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A Fast Ray-Tracing Using Bounding Spheres and Frustum Rays
for Dynamic Scene Rendering

Ken-ichi SUZUKI†a), Member, Yoshiyuki KAERIYAMA††, Kazuhiko KOMATSU†††, Nonmembers,
Ryusuke EGAWA†††, Nobuyuki OHBA††††, and Hiroaki KOBAYASHI†††, Members

SUMMARY Ray tracing is one of the most popular techniques for gen-
erating photo-realistic images. Extensive research and development work
has made interactive static scene rendering realistic. This paper deals with
interactive dynamic scene rendering in which not only the eye point but also
the objects in the scene change their 3D locations every frame. In order to
realize interactive dynamic scene rendering, RTRPS (Ray Tracing based
on Ray Plane and Bounding Sphere), which utilizes the coherency in rays,
objects, and grouped-rays, is introduced. RTRPS uses bounding spheres as
the spatial data structure which utilizes the coherency in objects. By using
bounding spheres, RTRPS can ignore the rotation of moving objects within
a sphere, and shorten the update time between frames. RTRPS utilizes the
coherency in rays by merging rays into a ray-plane, assuming that the sec-
ondary rays and shadow rays are shot through an aligned grid. Since a pair
of ray-planes shares an original ray, the intersection for the ray can be com-
pleted using the coherency in the ray-planes. Because of the three kinds
of coherency, RTRPS can significantly reduce the number of intersection
tests for ray tracing. Further acceleration techniques for ray-plane-sphere
and ray-triangle intersection are also presented. A parallel projection tech-
nique converts a 3D vector inner product operation into a 2D operation
and reduces the number of floating point operations. Techniques based on
frustum culling and binary-tree structured ray-planes optimize the order of
intersection tests between ray-planes and a sphere, resulting in 50% to 90%
reduction of intersection tests. Two ray-triangle intersection techniques are
also introduced, which are effective when a large number of rays are packed
into a ray-plane. Our performance evaluations indicate that RTRPS gives
13 to 392 times speed up in comparison with a ray tracing algorithm with-
out organized rays and spheres. We found out that RTRPS also provides
competitive performance even if only primary rays are used.
key words: computer graphics, ray tracing, intersection test, bounding
volume, bounding sphere

1. Introduction

Ray tracing is an image rendering method based on the
global illumination model, and it can generate photo-
realistic images for many applications, such as product de-
sign, architecture, and entertainment. Ray tracing, however,
requires a huge number of computations for intersection
tests between rays and objects. In order to make the ray
tracing faster, the spatial coherency of objects and rays has
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been exploited.
The first spatial coherency is in objects in 3D space.

Because objects in a scene do not exist with a constant den-
sity but concentrate in some small areas, they can be merged
into a smaller number of groups. The number of intersec-
tion tests between objects and rays can be reduced by us-
ing the groups instead of the individual objects. The group-
ing of objects can be done by using space-subdivision tech-
niques or bounding volumes. The former is known as kd-
tree [1]–[6], uniform grid [7]–[9], and octree [10]. The lat-
ter is known as axis aligned bounding box [11] and oriented
bounding box [12].

The second one, coherency in rays, has also been uti-
lized, including beam-tracing [13], cone-tracing [14], and
pencil-tracing [15]. Frustum ray-casting algorithms [16],
[17] and a ray-packet technique [18] have also been pre-
sented. In these studies, rays are merged into a set of rays,
exploiting the similarity in nearby rays. Because of the sim-
ilarity, those rays in a set can share the spatial data structure
and possible intersecting object data, resulting in a shorter
calculation time.

Recently, using the coherency in objects and rays,
Reshetov et al. [19] realized interactive static scene render-
ing. The term static means that the objects do not change
their 3D locations in a series of frames, and only the eye
point may move in the static object space.

However, the interactive static scene rendering has
been available only for ray-tracing with primary rays (a.k.a.
FHRT; First-Hit Ray Tracing). Then, the next challenge
should be interactive dynamic scene ray tracing, where both
the eye point and the objects move between frames, using
secondary rays for photo-realistic effects. The secondary
rays here include super-sampling rays at a diffuse surface
and shadow rays from a light source∗ as well as the reflec-
tive/refractive rays. Since most of the scenes in the world
have plenty of diffuse surfaces and light sources, rendering
of such a scene uses a huge number of secondary rays as
shown in Fig. 1.

The difficulty in rendering a dynamic scene comes
from the update cost of spatial data structure. In a dynamic
scene, a lot of objects can change their locations, and there-
fore the spatial data structures cannot be reused but updated

∗Although the shadow rays are not actually ’secondary,’ but we
treat in this paper any rays other than primary rays directly from the
eye point as secondary rays.
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Fig. 1 Rays used in the ray-tracing process.

every frame. However, the conventional methods for static
scene rely upon the reusability of the spatial data structure,
and it takes a very long time to re-calculate the structure
even if only a small number of objects move. Since the total
rendering time is the sum of the update time of the spatial
data structure and the rendering time per frame, a spatial
data structure with low update cost is necessary.

Fast rendering using secondary rays is not easy, be-
cause the secondary rays have less spatial coherency than
the primary ones. As shown in Fig. 1, from the eye point,
the primary rays are shot to the screen. Therefore, the direc-
tion vectors of the nearby primary rays are quite similar and
suitable for forming a group (e.g. ray-packet). On the other
hand, secondary rays, especially the rays from a diffuse sur-
face, are sometimes radiated approximately in the range of
180 degrees. For utilizing the coherency from the secondary
diffuse rays, another ray grouping technique is required.

In this paper, we present a ray tracing scheme named
RTRPS (Ray Tracing based on Ray-Plane and bounding
Sphere) for dynamic scene rendering with a number of sec-
ondary rays. RTRPS uses bounding spheres for cluster-
ing the objects, considering the update cost between frames
for dynamic scene rendering. As we discuss in Sect. 2.1,
spheres can ignore the rotation of the objects in it, result-
ing in a shorter update time. In order to intensively exploit
the spatial coherency of secondary diffuse rays, RTRPS as-
sumes that the secondary rays are shot to a grid plane and
builds a ray-plane from a series of rays. The produced ray-
planes have a characteristic that a pair of orthogonal ray-
planes can reproduce an original ray. From this characteris-
tic, we can extract another coherency from the grouped rays,
inter-ray-group coherency, which can reduce the number of
intersection tests between rays and objects.

Note that, because it is difficult to build a ray-plane for
the reflection/refraction rays due to their individual direc-
tions, RTRPS does not contribute to the speedup of the re-
flection/refraction processing. However, the number of re-
flection/refraction rays does not increase at the intersection
points, resulting in the smaller total number of rays than that
of diffuse rays.

This paper is organized as follows. Section 2 describes
the concept of RTRPS using a spatial data structure con-

sisting of bounding spheres and ray-planes for ray cluster-
ing. Section 3 presents further acceleration techniques for
RTRPS. Section 4 shows the performance evaluations. In
Sect. 5, we conclude the paper with a summary of contribu-
tions.

2. RTRPS: Ray Tracing Based on Ray-Plane and
Bounding Sphere

RTRPS has two distinctive features to achieve fast dynamic
scene rendering with a number of secondary rays. The first
is using bounding spheres as the spatial data structure and
the second is building ray-planes from the radiated rays.

2.1 Bounding Spheres for Spatial Data Structure

Pre-computed spatial data structures are very useful for fast
image rendering in static scenes, because they can elimi-
nate a number of intersection tests between rays and objects
based on the spatial coherency of objects, and can be reused
for every frame. However, in the dynamic scene rendering,
objects in a scene can move every frame, and therefore the
pre-computed structure cannot be reused but must be up-
dated. For this reason, in dynamic scenes, the update time
between frames has a significant effect on the total time, as
well as the rendering time in a frame.

The spatial data structures are categorized into two
classes, space-subdivision and bounding volume. The for-
mer includes kd-tree, uniform grid and octree. For the lat-
ter, bounding boxes are commonly used. Havran et al. [20]
evaluated the update time for various spatial data struc-
tures under the same condition, and showed that, for a
shorter update time, the bounding volume techniques are
better than the space-subdivision techniques. Therefore, we
choose the bounding volume as a spatial data structure of
dynamic scene rendering, rather than the space-subdivision
techniques.

Bounding box and bounding sphere are well-known as
simple bounding volumes. Although the bounding boxes are
commonly used [11], [12], [21]–[28], RTRPS uses bounding
spheres for the bounding volume. There are two reasons
for this choice. The first reason is that the bounding sphere
can ignore the rotation of the objects inside, resulting in a
shorter update time. The second is that the intersection test
between a bounding sphere and ray-plane, which will be
discussed in the next subsection, can be simple. The rest
of this subsection discusses the first reason, update time of
bounding boxes and spheres.

The movement of an object can be classified
based on the degree of freedom (DOF) as follows:

(i) Translation (3 DOF)
(ii) Rotation (3 DOF)
(iii) Homothetic Transformation (1 DOF)
(iv) Affine Transformation (5 DOF)
(v) Projective Transformation (3 DOF).

If the movement of objects consists only of translation
(i: 3 DOF), a bounding box containing the objects can be up-
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dated simply by the relocation of its position vector. How-
ever, when the movement of objects includes both transla-
tion and rotation (i and ii: 6DOF), the width and height of
the bounding box must be updated in addition to the trans-
lation of the bounding box. On the other hand, by using
the bounding spheres, even in the case of (i and ii), only the
translation of the sphere is necessary.

In this paper, we focus on the dynamic scenes contain-
ing above (i) and (ii) of object movement. Although these
scenes do not handle the expansion and shrink of an object,
most of typical dynamic scenes can be covered. The data
structure using bounding spheres can be updated by a single
affine transformation of the center of spheres, resulting in
much shorter update time than those using bounding boxes
and space-subdivision scheme.

2.2 Grouping the Rays into a Plane

Faster ray tracing has been achieved by exploiting the co-
herency in objects and rays. RTRPS utilizes the coherency
in objects by using bounding spheres as a spatial data struc-
ture mentioned in the previous subsection. The coherency
in rays is also utilized by building a ray-plane from the pri-
mary and secondary rays.

Many researchers have used a group of rays instead
of handling individual rays [13]–[18] for utilizing the co-
herency in rays. However, simply using the groups of rays
is not enough to reach our goal, interactive dynamic scene
rendering with many secondary rays. In order to achieve
a breakthrough, RTRPS assumes that the rays are radiated
to a grid plane facing to the origin of the ray. Figure 2
shows an example of this assumption. Since the rays are
radiated to the grid point, a row of rays can be merged into
a ray-plane. The ray-planes form a row-plane group and a
column-plane group orthogonal each other. The characteris-
tic of ray-planes is that each set of a row-plane and column-
plane shares an original ray, which has the coherency be-
tween ray-groups, i.e. inter-ray-group coherency. This kind
of coherency has never been exploited in the conventional
ray grouping techniques. Utilizing the inter-ray-group co-
herency, for N × N rays, 2N intersection tests are enough
as shown in Fig. 2. Here, note that the inter-ray-group co-
herency can be utilized in addition to any acceleration meth-
ods available for frustums or cones, such as frustum culling.
The acceleration techniques for the intersection test of ray-
planes are presented in Sect. 3.

Because RTRPS uses bounding spheres for clustering
objects, the intersection test procedure between a plane and
sphere is essential. As shown in Fig. 3, let the center of a
sphere be c, the radius of the sphere r, a representative point
on the plane p0, and the normal vector of the plane n. Then
the arbitrary point p on the plane is given by the following
equation:

n · (p−p0) = 0 ⇔ n ·p+ pw = 0

where pw = −n ·p0. The distance between the plane and the
center of the sphere c can be calculated by

Fig. 2 Intersection test procedure of ray-planes and a bounding sphere.

Fig. 3 Intersection test between a plane and sphere.

d = |n · c+ pw| (1)

If d < r, the plane and bounding sphere intersect with each
other. Here, note that pw has a fixed value when the ray-
plane is built, and it can be reused for all the spheres. It
means that a plane-bounding-sphere intersection test can
be completed by only one vector inner product calculation
and a subtraction (eventually it can be just a single 2D in-
ner product as shown in Sect. 3.1.1). On the other hand, a
plane-bounding-box intersection test requires many condi-
tional branches and becomes complicated, which has moti-
vated us to use bounding-spheres and ray-planes, rather than
bounding-boxes and ray-frustums.

2.3 Procedures of RTRPS

Algorithm 1 shows the RTRPS processing pseudo code to
render a frame. Each sphere takes the affine transformation
as discussed in Sect. 2.1. Then, until a given reflection depth
in the frame is reached†, ray-plane generation and intersec-

†For example, in the case of classic ray-tracing [29], the initial
rays shot from the eye point to the screen pixels have intersection
tests with the objects. If some of the initial rays actually hit re-
flective objects, the secondary rays representing the reflection are
generated, where the original intersection points become the new
ray origins. These processes are performed for each ray origin and
repeated until the number of maximum reflection depth is reached.
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Algorithm 1 Frame Processing in RTRPS
1: procedure FrameProcessing
2: For each sphere s in spherelist
3: Perform affine transformation for sphere s.
4: end
5: for d← 1,maxdepth do
6: For each origin o in originlist of depth d
7: f rustum = GenerateRayPlane(o)
8: For each sphere s in spherelist
9: Intersection( f rustum, s)

10: end
11: end
12: end
13: end procedure

tion tests are repeatedly performed.
GenerateRayPlane() firstly creates the rays radiated

from each ray origin. Note that, in the rendering process
of high quality images, a number of rays must be shot from
the ray origin because of super-sampling (not only for the
primary ray from the eye point), as shown in Fig. 1. Sec-
ondary rays from a diffuse surface and sampling rays for
light source (i.e. shadow-rays) are the examples of such
super-sampling. As well as the primary rays from the eye
point, these super-sampling rays also share a single origin.
In RTRPS, assuming that all the rays sharing an origin are
aligned to the uniform grid facing the origin as illustrated
in Fig. 2, we can exploit another kind of coherency of rays.
This assumption makes it possible to merge a series of rays
into a plane in order to reduce the number of intersection
tests. Then, GenerateRayPlane() groups a series of rays
in a row into a ray-plane as shown in Fig. 2 (a). The gen-
erated set of ray-planes sharing an origin is called frustum
(Fig. 2 (b)). Since the frustum is formed for a uniform grid,
the generated frustum contains two sets of planes orthogo-
nal to each other. We hereafter refer to these two sets as
“row planes” and “column planes.” We do not have to dis-
tinguish which is row or column without losing generality.
Although the grid-aligned rays may cause some artifacts in
generated images, this kind of artifacts would not be signif-
icant as shown in the generated images in Sect. 4. Further
evaluation of the effect of these artifacts is for future works.

For each frustum and sphere, Intersection() performs
intersection tests (Fig. 2 (c)). If it finds an intersection be-
tween the ray-planes and a sphere, the intersection tests
between the ray, which is reproduced from the intersected
ray-planes (Fig. 2 (d)), and the objects in the sphere are car-
ried out, finally updating the frame buffer values. Because
Intersection() is repeatedly executed for each frustum and
sphere, it is the most time-consuming function in RTRPS.
The next section shows the techniques for making this func-
tion faster.

3. Acceleration Techniques for RTRPS

As shown in the previous section, the processing in a frame
basically consists of three procedures: the affine trans-
formation of spheres, GenerateRayPlane() and Intersec-

Algorithm 2 Intersection Test in RTRPS
1: procedure Intersection(frustum f , sphere s)
2: For each plane rp in f .rowPlanes
3: Calculate the distance between rp and the center of s.
4: If the distance is less than the radius of s, mark rp as hit.
5: end
6: For each plane cp in f .columnPlanes
7: Do the same as for rp.
8: end
9: For each sphere rp in f .rowPlanes

10: For each sphere cp in f .columnPlanes
11: if Both rp and cp are marked as hit then
12: For each trinangle tri in sphere s
13: Check intersection between tri and the ray r
14: reproduced from cp and rp
15: end
16: end if
17: end
18: end
19: end procedure

tion(). Since, in these three procedures, Intersection() is
the most time-consuming, this section discusses five accel-
eration techniques for Intersection(). In the rest of this pa-
per, we assume that all the objects are represented as a set
of triangles.

Algorithm 2 shows the detailed processing in Intersec-
tion(), which takes a frustum f (including row planes and
column planes) and sphere s as arguments. Firstly, it checks
the intersection between all the row and column ray-planes
in f and s. The distance between a plane and the center of a
sphere is given by Eq. (1). If a pair of row and column planes
has an intersection with s, it means that the ray shared by
these planes can also intersect s and the intersection checks
are triggered between the triangles contained in the sphere
and that ray. We call hereafter this algorithm ’baseline.’

Because Intersection() is the most time-consuming in
RTRPS, we apply the following five acceleration techniques
to the baseline:

• For plane-sphere intersection

– Parallel projection technique (Sect. 3.1.1)
– Frustum culling technique (Sect. 3.1.2)
– Binary-tree plane technique (Sect. 3.1.3)

• For ray-triangle intersection

– Exploiting the shared ray origin (Sect. 3.2.2)
– Exploiting the aligned rays (Sect. 3.2.3)

These techniques are explained in the following sub-
sections in detail.

3.1 Plane and Sphere Intersection

3.1.1 Parallel Projection Technique

The baseline algorithm requires only one 3D vector inner
product calculation to obtain the distance between the plane
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Fig. 4 Ray-planes and a bounding sphere on the plane of projection.

and sphere. Furthermore, we can reduce the number of op-
erations in the distance calculation by using the parallel pro-
jection technique, which utilizes the property of row planes
and column planes such that they share a common line of
intersection.

This technique needs two modifications on the base-
line algorithm. The first modification is on GenerateRay-
Plane(), where the set of ray-planes (i.e. frustum) is pro-
jected onto the plane orthogonal to all the concerning ray-
planes, as shown in Fig. 4. Note that, for each frustum, two
projected planes, i.e., the row- and column-projected planes
exist. The second modification is on the distance calcula-
tion processed in Intersection() lines 3 and 7. Using the 2D
projected coordinate system, the distance between them can
be obtained by only one 2D vector inner product calcula-
tion, instead of a 3D inner product, because it can be done
by an intersection test between a line and a circle instead of
a plane and a sphere.

In order to implement the parallel projection technique,
all the planes and spheres must be affine-transformed into
the local coordinate system (vx, vy, vz, o∗) defined by the
grid and origin of the rays. The transformation matrix Tp is
calculated in GenerateRayPlane() for each ray origin. The
intersection test in the local coordinate system can be real-
ized by the following steps:

Step 1 Obtain the 2D normal vector n′ of the line (projected
plane). This step is done in GenerateRayPlane().

Step 2 Given the center of sphere c in the world coordinate,
the center of an affine-transformed sphere in the local
coordinate is obtained as c′ = Tpc. Depending on the
projected plane, one of the three elements of c′ can be
ignored in the plane. For example, in the case of Fig. 4,
the element for vy can be ignored and the other two
elements form the 2D position vector c′′ = (c′x, c′z).

Step 3 Calculate the distance of the line (projected plane)
and the center of the circle given by the equation d =
|n′ · c′′|, because pw in Eq. (1) becomes zero. If d < r,
the plane intersects the sphere.

Steps 2 and 3 are performed in Intersection().
The parallel projection technique can reduce the num-

ber of calculations by using 2D inner products instead of
3D one but introduces some extra calculations such as ob-
taining Tp, n′, and the affine transformation of c. The cal-

culations for Tp and n′ cause no problem, since they can
be obtained in GenerateRayPlane() which is executed only
once for each shared origin of rays. In contrast, the cost of
affine transformation of c may become a problem, because
it is performed for every sphere and frustum.

In order to clarify the calculation cost of the parallel
projection technique, we use the number of floating point
operations as the metric. We assume that the costs of a
floating-point addition and multiplication are the same and
equivalent to one flop (floating-point operation). The cost
for transformation of the center of a sphere is 18 flops per
sphere. The costs for an intersection test based on 3D inner
product and 2D inner product are six flops and three flops,
respectively. Therefore, given the number of ray-planes n in
a frustum, the computational cost for the plane-sphere inter-
sections is given by:

PlaneS phereCostbaseline = 6n [flops] (2)

PlaneS phereCostpro jected = 18+3n [flops] (3)

Equations (2) and (3) indicate that the projection technique
is effective when the number of ray-planes in a frustum ex-
ceeds 3× 3. When the primary rays (i.e. reflection depth
is one) are shot, the number of ray-planes in the frustum is
more than 100 × 100. For secondary rays, 16 × 16 or more
rays in common are radiated in distribution ray tracing and
photon mapping. Hence, the parallel projection technique
achieves great speedup on the baseline algorithm.

3.1.2 Frustum Culling Technique

The technique shown in Sect. 3.1.1 reduces the operations
within one intersection. The frustum culling technique re-
duces the number of intersection tests. This technique is
based on the fact that any sphere does not intersect with a
ray-plane if the sphere is located at outside of the outermost
plane in the frustum. The intersection tests for such a sphere
are not necessary.

We explain the culling technique in the projected 2D
space. Note that the planes forming the outline of a frustum
become the two lines in the 2D space. Figure 5 shows all
the cases of the relationship between a circle and outlines of
a frustum. The frustum culling test is performed for the two
outlines and a sphere by the following three steps.

Step 1 For each of the outlines, determine whether the
projected sphere (circle) intersects the projected plane
(line) or not, and obtain the sign of the distance be-
tween them (left side of Fig. 6).

Step 2 If the circle intersects either of the lines in Step 1,
check whether or not the intersection point of the two
outlines is encircled within the circle (right side of
Fig. 6).

Step 3 Based on the results of the tests in the above steps,
determine the cases 1 to 13 in Table 1. In the cases of
5, 6, 7, 8, 9 and 10, the rest of intersection tests with
the concerning sphere is unnecessary.
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Fig. 5 Relative locations of sphere and a frustum for culling.

Fig. 6 Test conditions for frustum culling.

Table 1 Results of the frustum culling test (Only the shaded cases
require actual intersection tests).

Using this technique, the redundant intersection tests
for spheres can be skipped.

3.1.3 Binary-Tree Plane Technique

In most of the ray tracers, each of the rays traverses the ob-
ject space and takes intersection tests by using a spatial data
structure. In our RTRPS, on the other hand, a ray-plane does
not traverse the object space directly. Instead, each sphere
takes intersection tests with the ray-planes in a frustum as
shown in Algorithm 1 lines 8-10, as if the object group (in
a sphere) traversed among the ray-planes. Then we can use
the last technique to reduce the number of intersection tests
presented in this paper, ’binary-tree plane technique.’ Based
on the binary-tree structured order, the sphere takes inter-
section tests with column or row ray-planes. Figure 7 shows
an example of such binary-tree structured ray-planes which
have already been projected to a 2D-plane by the parallel
projection technique. When an intersection test between a
projected line and a circle is completed, the sign of the dis-

Fig. 7 An example of binary-tree plane technique.

tance between them shows their spatial relationship, which
can be used to determine whether further intersection tests
are necessary or not.

In this technique, all the ray-planes within a frustum are
structured into a binary tree, such that the center plane (the
4th plane in the case of Fig. 7) is located on the root node.
The intersection test of a sphere and a frustum begins at the
root of the tree, and continues by traversing the tree. The
direction of the traversal is determined by the intersection
test result of the concerning plane and sphere, and the sign
of their distance, using the following simple rules:

Rule 1 When a plane intersects the sphere, both of the child
nodes must be traversed.

Rule 2 When it does not intersect, the sign of the distance
between the plane and sphere is examined. If positive,
traverse the tree to the right. Otherwise, traverse to the
left.

As shown in Fig. 7, using this simple technique, more
than half of the intersection tests of spheres and ray-planes
can be skipped, if we adequately set the size of spheres and
the density of the ray-planes. Especially, when the number
of planes per frustum is large, this technique is very effec-
tive.

Besides, the set of row/column ray-planes sharing an
origin can be implemented as an array, not a linked list, be-
cause they are built at once when the ray origin is given.
Then, the identifiers of the ray-plane array are rearranged
to form a binary tree. The same binary tree of identifiers
can be reused anytime as long as the number of ray-planes
in a frustum does not change. For instance, the number of
ray-planes for the diffuse rays from the intersection point is
usually given as a constant value at the beginning of render-
ing by the user. All the origins of diffuse rays can share a
single binary tree, and therefore the cost for creating binary
trees can be ignored.

3.2 Ray and Triangle Intersection

The following acceleration techniques are for the intersec-
tion calculation between rays and triangles. In the Inter-
section() function of RTRPS, the intersection of ray-planes
and a sphere is firstly checked and the intersected rays are
reproduced from the intersected ray-planes. After that, the
triangles in the sphere are examined if they intersect the re-
produced rays. This procedure means that the rays share the
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Fig. 8 Ray and triangle intersection test.

common origin, which can be exploited to accelerate the in-
tersection tests. Furthermore, RTRPS assumes that all the
rays are aligned to the grid in the local coordinate system,
which leads us to another acceleration technique.

In this section, most commonly used intersection test
technique presented by Möller [30] is briefly introduced,
and our two accelerated techniques, “common origin tech-
nique” and “aligned ray-plane technique,” follow.

3.2.1 Möller’s Intersection Technique

Our idea originates from the ray-triangle intersection test
proposed by Möller [30], which enhanced the original
method [31]. As shown in Fig. 8, the normalized ray vector
d and the origin of the ray o∗ are given. The triangle is rep-
resented by the location vector p0, edge vectors e1 and e2,
and normal vector e (= e1×e2). The intersection point in the
plane including the triangle can be represented by barycen-
tric coordinates (u, v), given by Eqs. (4a) to (4f).

p′0 = p0−o∗ (4a)

t′ = p′0 · e (4b)

w = d · e (4c)

g = d×p′0 (4d)

u′ = − g · e2 (4e)

v′ = g · e1 (4f)

where (t′, u′, v′) = (tw, uw, vw). If the following conditions
are all met, the triangle does intersect the ray†.

u′ ≥ 0, v′ ≥ 0, and u′+ v′ ≤ w (5)

This technique is well designed to begin the calcula-
tion of Eqs. (4a) and (4b) immediately after the ray origin
is given. Especially in the case of the primary rays radiated
from the eye point, p′0 and t′ for all the triangles can be cal-
culated in advance, because all the rays share a single ray
origin, i.e. the eye point. This pre-computed p′0 and t′ can
be used for all the rays repeatedly, reducing the number of
operations in Intersection(), the most intensively executed
function.

3.2.2 Common Origin Technique

In RTRPS, using the fact that all the rays in a frustum share
the common origin, we can accelerate the original Möller

technique. This calculation procedure, which was described
in our previous paper [32], is summarized below.

Using the rule of the scalar triple product, Eqs. (4e) and
(4f) can be transformed respectively as follows:

u′ = − g · e2 = − (d×p′0) · e2 = d · (−p′0× e2) (6a)

v′ = g · e1 = (d×p′0) · e1 = d · (p′0× e1) (6b)

Then, the whole intersection procedure becomes as follows:

p′0 = p0−o∗ (4a again)

t′ = p′0 · e (4b again)

w = d · e (4c again)

hu = − p′0× e2 (6c)

hv = p′0× e1 (6d)

u′ = d ·hu (6e)

v′ = d ·hv (6f)

In addition to Eqs. (4a) and (4b) of the Möller tech-
nique, Eqs. (6c) and (6d) can also be processed as soon as
the ray origin is provided. Although this technique can de-
crease the number of operations after d is given, the total
computation cost of the technique might be larger than the
original technique, because the computation of hu and hv
requires an excess vector product. We discuss the cost of
the computation in Sect. 3.2.4

3.2.3 Aligned Ray-Plane Technique

In RTRPS, all the rays are shot to the uniform grid facing
their origins. It means that all the rays contained in a ray-
plane have the same gradient to an axis of the local coordi-
nate system. We can use this characteristic for further accel-
eration of the intersection test.

Let us assume the local coordinate system (vx, vy, vz, o∗)
shown in Fig. 9. The grid, to which the rays are radiated, is
az away from o∗. A ray is shot to a point (ax,ay) on the grid
plane. Then, the ray direction vector d can be expressed as
follows:

d =
1
l

(axvx+ayvy+azvz) (7)

l =
√

ax
2+ay

2+az
2

From Eqs. (4c), (6e), (6f) and (7), u, v, w are described
as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′ =
1
l
{
(axvx+ayvy+azvz) ·hu

}

v′ =
1
l
{
(axvx+ayvy+azvz) ·hv

}

w =
1
l
{
(axvx+ayvy+azvz) · e}

. (8)

Here, let us see again the intersection condition given by
†t is used later to determine the closest triangle if multiple in-

tersected triangles exist.
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Fig. 9 ax, ay, az of the aligned ray technique.

Eq. (5), where u′ and v′ are checked simply greater than or
equal to zero, and the sum of u′ and v′ is compared with w.
Therefore, the parameter (1/ l) is not actually needed for the
intersection test, and we can just remove it:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u∗ = ax(vx ·hu)+ay(vy ·hu)+az(vz ·hu)

v∗ = ax(vx ·hv)+ay(vy ·hv)+az(vz ·hv)

w∗ = ax(vx · e)+ay(vy · e)+az(vz · e)

(8′)

In these equations, all the inner products can be calcu-
lated after the origin of the rays is fixed and the local co-
ordinate parameters are given. Furthermore, since the grid
plane can be given arbitrarily, we can set az = 1. Therefore,
immediately after the origin of the rays is given, the third
terms in Eq. (8′) can be calculated for all the triangles. Sim-
ilarly, all the rays forming a ray-plane share the same ax or
ay depending on whether it is a row plane or column plane.
Assuming that the ay is shared by the rays on a ray-plane,
the second term of Eq. (8′) can be processed as soon as the
ray-plane is given, and the addition of the second and third
terms can also be completed. Finally, after a ray in the ray-
plane is selected, only one multiplication and addition are
enough for each of u∗, v∗, w∗.

3.2.4 Comparing the Techniques

The common origin and aligned ray-plane techniques are
adopted to reduce the number of operations for individual
rays. These techniques attempt to shift the shared operations
among rays to the early phases of the process. However,
in the case where only few rays share the operations, these
techniques might degrade the performance.

Table 2 shows the number of floating-point operations
per triangle for the three intersection techniques. In Möller
technique and the common origin technique, the intersec-
tion test for a triangle is performed in two steps, immedi-
ately after the position of the ray origin is given, and after
all the parameters of a ray are given. Since the common ori-
gin technique shifts more operations to the first stage, it can
reduce the total number of floating-point operations when
the triangle is used in the intersection tests repeatedly with
many rays. In this case, the first stage operations can be
skipped. The third technique, aligned ray-plane technique,

Table 2 Floating point operations required for each triangle intersection.

Fig. 10 Number of floating point operations required for intersection test
between a frustum and triangle.

shifts further operations to the first stage and it has the inter-
mediate stage executed when the row or column ray-plane
is given. The more triangles are repeatedly used, the more
operations can be reduced with the third technique.

Figure 10 illustrates the number of floating point opera-
tions required for the intersection test between a triangle and
a frustum based on Table 2. The horizontal axis is the num-
ber of rays in a frustum. It obviously shows that if a frustum
has more than 2 × 2 rays, the aligned ray-plane technique
reduces the number of operations drastically.

In RTRPS, the best calculation technique is selected
dynamically for each frustum, according to the number of
rays in the frustum based on the results shown in Fig. 10. For
example, the primary rays shot to the screen from the eye
point are merged into frustums with a large number of rays,
resulting in the use of aligned ray-plane technique. How-
ever, if a ray intersects a specular surface, it produces a frus-
tum with a single ray, resulting in the use of the classical
Möller technique.

4. Performance Evaluations

We evaluate RTRPS from multiple viewpoints. Firstly, the
potential of grouping rays radiated to a uniform grid plane
is evaluated in the case of distribution ray tracing (DRT).
In DRT, both the primary rays from eye point and the sec-
ondary rays from intersection points are used. Next, the
effect of the frustum culling technique and the binary-tree
planes technique is discussed for the DRT. Finally, the to-
tal effectiveness of RTRPS is estimated for FHRT, because
most of the recent high speed ray tracers are optimized for
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Table 3 Scene conditions and generated images.

FHRT. Although RTRPS is not developed for FHRT but
for high quality image generation using secondary rays, we
will show that RTRPS achieves comparable performance to
the FHRT-optimized ones. Especially, considering the time
for the spatial structure update, which is mandatory for dy-
namic scene generation, RTRPS shows better performance
than the FHRT-optimized counterparts even in the case of
FHRT. Therefore, RTRPS is expected to be much more ef-
fective in high quality rendering of dynamic scenes which
requires tracing the secondary rays.

4.1 Experimental Environments

The ray tracing programs were written in Visual C++ .Net.
They run on a commodity PC with a 2.4 GHz Intel Core 2
Duo E6600 processor and 2 GB DDR2 800 MHz SDRAM
with MS Windows XP Professional SP2. To optimize the
programs for X86 processors, we used Intel C++ Compiler
Version 9.0, but note that SIMD and multi-thread operations
have not fully been exploited, because they need extensive
manual optimization. It means that there is further room of
optimization of RTRPS code for X86 processors. We used
single-precision floating-point calculations in the programs.
All rendering time in this paper does not include shading
time because we focus on the performance of intersection
techniques in this paper.

Five test scenes shown in Table 3 were used. The
spheres containing the triangles are built into a hierarchical
structure in each scene. The depth of the hierarchy is three,
and it is constructed by a simple script which makes inter-
mediate nodes based on the structures in the scene graph,
such as wheels, windows in the case of Z33 scene. Hence,
if a rigid part, a door for example, moves, we just apply an
affine transformation to the top-level or intermediate sphere
including the moving part. As shown in the table, each of
the leaf node sphere has, on average, only several triangles
in it, which means that the number of intersection tests be-
tween planes and spheres has a significant effect on the total
rendering time.

Also note that no optimization for the sphere hierarchy
has been made. Hence, further performance gain will be
obtained by optimizing the sphere hierarchy.

Table 4 shows the number of rays generated in distri-

Table 4 Number of generated rays for distribution ray tracing.

bution ray tracing for the five scenes. We used a packet in-
cluding 32 planes equivalent to a 16×16 ray-packet, which
means that RTRPS can reduce the number of ray-bounding-
box or plane-sphere intersection tests to 1/8 compared to
the conventional ray-packet methods using the same packet
size. Because distribution ray tracing requires a huge num-
ber of secondary rays, primary rays are less than 1 % of the
total number rays for all the scenes in Table 4.

4.2 Grouping Rays into a Plane

Merging rays into a packet or frustum has been reported
effective for fast ray tracing [18], [33]. The speedup has
been achieved by two reasons. The first reason is exploit-
ing the uniformity of ray processing in a frustum which well
matches the SIMD functionality of modern processors. The
second reason is high cache hit ratio caused by the locality,
i.e., the rays in a single frustum will likely need the intersec-
tion tests with almost the same set of triangles. RTRPS takes
these two advantages. In addition, RTRPS uses the plane-
sphere intersection concept discussed in Sect. 2.2 to reduce
the number of intersection tests. Because a leaf node sphere
has only several triangles, the number of plane-sphere inter-
section tests dominates the total rendering time.

Table 5 shows the speedup of frame rendering by
RTRPS compared to the case of “random rays.” “Random
rays” means that neither of ray-plane, frustum culling nor
binary-tree plane technique is used. This table shows that
RTRPS achieves 13 to 392 times speedup, depending on the
scenes, over the random ray case. Note that, the number
of the ray-triangle intersections is the same for both RTRPS
and random rays, because both use the same sphere hier-
archy and generated rays. Therefore, the speedup is ob-
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Table 5 Execution time for distribution ray tracing (excluding ray gen-
eration time).

Fig. 11 Breakdown of the effects of the frustum culling and the
binary-tree planes.

tained by reducing the number of plane-sphere intersection
tests and acceleration techniques such as frustum culling and
binary-tree planes.

4.3 Frustum Culling and Binary-Tree Planes

Figure 11 shows the normalized number of intersection tests
between the planes and spheres in RTRPS. For each scene,
“All Plane” means the case which does not use the frus-
tum culling or the binary-tree plane techniques. The outside
intersection means the intersection tests between the outer-
most planes of a frustum (i.e. left and right outlines in Fig. 5)
and a sphere, which is inevitable even by using the frustum
culling technique. The internal intersection means the in-
tersection tests between the other planes and a sphere. As
we can see, these two techniques can eliminate up to 95%
of plane-sphere intersection tests. However, the effect of the
two techniques is depending on the scene property.

For the Roses scene, most of the triangles are located at
the center of the image, and the triangles forming the flowers
and leaves are very small. Considering that the number of
triangles in a leaf node sphere is three or four, the size of
leaf node spheres is also quite small. In this case, most of
the intersection tests between ray-planes and spheres can be
skipped by using the frustum culling technique alone.

Cubes has different characteristics. Even if the num-
ber of triangles and spheres is small, their solid angle is rel-
atively larger than that of Roses. Larger triangles enlarge
the solid angle of the leaf node sphere, making the frustum
culling less effective. Because of the same reason, frustum

culling is not effective for the diffuse rays radiated in the
range of approximately 180 degrees. As shown in Fig. 11,
only less than 10% of the ray-planes can skip the intersec-
tion tests. However, even in this scene, the internal inter-
section tests can be reduced significantly by the binary-tree
plane technique.

For the other three scenes, the two techniques work ef-
fectively and can avoid 80% to 90% of intersection tests.

4.4 Applying to the First-Hit Ray Tracing

In this section, RTRPS is compared with famous ray trac-
ing methods [19], [25], [26], [34] and a GPU ray tracer con-
structing BVH rapidly [27]. The RTRPS is designed for
high quality image generation using a large number of sec-
ondary rays, such as diffuse rays, at an interactive rate.
Then, we want to compare the RTRPS with the ray trac-
ers based on a similar concept. However, most of the re-
cent competitive ray tracers are optimized for FHRT, which
forces us to evaluate the RTRPS in the FHRT field. We
chose the rendering time and update time between two
frames as the performance metric, because they are com-
monly used in the conventional methods†.

Table 6 summarizes the performance from the articles
and that of our RTRPS.

MLRTA [19] and MLRTUG [34] are the fast methods
using a kd-tree and a uniform grid, respectively, as the spa-
tial data structure. Recently, Zhou et al. have achieved a
fast kd-tree update by using GPU (GeForce 8800 ULTRA),
which requires less than 60 msec for scenes with over 100 K
triangles [28]. On the other hand, RTRPS uses the bounding
spheres for a shorter update time. Conference is used as the
test scene because it was commonly used in [19] and [34].
We can see that the spheres can drastically reduce the update
time, resulting in an equivalent total time††.

RTRPS is also compared to the proposal based on the
axis aligned bounding box (AABB) hierarchies [25], where
two AABB techniques using surface area heuristic (SAH)
and median split (Med), respectively, were implemented.
From the table, we can see that RTRPS shows better per-
formance than AABB with SAH. For AABB-Med, although
the total time in the table of RTRPS is shorter, it is not easy
to compare them directly, because AABB-Med had smaller
image size than RTRPS, but it radiated shadow and reflec-
tion rays. However, we can say that RTRPS achieves higher
or comparative performance to the AABB-based methods.

Next, let us compare RTRPS with the fastest FHRT
†Unfortunately, it is not easy to precisely compare two render-

ing systems, because 1) complete source code is not always pub-
lished, 2) the computational conditions (CPU, memory, compiler,
optimization technique and OS) may not be the same, 3) the scene
condition (the eye point, angle view, and so on) cannot be the same
even if the scene data is the same. Hence, we chose the test scenes
commonly used in the recent articles and attempted to keep the
scene condition to be the same as the articles to the best of our
ability.
††The update time of MLRTA was adduced in [5]. The update

time of MLRTUG is derived from [9].
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Table 6 Performance comparison with related works.

Name Data structure Scene Rendering time Update time Total time Secondary ray condition Image size Hardware

MLRTA [19] KD-tree Conference 51 msec 1410 msec 1461 msec None 1024x1024 Pen4 3.2 GHz
MLRTUG [34] Uniform grid Conference 250 msec 89 msec 339 msec None (with shading) 1024x1024 Pen4 3.2 GHz
RTRPS Sphere Conference 405 msec 2 msec 407 msec None 1024x1024 Core2Duo 2.4 GHz

RT-DEFORM [25]
AABB(Med) Bunny - 23 msec 166 msec Shadow and reflection rays 512x512 Pen4-Dual 2.8 GHz
AABB(SAH) Bunny 178 msec 23 msec 201 msec None 1024x1024 Pen4-Dual 2.8 GHz

RTRPS Sphere Bunny 124 msec 0.52 msec 125 msec None 1024x1024 Core2Duo 2.4 GHz

Frustum+BVH [26] BVH Conference 108 msec - - None (with shading) 1024x1024 Opteron 2.6 GHz
LBVH [27] BVH Conference 149 msec 19 msec - None 1024x1024 GeForce 280 GTX
RTRPS Sphere Conference 405 msec 2 msec 407 msec None 1024x1024 Core2Duo 2.4 GHz

proposal using bounding volume hierarchies (BVH) re-
ported in [26]. Because of its careful optimization for the
SIMD functionality, the BVH method achieves the four
times shorter rendering time than RTRPS. Although the up-
date time of BVH was not reported in [26], we can approx-
imately estimate that it would be the same as or longer than
that of AABB techniques. Taking account of the number of
triangles in Conference which is four or more times larger
than Bunny, the update time of BVH in Conference should
be longer than 100 msec. In order to shorten the update time
of BVH, Lauterbach et al. have introduced LBVH (Linear
Bounding Volume Hierarchy) and its GPU processing [27].
They have achieved the update of Linear BVH structure in
19 msec per frame with Geforce 280 GTX for Conference
scene. It is still slower than RTRPS but means that the
bounding volume (boxes and spheres) strategy is suitable
for GPU implementation than the other data structure. Since
there is a lot of room for optimizing RTRPS to the GPU,
SIMD, and multi-thread functionality, RTRPS is still com-
petitive in the total time with the BVH method even in the
field of FHRT.

5. Concluding Remarks and Future Work

In this paper, we have proposed a new ray tracing scheme
named RTRPS, which uses bounding spheres, instead of
well-known bounding boxes or kd-trees, as the spatial data
structure. The spheres as the spatial data structure can re-
duce the cost of reconstructing the data structure between
frames in a dynamic scene rendering, because only the trans-
lation of the sphere is sufficient even if the movement of an
object includes rotation. In addition, RTRPS groups the rays
into a set of ray-planes, which makes it possible to exploit
unused inter-ray-group coherency. The combination of ray-
planes and the spheres can decrease the cost of a ray-sphere
intersection test and the number of intersection tests.

Three acceleration techniques, parallel projection, frus-
tum culling, and binary-tree planes, further reduce the num-
ber of intersection tests for ray-planes and the spheres. For
the intersection tests between rays and triangles, which are
the finest level of the intersection test, RTRPS dynamically
chooses the fastest one from the three intersection tech-
niques, classical Möller, the common origin technique, and
the aligned ray-plane technique.

The performance evaluations have shown that RTRPS
can achieve 390 times speedup for distribution ray tracing.

The evaluations have also shown that RTRPS gives compet-
itive performance even in the field of first hit ray tracing.
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