson’s model [14] exploits the proper-
ties of the HVS to determine the distortion visibility thresh-
olds (called slack) for different DCT coefficients, by com-
puting acceptable data distortion that is considered the min-
imum perceptible distortion (called just noticeable distor-
tion (JND)). The slack is defined by three components: fre-
quency sensitivity, luminance masking and contrast mask-
ing [14]; they are briefly described as follows.

• Frequency sensitivity (FS) reflects the smallest magni-
tudes of the noticeable distortion of the block DCT co-
efficients. A smaller value indicates that the HVS is
more sensitive to the change of this frequency (i.e., the
DCT coefficient). Suppose that the image is divided
into disjoint 8×8 blocks, then the block DCT transform

is performed for each block, the block DCT coefficients
of the image can be obtained. Denote each coefficient
of the k-th block as C(i, j, k), 0 ≤ i, j ≤ 7, C(0, 0, k)
is the DC coefficient of the k-th block. The FS value
of each coefficient (denoted as F(i, j, k)) could be de-
termined by a table defined in [14]. Note that different
block DCT coefficients have the same FS values; that
is, F(i, j, k) = F(i, j, l), for any k and l.
• Luminance masking refers to the fact that a DCT coef-

ficient could be changed by a larger amount before be-
coming perceptible, if the average intensity of its block
is brighter. The luminance masking threshold (denoted
as L(i, j, k)) is defined as [14]

L(i, j, k) = F(i, j, k)

(
CO(0, 0, k)

C0,0

)0.7

, (11)

where F(i, j, k) represents its FS value, CO(0, 0, k) is the
DC coefficient of the k-th block in the original image,
C0,0 represents the mean intensity of the whole image.
• Contrast masking refers to the reduction in the visi-

bility of a change in one frequency due to the energy
present in that frequency; it is defined as [14]

M(i, j, k) = max
(
1, |CO(i, j, k)|0.7 × (L(i, j, k))−0.7

)
.

(12)

The overall distortion visibility threshold for each DCT
coefficient (denoted as S (i, j, k)) is defined as [14]

S (i, j, k) = L(i, j, k)M(i, j, k)

= max
(
L(i, j, k), |CO(i, j, k)|0.7 × (L(i, j, k))0.3

)
, (13)

where the function |.| denotes the absolute value. The above
slack represents a threshold for each individual DCT coeffi-
cient that could be changed before its alternation becoming
perceptible.

The key challenge of conventional Watson’s model
(i.e., (13)) is that it is sensitive to the amplitude scaling of
the image. To be more specific, suppose the amplitude of
the image is scaled by a factor β (i.e., an amplitude scaling
attack), the resulting luminance masking threshold (denoted
as L̂(i, j, k)) is

L̂(i, j, k) = F(i, j, k)

(
βCO(0, 0, k)
βC0,0

)0.7

= F(i, j, k)

(
CO(0, 0, k)

C0,0

)0.7

. (14)

Comparing (11) and (14), one can see that the luminance
masking threshold under the attack (i.e., L̂(i, j, k)) remains
the same as the original threshold (i.e., L(i, j, k)); that is

L̂(i, j, k) = L(i, j, k) � β × L(i, j, k). (15)

On the other hand, the resulting slack (denoted as Ŝ (i, j, k))
under the above amplitude scaling attack is

Ŝ (i, j, k)
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= max
(
L̂(i, j, k), |βC0(i, j, k)|0.7 ×

(
L̂(i, j, k)

)0.3
)
. (16)

Substituting (15) into (16) we have

Ŝ (i, j, k)

= max
(
L(i, j, k), |βC0(i, j, k)|0.7 × (L(i, j, k))0.3

)
= max

(
L(i, j, k), β0.7|C0(i, j, k)|0.7 × (L(i, j, k))0.3

)
.

(17)

Comparing (13) and (17), one can see that

Ŝ (i, j, k) � β × S (i, j, k). (18)

Therefore the conventional Watson’s model can not resist
the amplitude scaling attack, since it remains unchanged
even if the image’s amplitude is scaled.

3.2 Li and Cox’s Perceptual Model

To overcome the above drawbacks of the conventional
Watson’s model, Li and Cox [12] proposed a new
luminance-masked threshold model by multiplying (11)
with the mean DC components of the image; that is,

LM(i, j, k) = F(i, j, k)

(
CO(0, 0, k)

C0,0

)0.7 (
C0,0

128

)
. (19)

Furthermore, the new slack function (denoted as S M(i, j, k))
is

S M(i, j, k)

= max
(
LM(i, j, k), |C0(i, j, k)|0.7 ×

(
LM(i, j, k)

)0.3
)
.

(20)

Suppose the amplitude of the image is scaled with a
factor β, then the luminance masking threshold under the
amplitude scaling attack with a scale β is

L̂M(i, j, k) = F(i, j, k)

(
βCO(0, 0, k)
βC0,0

)0.7(
βC0,0

128

)

= βF(i, j, k)

(
CO(0, 0, k)

C0,0

)0.7(C0,0

128

)
. (21)

Comparing (21) and (19), one can see that the luminance-
masked threshold under the attack (i.e., L̂M(i, j, k)) remains
as same as the original threshold (i.e., LM(i, j, k)); that is

L̂M(i, j, k) = β × LM(i, j, k). (22)

Therefore, Li and Cox’s model [12] can resist the amplitude
scaling attack, since it remains unchanged even if the ampli-
tude is scaled.

However, Li and Cox’s model [12] changes the slack
values so that it is not consistent with the properties of HVS;
consequently, it could result in inferior transparency perfor-
mance. More specifically, the slack value defined in (20) is
different with that of the conventional Watson’s model (con-
sistent with the properties of the HVS) within the watermark
embedding procedure; that is, Li and Cox’s model [12] is not
consistent with the properties of the HVS.

3.3 Proposed New Perceptual Model

To tackle the above challenges of both the conventional
Watson’s model and Li and Cox’s model [12], our idea is to
make the slack scale linearly with the amplitude, and keep
the slack consistent with the properties of the HVS. For
that, a new perceptual model is proposed in this paper by
modifying (11) to be a new luminance masking threshold-
ing function (denoted as LP(i, j, k))

LP(i, j, k) = F(i, j, k)

(
CO(0, 0, k)

C0,0

)0.7 C0,0

CO
0,0

, (23)

where C0,0 and CO
0,0 denote the mean DC coefficient of the

watermarked and the cover image, respectively. Further-
more, the new slack function (denoted as S P(i, j, k)) is

S P(i, j, k)

= max
(
LP(i, j, k), |C0(i, j, k)|0.7 ×

(
LP(i, j, k)

)0.3
)
. (24)

The proposed new perceptual model has the following
two advantages, compared with the conventional Watson’s
model.

First, the proposed perceptual model can resist the am-
plitude scaling attack, since it will be scaled accordingly if
the image’s amplitude is scaled. Suppose the amplitude of
the image is scaled with a factor β, then the luminance mask-
ing threshold under the amplitude scaling attack with a scale
β is

L̂P(i, j, k) = F(i, j, k)

(
βCO(0, 0, k)
βC0,0

)0.7 ⎛⎜⎜⎜⎜⎜⎝βC0,0

CO
0,0

⎞⎟⎟⎟⎟⎟⎠
= F(i, j, k)

(
CO(0, 0, k)

C0,0

)0.7 ⎛⎜⎜⎜⎜⎜⎝βC0,0

CO
0,0

⎞⎟⎟⎟⎟⎟⎠ . (25)

Comparing (23) and (25), one can see that the luminance
masking threshold under the attack (i.e., L̂P(i, j, k)) will
scale according to the original threshold (i.e., LP(i, j, k));
that is

L̂P(i, j, k) = β × LP(i, j, k). (26)

On the other hand, the resulting slack (denoted as Ŝ P(i, j, k))
under the above amplitude scaling attack is

Ŝ P(i, j, k)

= max
(
L̂P(i, j, k), |βC0(i, j, k)|0.7

(
L̂P(i, j, k)

)0.3)
= max

(
βLP(i, j, k), |βC0(i, j, k)|0.7

(
βLP(i, j, k)

)0.3
)

= max
(
βLP(i, j, k),

β0.7|C0(i, j, k)|0.7β0.3
(
LP(i, j, k)

)0.3
)

= max
(
βLP(i, j, k), β|C0(i, j, k)|0.7

(
LP(i, j, k)

)0.3
)
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= βmax
(
LP(i, j, k), |C0(i, j, k)|0.7

(
LP(i, j, k)

)0.3
)
. (27)

Comparing (24) and (27), one can see that

Ŝ P(i, j, k) = β × S P(i, j, k). (28)

Therefore the proposed perceptual model can resist the am-
plitude scaling attack, since both the luminance masking
threshold (see (26)) and the slack threshold (see (28)) will be
changed according to the amplitude changes of the image.

The second advantage of the proposed perceptual
model is its consistence to the properties of the HVS within
the watermark embedding procedure. To be more specific,
the slack value of the proposed model remains the same as
that of the conventional Watson’s model, since C0,0 = CO

0,0
within the watermark embedding procedure; that is, they are
consistent with the properties of the HVS.

It is worth pointing out that the fundamental difference
between our proposed model and Li and Cox’s model [12]
mentioned in the previous section, where a new luminance
masking threshold model is proposed by multiplying (11)
with the mean DC components of the image. Li and Cox’
model increases the slack values of the original Watson’s
model, which is precisely calculated and should not be
changed easily [14]. This change may result in the incon-
sistentness with the properties of HVS, especially when the
mean DC value is high (the deviation increases linear with
mean DC value). Consequently, it could result in inferior
transparency performance in the watermarked image. To
justify this, extensive experiments are conducted in Sect. 5
to demonstrate that our proposed model outperforms Li and
Cox’s model [12].

4. Proposed Adaptive Spread-Transform Dither Mod-
ulation Approach

In this section, an ASTDM approach is proposed by incor-
porating our new perceptual model into the conventional
STDM framework to adaptively adjust the quantization step
sizes. Consequently, the proposed ASTDM approach can
embed more information at the regions where the intensity
changes are less perceptible. This is in contrast to that the
conventional STDM approach applies a fixed quantization
step size for the whole cover image.

4.1 Adaptive Quantization Step Size Selection

Denote a MN × 1 host vector as X, and the N × 1 watermark
sequence m = {m1,m2, . . . ,mN}, where mi ∈ {0, 1}. The
objective is to divide the host vector into N sub-vectors, each
of which is denoted as Xi with a length of M × 1, followed
by embedding each sub-vector Xi with 1-bit message mi. In
addition, the MN × 1 private vector K is also divided into N
sub-vectors. According to (7), for i = 1, 2, . . . ,N; k = 0, 1,
the watermarked vector Yi is

Yi = Xi +

(
Qk

(
XT

i Ki

)
− XT

i Ki

)
Ki

||Ki||2 , (29)

where the function ||.|| is L2-norm, Qk(.) is the k-th quantizer.
After embedding the message mi into the host vector Xi, the
error introduced by the quantization should not exceed the
slack SP

i ; otherwise, the embedded watermark will become
perceptible. More specifically, the difference between each
component of the host vector (denoted as Xi( j)) and that of
the watermarked vector (denoted as Yi( j)) should be smaller
than its corresponding component of the slack (denoted as
SP

i ( j)); that is

|Yi( j) − Xi( j)| ≤ SP
i ( j). (30)

The objective is to derive the quantization step �i used
for the host vector Xi according to (30). First, according to
(29), the left term of (30) is

|Yi( j) − Xi( j)|

=

∣∣∣∣∣∣∣∣Xi( j) +

(
Qk

(
XT

i Ki

)
− XT

i Ki

)
Ki( j)

||Ki||2 − Xi( j)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
(
Qk

(
XT

i Ki

)
− XT

i Ki

)
Ki( j)

||Ki||2

∣∣∣∣∣∣∣∣ . (31)

Substituting (31) into (30), we get∣∣∣∣∣∣∣∣
(
Qk

(
XT

i Ki

)
− XT

i Ki

)
Ki( j)

||Ki||2

∣∣∣∣∣∣∣∣ ≤ SP
i ( j). (32)

Next, since the maximum quantization error of the

quantizer for each Yi is �i

2 [3], substituting
∣∣∣∣Qk

(
XT

i Ki

)
−

XT
i Ki

∣∣∣∣ = �i

2 into (32), we have

∣∣∣∣∣∣
�i

2 Ki( j)

||Ki||2
∣∣∣∣∣∣ ≤ SP

i ( j). (33)

Then, (33) can be rewritten as

�i ≤
2|SP

i ( j)|||Ki||2
|Ki( j)| . (34)

Finally, denote a modification factor λ ∈ (0, 1), |Ki|
and |SP

i | are the average absolute values of Ki and SP, re-
spectively. To satisfy (34), the quantization step size for the
host vector Yi yields the form as

�i =
2λ|SP

i |||Ki||2
|Ki|

. (35)

Owing to (35), the quantization step size �i, which is per-
formed to the host vector Xi, is adaptively adjusted accord-
ing to the JND slack (SP

i ), which could be flexibly controlled
by the proposed new perceptual model, and the modification
factor λ, which is determined by the users in practice.
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4.2 Representation, Embedding and Extraction of CO
0,0

Referring to Sect. 3, the main contribution of our proposed
new perceptual model is to incorporate the mean intensity
value of the cover image CO

0,0 (see (23)) into the luminance
masking function. Therefore, there are certain significant
issues needed to be investigated.

The first issue is the representation of the mean inten-
sity information CO

0,0. For that, an 11-bit binary representa-
tion is used in this paper. More specifically, the first 7 bits
are copied from that of the binary representation of CO

0,0; the
next 3 bits represent the summation of the “1” bits among
the above-mentioned 7 bits (the maximum possibility is that
there are seven 1 s, while the minimum possibility is that
there is no 1; therefore, three bits are sufficient); and the last
1 bit represents the parity check bit.

The second issue is how to embed the mean intensity
information CO

0,0 into the cover image. For that, the above
11-bit representation of CO

0,0 is embedded into the cover im-
age, after the embedding of the watermark. Furthermore,
CO

0,0 could be embedded for more than one time, as long as
there is any host signal available, so as to resist any trans-
mission error. Suppose there is a 512 × 512 cover image
and a 60×60 watermark image, since only a single message
information will be embedded into each 8 × 8 block DCT
coefficients, the available space to embed the mean intensity
information CO

0,0 is ( 512×512
8×8 −60×60)/(11) ≈ 45. That is, the

mean intensity information CO
0,0 can be embedded 45 times

in the cover image.
The third issue is how to extract CO

0,0 from the received
watermarked image. Suppose the mean intensity informa-
tion has been embedded for N (e.g., N = 45 in the above ex-
ample) times during the watermark embedding procedure,
then the watermark detector should extract N mean inten-
sity values, each of which is denoted as xi, where i = 1 ∼ N.
First, the majority voting rule is applied to determine the
value of each bit of the 11-bit representation of the extracted
mean intensity information (denoted as ĈO

0,0( j)), according
to that of the above N extracted mean intensity values xi( j).
That is, for each j, 1 ≤ j ≤ 11, we have

ĈO
0,0( j) =

⎧⎪⎪⎨⎪⎪⎩ 1,
∑N

j=1 xi( j) ≥ N
2 ;

0,
∑N

j=1 xi( j) < N
2 .

(36)

Next, a parity check is performed to determine whether the
summation of first 7 bits of ĈO

0,0 equals to its next 3 bits of

ĈO
0,0. If it is correct, then, the extracted mean intensity value

ĈO
0,0 is used to compute the slack for detecting the water-

mark; otherwise, the extracted ĈO
0,0 is neglected, and the

conventional Watson’s model is used to calculate the slacks
for detecting the watermark.

4.3 Proposed Artifacts Suppression Algorithm

To perform color watermarking, the proposed ASTDM ap-

proach embeds the watermark into the intensity component
of the cover image, rather than perform watermark embed-
ding in the red, green or blue component directly. This is
motivated by the fact that the correlations among the hue,
saturation and intensity components are much less than that
among the red, green and blue components [18]. However, a
slightly modification to the intensity component may cause
great color distortion in the watermarked image. For that,
an artifacts suppression algorithm is proposed as a post-
processing procedure to correct the possible color distortion
caused by watermark embedding.

The idea is to correct the intensity values, which have
been changed due to the watermark embedding operation,
according to the inherent constraint among the hue, satu-
ration and intensity components. This is motivated by that
both the hue and saturation components remain unchanged
during the watermark embedding procedure; thus, they are
considered as reliable.

Denote the normalized red, green and blue components
of the pixel (at the position (i, j)) are R(i, j), G(i, j) and
B(i, j), respectively. Further denote its corresponding hue,
saturation and intensity values are H(i, j), S (i, j) and I(i, j),
respectively. The upper bound of the intensity value I(i, j)
(denoted as IU(i, j)) is

IU(i, j) =

⎧⎪⎨⎪⎩ 2
S (i, j)+2 , if 2

3 < I(i, j) ≤ 1;

1, otherwise.
(37)

The detailed derivation of (37) is presented in Appendix.
Any intensity value, which exceeds the above upper bound
should be corrected. Furthermore, even after the correc-
tion of the intensity values, the transformation from the HSI
color space to the RGB space could also cause the result-
ing RGB values exceeding the bounds. Therefore, a nor-
malization operation is performed to clip those outstanding
RGB values as follows. If any value of the pixel’s red, green
or blue components (e.g., the red component at the posi-
tion (i, j), that is R(i, j)) is larger than 255, then it is set
to be 255; followed by shrinking its corresponding green
and blue components’ values as Ĝ(i, j) = 255

R(i, j)G(i, j) and

B̂(i, j) = 255
R(i, j) B(i, j), respectively.

The computational complexity of the proposed arti-
fact suppression method is discussed as follows in terms
of the numbers of comparisons, multiplications and addi-
tions. Suppose that the image has a size of n×n, of which K
pixels exceed the upper bounds (i.e., (37)) of intensity val-
ues, then O(n2) comparison operations need to be performed
for comparing the intensity of each pixel with its respective
upper bound. Furthermore, O(K) multiplications and O(K)
additions will be applied on K pixels that exceed the upper
intensity bound. In addition, if any of these K pixels has out-
standing RGB values, three extra multiplications are needed
to correct its RGB values (i.e., one multiplication for each
value of the RGB components).



MA et al.: ADAPTIVE SPREAD-TRANSFORM DITHER MODULATION
849

4.4 Summary of the Proposed ASTDM Watermarking Ap-
proach

Figure 1 illustrates an overview of the proposed ASTDM
approach, which has two modules: the embedding module
and the extracting module. Both of these two modules are
described in detail as below:

• The embedding module.

– Convert the cover image into the HSI color space
to obtain its intensity component for watermark
embedding.

– Divide the intensity component into disjoint 8 × 8
blocks, followed by performing the block DCT.
Next, the proposed new perceptual model is ex-
ploited to compute the slacks via (24), and the DC
coefficients are used to compute the mean inten-
sity information that will be embedded into the
cover image.

– Use the ASTDM embedder to embed the water-
mark, together with the mean intensity informa-
tion, into the DCT coefficients of the intensity
component of the cover image. Next, apply the in-
verse DCT to the watermarked DCT coefficients.

– Apply the proposed color artifact suppression al-
gorithm to remove any artifacts incurred due to the
watermark embedding operation and then convert
the image back to the original format.

• The watermarked image may receive certain attacks
during the transmission before reaching the receiver.
• The extracting module.

– Convert the received watermarked image into the
HSI color space to obtain its intensity component
for watermark extracting.

– Divide the intensity component into disjoint 8 × 8
blocks, followed by performing block DCT. Next,
extract the mean intensity information, and the
proposed perceptual model is exploited to com-
pute the slacks via (24).

– Use the ASTDM detector to extract the watermark

Fig. 1 Overview of the proposed ASTDM approach.

from the DCT coefficients of the intensity compo-
nent of the received watermarked image.

5. Experimental Results

Experiments are conducted to compare the proposed
ASTDM approach with the conventional STDM ap-
proach [3], plus Li and Cox’s approach [12]. 500 images that
are selected from Corel database [17] (including Buildings,
Flowers, Elephants, Food, Mountains and Portraits images)
are used as the cover images (as shown in Fig. 2), and a bi-
nary image Runner with a size of 60×60 is used as the water-
mark to be embedded into the cover image. Each watermark
algorithm performs an 8× 8 block DCT on the cover image,
then selects 20 DCT coefficients (from the 2-nd to the 21-st
zig-zag-scanned DCT coefficients) from each block to form
a host vector, followed by embedding one bit watermark into
this host vector. The embedding positions are crucial to the
transparency performance of the watermarking algorithm,
the above selection (i.e., from the 2-nd to the 21-st zig-zag-
scanned DCT coefficients) is experimentally determined in
this paper and has been proved to yield fairly good trans-
parency performance. The private key is generated from a
Gaussian distribution with zero mean and variance of 16.

5.1 Transparency Performance

Two image quality measures—PSNR and Structural Simi-
larity (SSIM) [19] are used to evaluate the transparency per-
formance of various watermarking approaches. The SSIM
measurement is fairly consistent with the perceptual assess-
ment. Note that a larger SSIM value indicates a better im-

Fig. 2 Selected images from Corel database used as cover images in the
experiments (This is a color figure): From the left to the right: Baboon,
Lena, Pills and Watch.
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age quality. To demonstrate how the proposed ASTDM ap-
proach can adaptively adjust the embedding strength accord-
ing to our proposed perceptual model, we let our approach
produce a watermarked image that yields a same (or nearly
same) SSIM performance as that of the conventional STDM
approach, plus Li and Cox’s approach [12]. More specif-
ically, the modification factor λ (see (34) in the proposed
ASTDM approach) and the quantization step size � (see (8)
in the conventional STDM approach) are carefully adjusted
to make their resulting watermarked image approximately
yield equal SSIM performance as 0.982.

The first experiment compares the averaged quantiza-
tion steps between the conventional STDM approach and the
proposed ASTDM approach, as presented in Table 1. The
proposed approach yields larger quantization step sizes than
that of the conventional STDM approach; consequently, the
proposed approach yields a higher robustness performance

Table 2 Transparency performance comparison.

Image
Conventional STDM approach [3] Li and Cox’s approach [12] Proposed ASTDM approach
� SSIM PSNR λ SSIM PSNR λ SSIM PSNR

Baboon 1450 0.9829 38.21 dB 0.86 0.9827 37.84 dB 0.9 0.9826 37.53 dB
Lena 800 0.9828 42.17 dB 0.85 0.9825 42.23 dB 0.9 0.9826 41.60 dB

Fig. 3 Various watermarked images (This is a color figure): (a) the conventional STDM approach [3]
(� = 1450); (b) Li and Cox’s approach [12] (λ = 0.86); (c) the proposed ASTDM approach (λ = 0.9);
(d) the conventional STDM approach [3] (� = 800); (e) Li and Cox’s approach [12] (λ = 0.85); (f) the
proposed ASTDM approach (λ = 0.9).

against certain attacks. This is due to the fact that a larger
quantization step size indicates a higher robustness perfor-
mance against certain attacks [3].

The second experiment compares the PSNR and SSIM
performance (see Table 2) and the watermarked images (see

Table 1 The comparison of the averaged quantization steps, which are
carefully tuned so that their resulting watermarked images approximately
yield equal SSIM performance as 0.982.

Test image
Conventional Proposed

STDM approach [3] ASTDM approach
Baboon 1450 1746

Lena 800 913
Pills 800 1100

Watch 700 984

Averaged over
938 1186500 test images
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Fig. 4 The histogram of the quantization step sizes of the proposed ASTDM approach (λ = 0.9):
(a) Baboon; (b) Lena; (c) Pills; and (d) Watch.

Fig. 5 The proposed ASTDM approach can adaptively adjust the quantization step sizes according to
the image’s content to achieve that the watermarked image has the same transparency performance (in
terms of the SSIM performance [19]): (a) the average quantization step sizes of the proposed ASTDM
approach using various modification factors λ; (b) the SSIM [19] performance of the proposed ASTDM
approach using various modification factors λ.

Fig. 3) of the above three approaches using Baboon and
Lena. The proposed ASTDM approach yields an inferior
PSNR performance than that of the conventional STDM ap-
proach. This is due to the fact that the proposed ASTDM

approach is able to automatically enhance the embedding
strength in the areas that could not be easily distinguished by
human eyes, so that the PSNR of these areas is lower than
that in the conventional STDM algorithm. Consequently,
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Fig. 6 Various watermarked images (This is a color figure): (a) original Baboon image; (b) the water-
marked image using the proposed ASTDM approach; (c) applying the proposed color artifact suppres-
sion method on the image (b); (d)-(f) are the zoomed parts of images (a)-(c), respectively; (g) original
Lena image; (h) the watermarked image using the proposed ASTDM approach; (i) applying the pro-
posed color artifact suppression method on the image (h); (j)-(l) are the zoomed parts of images (g)-(i),
respectively.

the proposed ASTDM approach is able to provide a higher
embedding strength than the conventional STDM algorithm,
while achieving same SSIM performance. One can also see
that λ of Li and Cox’s approach [12] is lower than that of
our approach when they yield nearly equal SSIM perfor-
mance. Since lower λ indicates lower embedding strength, it
is proved that Li and Cox’s approach [12] increases the pre-
cisely calculated slack values of original Waston’s model in
embedding procedure which will result in an inferior water-

mark transparency.
The third experiment aims to demonstrate that the pro-

posed ASTDM approach is able to adjust the quantization
step sizes according to the cover image’s content. This is
in contrast to that the conventional STDM approach applies
a fixed quantization step size for the whole image. Figure 4
presents the histograms of step sizes for Baboon, Lena, Pills
and Watch images. Furthermore, the proposed ASTDM ap-
proach can automatically adjust the quantization step sizes
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(see Fig. 5 (a)) according to the image content, while main-
taining an equal transparency (see Fig. 5 (b)).

The fourth experiment is to demonstrate the perfor-
mance of the proposed color artifact suppression algorithm,
by comparing the watermarked images of the proposed
ASTDM approach with the incorporation of the proposed
color artifact suppression algorithm and that of the proposed
ASTDM approach without the incorporation of the proposed
color artifact suppression algorithm, as presented in Fig. 6.
In this experiment, the watermarked image is obtained as
follows. The proposed ASTDM approach selects 20 DCT
coefficients (specifically, from the 2-nd to the 21-st zig-zag-
scanned DCT coefficients) in each 8 × 8 DCT block to form
a host vector and embeds one bit into this host vector, with
λ = 0.92. As seen from Fig. 6, there are some color distor-
tions (black spots) in the nose area of Baboon in Fig. 6 (b),
while these artifacts can be removed by the proposed color
artifact suppression algorithm as shown in Fig. 6 (h). Like-
wise, the above conclusion is also applicable to the hair area
of Lena (see Fig. 6 (c) and (i)).

5.2 Robustness Performance

Experiments are conducted to demonstrate the robustness
performance of the three watermarking algorithms against
various attacks in 500 cover images: (i) the amplitude scal-
ing attack; (ii) the JPEG compression attack; (iii) the addi-
tive white Gaussian noise attack and (iv) the Salt and Pepper
noise attack.

• Amplitude scaling attack: The amplitudes of the wa-
termarked image are scaled by a scaling factor, which
varies from 0.1 to 2.0 with a step 0.1. In addition, to
provide the subjective performance comparison, Fig. 7
demonstrates the detected watermarks from Lena for
the cases that the amplitude scaling factors are β = 0.6
and β = 1.4, respectively. As seen from this figure, the
proposed ASTDM approach can provide a better de-
tected watermark (in terms of visual quality) than the

Fig. 7 Various extracted watermark images that are extracted from the
amplitude scaling attacked image: (a) original watermark; (b) conventional
STDM approach [3] (β = 0.6); (c) Li and Cox’s approach [12] (β = 0.6);
(d) proposed ASTDM approach (β = 0.6); (e) conventional STDM ap-
proach [3] (β = 1.4); (f) Li and Cox’s approach [12] (β = 1.4); (g) proposed
ASTDM approach (β = 1.4).

conventional STDM approach (in all range), plus Li
and Cox’s approach [12] (when scaling factor is larger
than 1.0). This justifies that our proposed ASTDM ap-
proach can better resist amplitude scaling attack while
maintaining the consistence to the properties of the
HVS.
• JPEG compression attack: The watermarked image

is compressed using the JPEG compression algorithm
with different quality factors (QFs), which varies from
40 to 100 with a step 5. Note that a large QF value
indicates a low compression ratio. For example, a 100
QF value indicates that a lossless JPEG compression is
performed.
• Additive white Gaussian noise attack: The water-

marked image is added with an additive white Gaus-
sian noise with a zero mean and a variance that varies
from 0.5 to 6 with a step 0.5.
• Salt and Pepper noise: The watermarked image’s pix-

els are randomly corrupted by two fixed extremal val-
ues, 0 and 255 that are generated with the same prob-
ability ρ/2, where ρ represents the noise ratio and it
varies from 0.5% to 6% with a step 0.5%.

In each experiment, the normalized cross-correlation
(NC) between the original watermark (denoted as m) and
the detected watermark (denoted as m̂) is computed to pro-
vide the objective performance comparison. The NC perfor-
mance is defined as

NC =

∑N
i=1 mi × m̂i√∑N

i=1 m2
i ×

√∑N
i=1 m̂2

i

, (38)

where N represents the length of the watermark, mi and
m̂i represent the i-th components of the watermark and the
extracted watermark, respectively. Figure 8 compares the
NC performance of three algorithms for the above four at-
tack experiments, using the mean value from the experi-
ment results of 500 images. As seen from Fig. 8, the pro-
posed ASTDM approach always outperforms the conven-
tional STDM approach, plus Li and Cox’s approach [12] by
achieving higher NC performance when the watermarked
image is attacked with various attacks.

5.3 Computational Complexity

A discussion is provided in this section to compare the com-
putational complexity of the proposed approach with that
of the conventional STDM approach and Li and Cox’s ap-
proach [12].

• Compared to the conventional STDM algorithm, Li and
Cox’s approach [12] needs to perform an extra multi-
plication for computing the luminance mask value (see
(19)); that is, the total additional computational burden
is O(M) multiplications. On the other hand, the pro-
posed approach also needs to perform an extra multi-
plication for computing the luminance mask value (see
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Fig. 8 The average NC performance comparisons of the conventional STDM approach [3], Cox’s
approach [12] and the proposed ASTDM approach over 500 images from Corel database using various
attacks: (a) amplitude scaling attack; (b) JPEG compression attack; (c) additive white Gaussian noise
attack; (d) Salt and Pepper noise attack.
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(24)); that is, the total additional computational bur-
den is O(M) multiplications. To summarize, both Li
and Cox’s approach and the proposed approach yield
an extra O(M) multiplications, compared with the con-
ventional STDM approach.
• Compared with Li and Cox’s approach [12], the addi-

tional computations incurred in the proposed approach
are:

– The proposed approach needs to calculate the
mean intensity CO

0,0 that needs O(n) additions,
since the mean intensity values of each block is
pre-calculated as C0,0.

– The proposed approach needs to perform the color
artifacts suppression operation. Its computational
load has already been discussed in the last para-
graph in Sect. 4.3.

6. Conclusions

In this paper, a new perceptual model is proposed and in-
corporated into the conventional STDM framework to de-
velop an ASTDM approach for conducting robust color im-
age watermarking. Our proposed new perceptual model
improves the conventional Watson’s model by developing
a new luminance masking function to resist the amplitude
changes, while keeping the consistence to the properties of
the HVS. Our proposed new perceptual model is further ex-
ploited to adaptively adjust the quantization step sizes for
performing watermark embedding, which is contrast to that
a fixed quantization step size is utilized in the conventional
STDM approach. In addition, a color artifact suppression
algorithm is proposed to remove the artifacts that could be
presented in the watermarked image. Extensive experiments
are conducted to show that the proposed ASTDM approach
yields superior transparency performance to that of several
state-of-the-art approaches, and provides more robust per-
formance against various attacks, as verified in our exten-
sive experiments using 500 images selected from the Corel
database.
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Appendix: Derivation of (37)

Denote the normalized red, green and blue components of
the pixel (at the position (i, j)) of the color image are R(i, j),
G(i, j) and B(i, j), respectively. Further denote its corre-
sponding hue, saturation and intensity values are H(i, j),
S (i, j) and I(i, j), respectively. The relationship among the
above red, green, blue components and their corresponding
hue, intensity and saturation values can be mathematically
expressed as [18]

S (i, j) = 1 − 3 ×min(R(i, j),G(i, j), B(i, j))
R(i, j) +G(i, j) + B(i, j)

, (A· 2)

I(i, j) =
R(i, j) +G(i, j) + B(i, j)

3
. (A· 3)
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H(i, j) = cos−1

⎧⎪⎪⎨⎪⎪⎩
1
2 [(R(i, j) −G(i, j)) + (R(i, j) − B(i, j))]√

(R(i, j) −G(i, j))2 + (R(i, j) − B(i, j))(G(i, j) − B(i, j))

⎫⎪⎪⎬⎪⎪⎭ . (A· 1)

Substituting (A· 3) into (A· 2), we have

S (i, j) = 1 − 3 ×min(R(i, j),G(i, j), B(i, j))
R(i, j) +G(i, j) + B(i, j)

= 1 − min(R(i, j),G(i, j), B(i, j))
I(i, j)

. (A· 4)

The objective is to derive the upper bound (i.e., (37)) for
each pixel’s intensity values of the color image, according
to its inherent relationship with its corresponding hue and
saturation values (i.e., (A· 4)). Now we analyze the bound
for the following two cases I(i, j) ≤ 2

3 and 2
3 < I(i, j) < 1,

respectively.
First, for the case I(i, j) ≤ 2

3 , we have R(i, j)+G(i, j)+
B(i, j) ≤ 2. Therefore, the pixel’s any red, green or blue
component could yield a value of 0; that is

min(R(i, j),G(i, j), B(i, j)) ≥ 0, (A· 5)

where the equality is achieved for the case that anyone of
R(i, j),G(i, j), B(i, j) is zero. Substituting (A· 5) into (A· 4),
we have,

S (i, j) = 1 − 3 ×min(R(i, j),G(i, j), B(i, j))
R(i, j) +G(i, j) + B(i, j)

≤ 1 − 3
R(i, j) +G(i, j) + B(i, j)

× 0

= 1. (A· 6)

On the other hand, according to (A· 3), we have

min(R(i, j),G(i, j), B(i, j)) ≤ R(i, j) +G(i, j) + B(i, j)
3

= I(i, j), (A· 7)

where the equality is achieved for the case that R(i, j) =
G(i, j) = B(i, j). Substituting (A· 7) into (A· 4), we have

S (i, j) = 1 − 3 ×min(R(i, j),G(i, j), B(i, j))
R(i, j) +G(i, j) + B(i, j)

≥ 1 − 3
R(i, j) +G(i, j) + B(i, j)

× I(i, j)

= 1 − 3 × (R(i, j) +G(i, j) + B(i, j))
(R(i, j) +G(i, j) + B(i, j)) × 3

= 0. (A· 8)

Referring to (A· 6) and (A· 8), the saturation value S (i, j)
always belongs to the range [0, 1]. Therefore, there is no
need to correct the intensity value in this case.

Second, for the case 2
3 < I(i, j) < 1, we have R(i, j) +

G(i, j) + B(i, j) > 2. Therefore, the pixel’s all red, green or
blue components must yield a non-zero value; that is

min(R(i, j),G(i, j), B(i, j)) ≥ 3I(i, j) − 2, (A· 9)

where the equality is achieved for the case that any two of
R(i, j),G(i, j), B(i, j) equal to one. Substituting (A· 9) into
(A· 2), we have,

S (i, j) = 1 − 3 ×min(R(i, j),G(i, j), B(i, j))
R(i, j) +G(i, j) + B(i, j)

≤ 1 − 3
R(i, j) +G(i, j) + B(i, j)

× (3I(i, j) − 2)

= 2

(
1

I(i, j)
− 1

)
. (A· 10)

Furthermore (A· 10) can be rewritten as

I(i, j) ≤ 2
S (i, j) + 2

. (A· 11)

On the other hand, according to (A· 3), we have

min(R(i, j),G(i, j), B(i, j)) ≤ R(i, j) +G(i, j) + B(i, j)
3

= I(i, j), (A· 12)

where the equality is achieved for the case that R(i, j) =
G(i, j) = B(i, j). Substituting (A· 12) into (A· 2), we have

S (i, j) = 1 − 3 ×min(R(i, j),G(i, j), B(i, j))
R(i, j) +G(i, j) + B(i, j)

≥ 1 − 3
R(i, j) +G(i, j) + B(i, j)

× I(i, j)

= 1 − 3 × (R(i, j) +G(i, j) + B(i, j))
(R(i, j) +G(i, j) + B(i, j)) × 3

= 0. (A· 13)

Finally, to summarize the analysis in the above two
cases, the only constraint imposed on the intensity values
is (A· 11) for the second case. Therefor, the upper bound of
the intensity value (denoted as IU

max(i, j)) as

IU(i, j) =

⎧⎪⎨⎪⎩ 2
S (i, j)+2 , if 2

3 < I(i, j) ≤ 1;

1, otherwise.
(A· 14)
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