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PAPER Special Section on Formal Approach

Decidability of Termination and Innermost Termination for Term
Rewriting Systems with Right-Shallow Dependency Pairs

Keita UCHIYAMA†∗, Nonmember, Masahiko SAKAI†a), and Toshiki SAKABE†, Members

SUMMARY In this paper, we show that the termination and the in-
nermost termination properties are decidable for the class of term rewriting
systems (TRSs for short) all of whose dependency pairs are right-linear and
right-shallow. We also show that the innermost termination is decidable for
the class of TRSs all of whose dependency pairs are shallow. The key ob-
servation common to these two classes is as follows: for every TRS in the
class, we can construct, by using the dependency-pairs information, a finite
set of terms such that if the TRS is non-terminating then there is a loop-
ing sequence beginning with a term in the finite set. This fact is obtained
by modifying the analysis of argument propagation in shallow dependency
pairs proposed by Wang and Sakai in 2006. However we gained a great
benefit that the resulted procedures do not require any decision procedure
of reachability problem used in Wang’s procedure for shallow case, because
known decidable classes of reachability problem are not larger than classes
discussing in this paper.
key words: looping sequence, argument propagation

1. Introduction

Termination is one of the central properties of term rewrit-
ing systems (TRSs for short), where we say a TRS termi-
nates if it does not admit any infinite reduction sequence.
The termination property is undecidable not only in general,
but also for some classes: TRSs having single rule [1], flat
TRSs [2] and length-two string rewriting systems [3]. Thus
several classes whose termination is decidable have been
studied: right-linear right-shallow TRSs [2], left-linear shal-
low TRSs, semi-constructor TRSs (TRSs all of whose de-
pendency pairs are right-ground) [4], and so on [5]–[8]. Re-
lationships between these classes are summarized in Fig. 1,
where arrows indicate class inclusion, broken lines display
the border between decidability and undecidability, and R
and L are abbreviation of “right” and “left” respectively.

The innermost reduction strategy, which rewrites inner-
most redexes, is used for call-by-value computation. The
termination property with respect to the innermost reduction
is called innermost termination. Since the innermost termi-
nation is also undecidable in general, several classes whose
innermost termination is decidable have been studied: shal-
low TRSs, right-linear right-shallow TRSs [2] and semi-
constructor TRSs [4]. Relationships between these classes
are summarized in Fig. 2.

In this paper, we show the following results.
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1. The termination and the innermost termination of a
term are decidable properties for TRSs all of whose de-
pendency pairs are right-shallow.

2. The termination and the innermost termination proper-
ties are decidable for TRSs all of whose dependency
pairs are right-linear and right-shallow.

3. The innermost termination is decidable for TRSs all of
whose dependency pairs are shallow.

4. An extension of these results by combining with the
result of semi-constructor TRSs and other techniques
related to dependency pairs.

5. The termination is undecidable for TRSs all of whose
dependency pairs are left-linear and shallow.

The key idea for deciding termination of this paper
is the following. As already known, infinite reduction se-
quences guarantees the existence of infinite dependency
chains. Focusing on the fact that all proper subterms occur-
ring in the chains are terminating, it is possible to prove the
existence of dependency chains having a looping structure

Fig. 1 (Un)-decidable classes on termination.

Fig. 2 (Un)-decidable classes on innermost termination.
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in it and starting from a term in a finite set T determined
from rewrite rules of R. This is proved by modifying the
technique used in the proof of decidability of termination
for right-linear shallow TRSs [4]. After all, in order to check
termination of R, we generate all derivations from terms in
T . Either we detect termination of all such derivations and
halt with “termination”, or find a loop and halt with “non-
termination”.

One may think that the result 1 is a small extension of
those in [4]. However we have a great benefit that the proce-
dures in this paper do not require any decision procedure of
reachability problems, because known decision procedures
of reachability problem are considerably complex and the
classes is not larger than classes discussing in this paper.

2. Preliminary

We assume that readers are familiar with the standard
definitions of term rewriting systems [9] and dependency
pairs [10].

The followings are basic notations to be used in this
paper.

arity( f ) : the arity of a function symbol f
T (F ,V) : the set of all terms over signature F and

variable setV
T (F ) : the set T (F , ∅) of all ground terms over

signature F
Var(t) : the set of all variables occurring in term t
ε : the empty string, and hence the root posi-

tion of any term
root(t) : the symbol at the root position in t
C[t]p, C[t] : the term obtained from a context C by re-

placing the hole � with a term t (at posi-
tion p)

t|p : the subterm of t at position p
�, � : subterm relation and proper subterm rela-

tion
tθ : the term obtained by applying a substitu-

tion θ to a term t
Dom(θ) : the domain of a substitution θ, i.e., {x |

xθ � x}
Ran(θ) : the range of a substitution θ, i.e., {xθ |

xθ � x}
→+,→∗ : the transitive closure and the reflexive

transitive closure of a relation→
→ ◦ →′ : the composition of relations→ and→′

A rewrite rule l → r is a pair of terms such that l � V
and Var(r) ⊆ Var(l). A term rewriting system (TRS) R is
a finite set of rewrite rules. A redex is a term t such that
t = lθ for some rewrite rule l → r and substitution θ. An
(R-)normal form is a term containing no redex. A substi-
tution θ is normal if xθ is a normal form for every x. The
reduction relation −→

R
is defined as {(C[lθ]p,C[rθ]p) | l →

r ∈ R, θ is a substitution, C is a context with � at a posi-
tion p}. We write s p−→

R
t if s −→

R
t and a redex at a position p

is contracted.

A term is said to be linear if no variable occurs more
than once in the term. The depth of a position p is the length
of p. A term t is shallow if variable occurrences in t are at
depth 0 or 1. A rewrite rule l→ r is right-linear (left-linear,
shallow, right-shallow, right-ground) if r is linear (resp. l is
linear, l and r are shallow, r is shallow, r is ground). A TRS
R is right-linear (left-linear, shallow, right-shallow, right-
ground) if every rule in R is right-linear (resp. left-linear,
shallow, right-shallow, right-ground).

We use the followings to represent a set of terms.
Rlhs, Rrhs : the set of left-hand (resp. right-hand) sides

of a TRS R; {l | l → r ∈ R} (resp. {r | l →
r ∈ R})

Arg(T ) : the set of immediate subterms of a term in
T ; {ti | f (t1, . . . , tn) ∈ T }

Inst (T, T ′) : the set of terms obtained from a term in T
by instantiation of a term in T ′; {tσ | t ∈
T, Dom(σ) = Var(t), Ran(σ) ⊆ T ′}

→[T ] : the set of terms obtained by reducing a
term in T by→; {s | t ∈ T, t → s}

A redex is innermost if all of its proper subterms are
normal forms. Define the innermost reduction relation −−→

in,R
as follows: s −−→

in,R
t if s is reduced to t by contracting an

innermost redex.
For a reduction relation →, a sequence s0, s1, . . .

is an →-reduction sequence if si → si+1 for all i =
0, 1, . . .. A term t is →-terminating if there exists no in-
finite →-reduction sequence starting from t. We some-
times write “terminating” (“innermost terminating”) for
“−→

R
-terminating” (“−−→

in,R
-terminating”). We say a TRS R

is terminating (innermost terminating) if every term is −→
R

-
terminating (resp. −−→

in,R
-terminating).

Let R be a TRS over a signature F . We define FD =

{root(l) | l → r ∈ R}. We call f ∈ FD a defined symbol of R.
A term t said to have a defined root symbol if root(t) ∈ FD.
The signature F � denotes the union of F and F �D = { f

� |
f ∈ FD} where F ∩ F �D = ∅ and f � has the same arity as f .
We use a notation t� only if root(t) ∈ FD, and it is defined
as t� = f �(t1, . . . , tn) for t = f (t1, . . . , tn). If l → r ∈ R, u
is a subterm of r with a defined root symbol and u �� l, then
the rewrite rule l� → u� is called a dependency pair (DP for
short) of R. The set of all dependency pairs of R is denoted
by DP(R). We use S � to represent a TRS consisting of rules
in forms of l� → r�.

For a reduction relation → and a TRS S �, a (possibly
infinite) sequence s�0 → t�0, s�1 → t�1, . . . of elements of S � is
an (→, S �)-chain† if there exists a sequence of substitutions
τ0, τ1, . . . such that t�i τi is→-terminating and t�i τi −→∗ s�i+1τi+1

for every i ≥ 0. We write (R, S �)-chain for (−→
R
, S �)-chain.

An innermost (R, S �)-chain is an (−−→
in,R
, S �)-chain such that

†To simplify arguments of this paper, we included the con-
dition that t�i τi is →-terminating, which means the minimality of
chains. However the original proof of Theorem 1 in [10] contains
this extended result implicitly.
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s�iτi is an R-normal form for every i ≥ 0.

Theorem 1 ([10], [11]): For a TRS R, R is not (innermost)
terminating if and only if there exists an infinite (innermost)
(R, S �)-chain for some S � ⊆ DP(R).

3. Termination and Innermost Termination of a Term
for TRSs with Right-Shallow Dependency Pairs

In this section, we show that the termination and the in-
nermost termination of a term are decidable for TRSs all
of whose dependency pairs are right-shallow. Note that
these properties are different from the termination and the
innermost-termination, each of which is undecidable for
right-shallow TRSs [2].

In this and next sections, the notation −−−−→
(in),R

represents

−→
R

when arguing termination and −−→
in,R

when arguing inner-
most termination. We give proofs only for termination, but
they also work for innermost termination by using innermost
(R, S �)-chain and −−→

in,R
instead of (R, S �)-chain and −→

R
.

The following proposition shows basic properties on
reductions and subterms.

Proposition 2: If t � s −−−−→
(in),R

∗ s′ then t −−−−→
(in),R

∗ t′ � s′ for

some term t′. Moreover,

1. t � s implies t′ � s′, and
2. s −−−−→

(in),R
+ s′ implies t −−−−→

(in),R
+ t′.

Proof. Let t = C[s]. Then we have t = C[s] −−−−→
(in),R

∗ C[s′] �
s′. We can take C[s′] as t′. Moreover, C � � implies t′ � s′,
and 2 also holds. �

For an (innermost-) (R, S �)-chain s�0 → t�0, . . . , s
�
n → t�n,

with substitutions τ0, . . . , τn, we say that the chain is looping
if s�0 → t�0 = s�n → t�n and xτ0 = xτn for all x ∈ Var(s�0).

We will show that an infinite chain contains a looping
chain for right-shallow dependency pairs in Lemma 4. Be-
fore this, we prepare a technical lemma that restricts substi-
tutions of chains.

Lemma 3: Let S � be right-shallow. Let s�0 → t�0, s�1 →
t�1, . . . be an (innermost) (R, S �)-chain with substitutions

τ0, τ1, . . .. Then for each i (≥ 0) and x ∈ Var(s�i ) there ex-

ists u ∈ (Arg(S �rhs) ∩ T (F )) ∪ {yτ0 | y ∈ Var(s�0)} such that
u (−−−−→

(in),R
∗ ◦ �) xτi.

Proof. We use induction on i. Since the case i = 0 is triv-
ial, we consider the case i > 0. Let t�i−1 = f �(u1, . . . , un)

and s�i = f �(v1, . . . , vn). For every j (1 ≤ j ≤ n), we have
u jτi−1 −−−−→(in),R

∗ v jτi from the definition of chains.

(Case u j ∈ V ): Since u j ∈ Var(t�i−1) ⊆ Var(s�i−1), there

exists u ∈ (Arg(S �rhs) ∩ T (F )) ∪ {yτ0 | y ∈ Var(s�0)} such
that u (−−−−→

(in),R
∗ ◦ �) u jτi−1 by induction hypothesis. Hence

u (−−−−→
(in),R

∗ ◦ �) u jτi−1 −−−−→(in),R
∗ v jτi � xτi for all x ∈ Var(v j).

Thus we have u (−−−−→
(in),R

∗ ◦ �) xτi by Proposition 2.

(Otherwise): u j ∈ Arg(S �rhs) ∩ T (F ) from right-
shallowness of S �. Hence, u j = u jτi−1 −−−−→(in),R

∗ v jτi � xτi

for all x ∈ Var(v j). �

Lemma 4: Let S � be right-shallow. Let s�0 → t�0, s�1 → t�1,
. . . be an infinite (innermost) (R, S �)-chain with substitutions
τ0, τ1, . . .. Then there exist i and j (0 ≤ i < j) such that
s�i → t�i = s�j → t�j and xτi = xτ j for all x ∈ Var(s�i ).

Proof. We can assume that every rule in S � appears in the
given chain without loss of generality. Then all terms in
(Arg(S �rhs) ∩ T (F )) ∪ {yτ0 | y ∈ Var(s�0)} are terminating
from the definition of chains. Hence, the union of ranges of
all τi is finite by Lemma 3. Since the set S � × {τ0, τ1, . . .} is
finite, the lemma follows. �

Proposition 5 ([10]): Let t be a −−−−→
(in),R

-non-terminating

term. Then there exist a term t′�t with a defined root symbol
and an infinite (innermost) (R,DP(R))-chain s�0 → t�0, s�1 →
t�1, . . . with substitutions τ0, τ1, . . . such that t′� −−−−→

(in),R
∗ s�0τ0.

Proposition 6 ([10]): If a term t with defined root symbol
is −−−−→

(in),R
-terminating, then t� is −−−−−−−−−→

(in),R∪DP(R)
-terminating.

We obtain the decidability of (innermost) termination
of a term for right-shallow systems.

Theorem 7: Let R be a TRS such that DP(R) is right-
shallow. Then −−−−→

(in),R
-termination of a term is decidable.

Proof. We can assume that the given term t is ground by re-
garding each variable as a fresh constant. Consider the fol-
lowing procedure: for every term s (�t) with a defined root
symbol, simultaneously generate all −−−−−−−−−→

(in),R∪DP(R)
-reduction

sequences starting from s�. The procedure terminates if it
enumerates all reachable terms exhaustively or it detects a
sequence s� −−−−−−−−−→

(in),R∪DP(R)
∗ u� −−−−−−−−−→

(in),R∪DP(R)
+ u�.

Consider the case that t is not −−−−→
(in),R

-terminating. Then

there exist a term s � t with a defined root symbol and an
infinite (R,DP(R))-chain s�0 → t�0, s

�
1 → t�1, . . . with substitu-

tions τ0, τ1, . . ., such that s� −→
R
∗ s�0τ0 by Proposition 5. Then

by Lemma 4, there exist integers i and j (i < j) such that
s�i → t�i = s�j → t�j and xτi = xτ j for all x ∈ Var(s�i ). From

the definition of chains, there exists a sequence s� −−−−→
(in),R

∗

s�0τ0 −−−−−−−−−→(in),R∪DP(R)
∗ s�iτi −−−−−−−−−→(in),R∪DP(R)

+ s�jτ j = s�iτi, and the pro-

cedure detects this sequence.
Consider the case that t is −−−−→

(in),R
-terminating. Since

each s in the procedure is also −−−−→
(in),R

-terminating, all

−−−−−−−−−→
(in),R∪DP(R)

-reduction sequences from s� are finite by Propo-

sition 6. The enumeration of all reachable terms in the pro-
cedure eventually stops since −−−−−−−−−→

(in),R∪DP(R)
is finitely branch-

ing. �
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4. Termination and Innermost Termination for TRSs
with Right-Linear Right-Shallow Dependency Pairs

In this section, we show that the termination and the inner-
most termination are decidable properties for TRSs all of
whose dependency pairs are right-linear and right-shallow.

We have shown in Lemma 4 that an infinite chain con-
tains a looping structure if dependency pairs in the chain
are right-shallow. We have also shown in Lemma 3 that the
ranges of the substitutions of the chain are covered by some
finite set determined by the dependency pairs and its initial
term s�0τ0. Since we cannot use information on initial terms
for deciding termination of TRSs, we have to determine the
set only from TRSs. In order to analyze looping chains, we
introduce directed graphs called the argument propagation
graphs (APGs) [4]. Nodes of an APG indicate immediate
subterms of s�iτi or t�i τi of a looping chain, and edges of an
APG represent flows of the immediate subterms in the chain.

Definition 8 (Argument Propagation Graph): Let S � be
right-shallow. For a looping (innermost) (R, S �)-chain s�0 →
t�0, . . . , s

�
n → t�n with substitutions τ0, . . . , τn, the argument

propagation graph (APG) of the chain is a directed graph
G = 〈N ,E〉 where

N = {(i, lhs, j) | 1 ≤ i < n, 1 ≤ j ≤ arity(root(s�i ))}
∪{(i, rhs, j) | 1 ≤ i < n, 1 ≤ j ≤ arity(root(t�i ))}
∪{(i, x) | x ∈ Var(s�i ) \ Var(t�i )}

E = {((i, lhs, j), (i, rhs, j′)) | t�i | j′ ∈ Var(s�i | j)}
∪{((i, rhs, j), (i′, lhs, j)) |

i + 1 = i′ or i = n − 1 ∧ i′ = 0}
∪{((i, lhs, j), (i, x)) | x ∈ Var(s�i | j)}.

Example 9: Consider the following TRS and its the depen-
dency pairs.

R1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f (x, x, z)→ g(b, c, z),
g(i(x, y), y, z)→ h(x, y, z),
h( j(x), z, z)→ f (x, a, z),
b→ i( j(a), d), c→ d

,

DP(R1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f �(x, x, z)→ g�(b, c, z),
f �(x, x, z)→ b�, f �(x, x, z)→ c�,
g�(i(x, y), y, z)→ h�(x, y, z),
h�( j(x), z, z)→ f �(x, a, z),

.

Figure 3 shows the APG of a looping (R1,DP(R1))-chain
f �(x, x, z) → g�(b, c, z), g�(i(x, y), y, z) → h�(x, y, z),
h�( j(x), z, z) → f �(x, a, z), f �(x, x, z) → g�(b, c, z) with sub-
stitutions {x �→ a, z �→ d}, {x �→ j(a), y �→ d, z �→ d},
{x �→ a, z �→ d}, {x �→ a, z �→ d}. �

The graph Fig. 3 can be represented as in Fig. 4 at-
tached some more information related to the chain. In the
following, we use this enriched form to represent APGs for
readability. In order to handle this augmented information
formally in proofs, we define a mapping t� : N → T (F ,V)

Fig. 3 The APG of (R1,DP(R1))-chain.

Fig. 4 An enriched representation of the APG in Fig. 3.

that returns the term corresponding to a given node:

tN =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(s�i | j) · · · N = (i, lhs, j)
(t�i | j) · · · N = (i, rhs, j)
x · · · N = (i, x).

Moreover, we also use t̃N to denote tNτi. For example,
considering N = (2, lhs, 1), we have tN = j(x) and t̃N =

( j(x))τ2 = j(a). (See Figs. 3 and 4.)
For a directed graph G, the in-degree (out-degree) of a

node is the number of inward edges (resp. outward edges)
of the node. A node is source (sink) if the in-degree (resp.
out-degree) of the node is 0. A strongly-connected compo-
nent of G is a maximal subgraph G′ of G such that there
is a path from any node to any node. An undirectional
path is a path regarding edges undirected. An undirec-
tionally connected component of G is a maximal subgraph
G′ of G such that there is an undirectional path between
any two nodes. For example, the graph G in Fig. 3 has
only one strongly-connected component consisting of nodes
{(i, s, 3) | i ∈ {0, 1, 2}, s ∈ {lhs, rhs}}. On the other hand, G
itself is the only one undirectionally connected component
of G.

In the rest of this section, we analyze properties on sub-
stitutions of looping chains by using APGs. Specifically,
each term t that belongs to the ranges of the substitutions
satisfies the following properties:

• t is a subterm of a term that is reachable from a term in
Arg(S �rhs) ∩ T (F ), or
• t is never reduced in the chain,

which correspond to items in the proof of Lemma 13. In the
latter case, we can replace t by an arbitrary fixed term (fixed
normal form in the innermost case) without destroying the
condition of chains. Hence we can cover ranges of substitu-
tion of looping chains by a finite set of terms determined by
right-hand sides of dependency pairs. This is the key idea of
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this section.
The following proposition shows basic properties on

APGs.

Proposition 10: Let S � be right-shallow. Let s�0 →
t�0, . . . , s

�
n → t�n be a looping (innermost) (R, S �)-chain with

substitutions τ0, . . . , τn. The APG of the chain satisfies the
following properties:

1. If N is a source node, then N is in forms of (i, rhs, j)
and tN = t�i | j ∈ Arg(S �rhs) ∩ T (F ).

2. For every edge from (i, rhs, j) to (i′, lhs, j), we have
(t�i | j)τi −−−−→(in),R

∗ (s�i′ | j)τi′ .

3. For every edge from (i, lhs, j) to (i, rhs, j′), we have
(s�i | j)τi � (t�i | j′ )τi. Moreover

a. if s�i | j is not a variable then (s�i | j)τi � (t�i | j′ )τi, and

b. if s�i | j is a variable then (s�i | j)τi = (t�i | j′ )τi.

4. If S � is right-linear and the out-degree of N is 2 or
more, then N = (i, lhs, j) and tN = s�i | j is not a vari-
able.

Proof. For the property 1, N is not in forms of (i, lhs, j)
because there exists a node (k, rhs, j) for k = i − 1 or i =
1 ∧ k = n − 1. The node N is not in forms of (i, x) because
there exists a node (i, lhs, j) such that x ∈ Var(s�i | j). Let

N = (i, rhs, j). Then t�i | j is not variable since N is a source
node. Therefore the claim follows from right-shallowness.

In similar to property 1, the other properties are shown
by using the definitions of APGs and chains, and right-
shallow property. �

The following lemma shows properties of APGs on
paths and cycles.

Lemma 11: Let S � be right-shallow. Let s�0 →
t�0, . . . , s

�
n → t�n be a looping (innermost) (R, S �)-chain with

substitutions τ0, . . . , τn. The APG of the chain satisfies the
following properties:

1. For a path N0,N1, . . . ,Nm in the APG, we have
t̃N0 (−−−−→

(in),R
∗ ◦ �) t̃Nm . Moreover,

a. if tNk is not a variable for some 0 ≤ k < m then
t̃N0 (−−−−→

(in),R
∗ ◦ �) t̃Nm , and

b. if tNk is a variable for every 0 ≤ k < m then
t̃N0 −−−−→

(in),R
∗ t̃Nm .

2. For every cycle in the APG,

a. for all nodes N in the cycle, the terms t̃N are equal,
and

b. the out-degree of each node in the cycle is 1, if S �

is right-linear.

3. Every node that has no path from any source node be-
longs to a cycle, if S � is right-linear.

Proof. 1: We prove by induction on m that t̃N0 (−−−−→
(in),R

∗ ◦ �)

t̃Nm .
Since in the case m = 0 the claim trivially holds, we

consider the case that m > 0.

• In the subcase that Nm−1 = (i, rhs, j) for some i and j,
the node Nm is (i′, lhs, j) for some i′. Then we have
t̃Nm−1 = (t�i | j)τi −−−−→(in),R

∗ (s�i′ | j)τi′ = t̃Nm by Proposition 10-

2. Hence the claim follows from induction hypothesis
and Proposition 2.
• In the subcase that Nm−1 = (i, lhs, j) for some i and j,

the node Nm is either (i, rhs, j′) or (i, x). In the former
case, the term tNm = t�i | j′ is a variable x that occurs in

tNm−1 = s�i | j and hence. Since x is a subterm of tNm−1 ,
we have t̃Nm−1 � xτi = t̃Nm . Therefore the claim follows
from the induction hypothesis and the transitivity of �.

In similar way, properties 1a and 1b can be shown.

2: Let the cycle be N0,N1, . . . ,Nm where Nm = N0. Before
proving 2a and 2b, we show the following claim:

tNk is a variable for every k. (∗)
We assume that tNk is not a variable for some 0 ≤ k <

m. Then we have t̃N0 (−−−−→
(in),R

∗ ◦ �) t̃N0 from 1a of this lemma

and N0 = Nm. Here the displayed reduction −−−−→
(in),R

∗ must

be −−−−→
(in),R

+ since � is not reflexive. Now we can construct

infinite R-reduction sequence starting from t̃N0 by Proposi-
tion 2. However, t̃N0 is terminating from the definition of
chains. This is a contradiction. Hence the claim (∗) has
been shown.

2a: From (∗), 1b of this lemma and N0 = Nk, we have
u0 −−−−→(in),R

∗ u1 −−−−→(in),R
∗ · · · −−−−→

(in),R
∗ um = u0 where uk = t̃Nk .

Since u0 is terminating, we have u0 = u1 = · · · = uk.
2b: From (∗), it follows from Proposition 10-4.

3: Let N be a node having no path from any source node in
the APG. Note that N is not a source node. We have

• N belongs to some cycle, or
• N does not belong to any cycle but it is reachable from

a node in some cycle.

However the latter case is impossible from 2b of this lemma.
�

We introduce a symbol ⊥ for representing some fixed
term, and use Cand

(
S �,→

)
to denote the set of all candidate

instances of S �lhs for looping chains. The latter is defined as
follows by using substitutions whose ranges are ⊥ or sub-
terms of terms reachable from immediate ground subterms
of right-hand side of dependency pairs in S �.

Cand
(
S �,→

)
=

Inst
(
S �lhs, (→∗ ◦ �)[Arg(S �rhs) ∩ T (F )] ∪ {⊥}

)

Example 12: Consider R1 in Example 9. We have
Arg(DP(R1)rhs) ∩ T (F ) = {a, b, c} and Cand

(
DP(R1), −→

R1

)
=

{ f �(a, a, a), f �(a, a, b), f �(a, a, c), f �(a, a, d), . . .}. �
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By the previous observations on APGs, we obtain the
following lemma on an existence of looping sequence start-
ing from a candidate instance.

Lemma 13: Let S � be right-linear and right-shallow. If
there exists a looping (innermost) (R, S �)-chain then there

exists a term t� ∈ Cand
(
S �,−−−−→

(in),R

)
such that t� −−−−−−→

(in),R∪S �
+ t�.

Proof. Let s�0 → t�0, . . . , s
�
n → t�n be a looping (innermost)

(R, S �)-chain with substitutions τ0, . . . , τn. We construct
new substitutions τ′i for 0 ≤ i < n such that Dom(τ′i) =

Var(s�i ) as follows:

• xτ′i = xτi for x ∈ Var(s�i | j) such that there exists a path
from a source node to (i, lhs, j) in the APG of the chain,
• xτ′i = ⊥ for the other x ∈ Var(s�i ).

We also take τ′0 as τ′n.

Now we show that the lemma holds by taking s�0τ
′
0 as

t�.
Consider each variable x ∈ Var(s�0). If x ∈ Var(s�0| j) for

some j and the node has a path from a source node N, we
obtain that xτ′0 = xτ0 is reachable by (−−−−→

(in),R
∗ ◦ �) from a

term v ∈ Arg(S �rhs) ∩ T (F ) by using Proposition 10-1 and
Lemma 11-1. If none of nodes corresponding to x has a path
from a source node, we have xτ′i = ⊥. In either of two cases,

we have t� = s�0τ
′
0 ∈ Cand

(
S �,−−−−→

(in),R

)
.

Moreover, since every node corresponding to the vari-
able x in the second case has no path from a source node,
it belongs to a cycle by Lemma 11-3. Hence the term xτi

is never reduced by Lemma 11-2a and can be replaced by
⊥. Thus the substitutions τ′0, . . . , τ

′
n satisfy the condition of

chains, that is, we have a sequence s�0τ
′
0 −−−−−−→(in),R∪S �

+ s�nτ′n =

s�0τ
′
0 from the definition of chains. �

Example 14: For R1 in Example 9, there exists a looping
sequence f �(a, a, d) −−−−−→

DP(R1)
g�(b, c, d) −→

R1

∗ g�(i( j(a), d), d, d)

−−−−−→
DP(R1)

h�( j(a), d, d) −−−−−→
DP(R1)

f �(a, a, d) starting from

f �(a, a, d) ∈ Cand
(
DP(R1),−→

R1

)
. �

We obtain the decidability of (innermost) termination
for right-linear and right-shallow systems.

Theorem 15: The termination and the innermost termina-
tion of a TRS R are decidable if DP(R) is right-linear and
right-shallow.

Proof. A decision procedure for (innermost) termination of
R is given as follows:

Step 1: Decide −−−−→
(in),R

-termination of each t ∈
Arg(DP(R)rhs)∩T (F ). If there exists a non-terminating
term then the procedure outputs “R is non-terminating”
and halts.
Step 2: For all term u� ∈ Cand

(
DP(R),−−−−→

(in),R

)
, simulta-

neously generate all (R ∪ DP(R))-reduction sequences
starting from u�.

a. If it enumerates all reachable terms exhaustively
then it outputs “R is terminating” and halts.

b. If it detects a looping sequence u� −−−−−−−−−→
(in),R∪DP(R)

+ u�

then it outputs “R is non-terminating” and halts.

By Theorem 7, Step 1 is possible. At Step 2,

Cand
(
DP(R),−−−−→

(in),R

)
is finite because all terms in

Arg(DP(R)rhs) ∩ T (F ) are terminating.
If R is not terminating then there exists a looping de-

pendency chain by Theorem 1 and Lemma 4. Hence a non-
terminating term is found at Step 1 or else a looping se-
quence is found at Step 2(b) by Lemma 13.

If R is terminating, all −−−−−−−−−→
(in),R∪DP(R)

-reduction sequences

starting from u� are finite by Proposition 6. Hence the exe-
cution of the reduction sequence generation eventually stops
since −−−−−−−−−→

(in),R∪DP(R)
is finitely branching. Thus the procedure

detects the termination of R after finitely many steps. �

Example 16: The procedure in the proof of Theorem 15
works for R1 as follows: All terms in Arg(DP(R1)rhs) ∩
T (F ) = {a, b, c} are terminating. By search of

a looping sequence from terms in Cand
(
DP(R1),−→

R1

)
,

the procedure stops due to detecting the looping se-
quence f �(a, a, d) −−−−−−−−→

R1∪DP(R1)
+ f �(a, a, d) and outputs “non-

terminating”. �

5. Innermost Termination for TRSs with Shallow De-
pendency Pairs

In this section, we show that the innermost termination is de-
cidable for TRSs all of whose dependency pairs are shallow.
Similarly to the previous section, we use APGs for proving
the looping property and use an exhaustive search for the
decision procedure.

Example 17: Let R2 = { f (x, y, y, z) → g(x, x, a, z),
g(x, b, b, z) → f (x, a, z, z), a → b}. We show the APG
of a looping innermost (R2,DP(R2))-chain f �(x, y, y, z) →
g�(x, x, a, z), g�(x, b, b, z) → f �(x, a, z, z), f �(x, y, y, z) →
g�(x, x, a, z) with substitutions {x �→ b, y �→ b, z �→ b},
{x �→ b, z �→ b}, {x �→ b, y �→ b, z �→ b} in Fig. 5. �

Note that proper subterms of s�iτi are R-normal forms and
hence terms substituted to variables are also R-normal forms
in innermost chains. This property plays an important role
in this section.

The following shows that all instances of variables cor-
responding to nodes undirectionally connected are equal.

Lemma 18: Let S � be shallow. Let s�0 → t�0, . . . , s
�
n →

t�n be a looping innermost (R, S �)-chain with substitutions
τ0, . . . , τn. Let G be an undirectionally connected compo-
nent of the APG of the chain. Then terms t̃N are equal and
in normal forms for all non-source nodes N of G.
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Fig. 5 The APG of innermost-(R2,DP(R2))-chain.

Proof. For a non-source node N, it is in forms of (i, lhs, j) or
tN is a variable. In either of cases t̃N is a normal form.

Consider non-source nodes N and N′ having an edge
from N to N′. In the case that N = (i, rhs, j) and N′ =
(i′, lhs, j) for some i, i′ and j, we have (t�i | j)τi −−−−→(in),R

∗ (s�i′ | j)τi′

by Proposition 10-2. Since N is a non-source node, the term
(t�i | j)τi is a normal form and hence t̃N = (t�i | j)τi = (s�i′ | j)τi′ =

t̃N′ . In the case that N = (i, lhs, j) and N′ = (i, rhs, j′)∨N′ =
(i, x), terms t̃N and t̃N′ are the same variable x since N′ is a
non-source node. Thus t̃N = xτi = t̃N′ . �

We use Candin

(
S �,→

)
for candidate terms in inner-

most case:

Candin

(
S �,→

)
=

Inst
(
S �lhs, →

∗[Arg(S �rhs) ∩ T (F )]

∪(Arg(S �lhs) ∩ T (F )) ∪ {⊥}
)
.

From preceding observations of APGs, we obtain the fol-
lowing lemma on an existence of looping sequence. A dif-
ference from Lemma 13 is an existence of a node not reach-
able from any source node. However, such nodes are never
reduced, and equal to a reachable sink node or can be re-
placed by ⊥.

Lemma 19: Let S � be shallow. If there exists a loop-
ing innermost (R, S �)-chain then there exists a term t� ∈
Candin

(
S �,−−→

in,R

)
such that t� −−−−−→

in,R∪S �
+ t�.

Proof. Let s�0 → t�0, . . . , s
�
n → t�n be a looping innermost

(R, S �)-chain with substitutions τ0, . . . , τn. We construct
new substitutions τ′i for 0 ≤ i < n such that Dom(τ′i) =

Var(s�i ) as follows:

1. xτ′i = xτi for x (= s�i | j) whose corresponding nodes
belong to an undirectionally connected component G
of the APG such that

a. G has a sink node in forms of (i′, lhs, j′), or
b. G has a source node.

2. xτ′i = ⊥ for the other x ∈ Var(s�i ).

We also take τ′0 as τ′n.

Now we show that the lemma holds by taking s�0τ
′
0 as

t�.
Consider each variable x ∈ Var(s�0). In the case that

there exists a node corresponding to x that satisfies 1a, let N
be one of the sink nodes. Then tN ∈ Arg(S �lhs) ∩ T (F ) from

left-shallowness. Thus we have xτ′0 = tN ∈ Arg(S �lhs)∩T (F )
by Lemma 18. In the case 1b, let N be one of the source
nodes. Then we obtain that xτ′0 is reachable by −−→

in,R
∗ from

a term v ∈ Arg(S �rhs) ∩ T (F ) by using Proposition 10-1,
Proposition 10-2 and Lemma 18. In the case 2 we have
xτ′0 = ⊥. In all of the cases, we have t� = s�0τ

′
0 ∈

Candin

(
S �,−−→

in,R

)
.

Moreover, every node corresponding to the variable x
in the case 2 belongs to a undirectionally connected com-
ponent having neither source node nor sink node in forms
of (i′, lhs, j′). Hence the term xτi is never reduced by
Lemma 18 and can be replaced by ⊥. Thus the substitutions
τ′0, . . . , τ

′
n satisfy the condition of innermost chains, that is,

we have a sequence s�0τ
′
0 −−−−−→in,R∪S �

+ s�nτ′n = s�0τ
′
0 from the def-

inition of chains.
Therefore the lemma holds by taking s�0τ

′
0 as t�. �

We obtain the decidability of innermost termination for
shallow systems.

Theorem 20: The innermost termination of a TRS R is de-
cidable if DP(R) is shallow.

Proof. We can prove the theorem similarly to the proof of

Theorem 15 by using Lemma 19 and Candin

(
S �,−−→

in,R

)
, in-

stead of Lemma 13 and Cand
(
S �,−−−−→

(in),R

)
, respectively. �

6. Combining Other Dependency Pair Techniques

In this section, we extend the classes shown in Sects. 4 and
5 by combining the preceding results with the technique
on right-ground dependency pairs for semi-constructor
TRSs [4], [12] and the other techniques for termination
proof based on dependency pairs. The observations on right-
ground dependency pairs are very similar to those in the pre-
ceding sections as shown in the following lemma.

Lemma 21 ([4], [12]): If there exists a (innermost) (R, S �)-
chain that contains infinite use of right-ground dependency
pairs then there exists a sequence u� −−−−−−→

(in),R∪S �
+ u� for some

u� ∈ S �rhs ∩ T (F ).

We prove the following useful theorem.

Theorem 22: Let R be a TRS and DPnrg(R) (⊆ DP(R)) be
the set of non-right-ground dependency pairs of R. The (in-
nermost) termination property is decidable for the class of
TRSs satisfying the following condition:
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The existence of an infinite (R,DPnrg(R))-chain
if and only if

the existence of an infinite (R,DPnrg(R))-chains such
that all dependency pairs in the chain are right-linear
and right-shallow, (or shallow for innermost case).

Although the condition in the theorem is undecidable,
lots of technique in the framework called dependency pair
processors [13] are available to show the condition. For ex-
ample, (approximated) dependency graphs, subterm crite-
rion, argument filtering, reduction pairs and usable rules are
known [10], [11], [14].

Before proving this theorem, we need a lemma corre-
sponding to Theorem 7.

Lemma 23: For a TRS R satisfying the condition of Theo-
rem 22, −−−−→

(in),R
-termination of a term is decidable.

Proof. We can decide termination of t by exactly the same
procedure in the proof of Theorem 7.

If t is not −−−−→
(in),R

-terminating, there exist S � (⊆ DP(R))

and an infinite (innermost) (R, S �)-chain s�0 → t�0, . . . with
substitutions τ0, . . . such that

• all elements in S � (⊆ DP(R)) appear infinitely in the
chain, and
• t′� −−−−−−−−−→

(in),R∪DP(R)
∗ s�0τ0 for some t′ � t.

by Proposition 5. This is possible because if an element in
S � appears only finitely many then we can take s�i → t�i , . . .
so that the element does not appear in the resulted sequence
and remove the element from S �.

If S � contains right-ground dependency pairs in DP(R),
there exists a term u� ∈ S �rhs∩T (F ), such that t′� −−−−−−−−−→

(in),R∪DP(R)
∗

u� −−−−−−−−−→
(in),R∪DP(R)

+ u� from Lemma 21. Otherwise dependency

pairs in S � are all right-shallow from the condition of The-
orem 22. Therefore the rest of the proof can be done in a
same way to Theorem 7. �

Now we give a proof for Theorem 22.
Proof. (Theorem 22): By Lemma 23, we can pro-
vide a similar procedure in the proof of Theorem 15 us-
ing a set Cand

(
DPnrg(R),−→

R

)
∪ (DP(R)rhs ∩ T (F )) in-

stead of Cand
(
DP(R),−→

R

)
. (For innermost case, use

Candin

(
DPnrg(R),−−→

in,R

)
∪ (DP(R)rhs ∩ T (F ))).

If R is not (innermost) terminating then there exists an
infinite (innermost) (R, S �)-chain for some S � (⊆ DP(R))
such that all elements in S � appear infinitely in the chain
by Theorem 1 and the similar argument of the proof in
Lemma 23. If S � contains a right-ground dependency pair,
there exists a term u� ∈ (DP(R)rhs ∩ T (F )) such that
u� −−−−−−−−−→

(in),R∪DP(R)
+ u� from Lemma 21. Otherwise all depen-

dency pairs in S � are right-linear and right-shallow (or shal-
low for innermost case). Therefore the rest of the proof can
be done in a same way to Theorem 15 (Theorem 20 for in-
nermost case). �

Example 24: Consider the following TRS that defines the
factorial in unary representation of natural numbers having
a mistake.

R3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sum(x, 0)→ x,
sum(x, s(y))→ s(sum(x, y)),
mult(x, 0)→ 0,
mult(x, s(y))→ sum(mult(x, y), x),
f act(0)→ s(0),
f act(x)→ mult(s(x), f act(x))

By simple dependency analysis [10], we know that possible
infinite chains may contains the following right-linear right-
shallow dependency pairs.

S � =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sum�(x, s(y))→ sum�(x, y),
mult�(x, s(y))→ mult�(x, y),
f act�(x)→ f act�(x)

From Theorem 22, we can decide its (innermost) termi-

nation. Actually Cand
(
S �,−−−−→

(in),R3

)
= {⊥} and we can easily

find a looping sequence f act(⊥) −−−−−−→
(in),R∪S �

f act(⊥). �

7. Undecidability of Termination for TRSs with Left-
Linear Shallow Dependency Pairs

Right-linear right-shallow TRSs [2] and left-linear shallow
TRSs [4] are known to be decidable classes of termination.
We have extended the former class to TRSs consisting of
right-linear right-shallow dependency pairs in Sect. 4. In
this section, we show that the extension of the latter class
to TRSs consisting of left-linear shallow dependency pairs
is impossible.

Definition 25: An instance of PCP is a finite set P ⊆
A∗ × A∗ of finite pairs of non-empty strings over an al-
phabet A with at least two symbols. A solution of P is a
non-empty string w such that w = u1 · · · uk = v1 · · · vk for
some (u1, v1), . . . , (uk, vk) ∈ P. The Post’s correspondence
problem (PCP) is a problem to decide whether such a solu-
tion exists or not.

Theorem 26 ([15]): PCP is undecidable.

Theorem 27: Termination is undecidable for TRSs all of
whose dependency pairs are left-linear and shallow.

Proof. Let {(ui, vi) ∈ A∗ × A∗ | 1 ≤ i ≤ n} be an instance
of PCP. We identify strings in A∗ with terms with unary
symbols†. We use a notation gk(t) for k times application of
g to t.

A transform of the instance into a TRS is described as
follows:

R4 =

{ f (x, b(ε, ε), c)→ f (x, x, x), a(x, y)→ b(x, y),
g(a(x, x))→ c, g(c)→ c }
∪ { g(b(ui(x), vi(y)))→ b(x, y) | 1 ≤ i ≤ n }

†For example 011(x) represents 0(1(1(x))).
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Since the only one dependency pair of R is
f �(x, b(ε, ε), c) → f �(x, x, x), which is left-linear and shal-
low. It is enough to show that R is non-terminating if and
only if the instance has a solution.
(⇐): Let w = ui1 . . . uik = vi1 . . . vik (k > 0)
be a solution of the instance of PCP and t be a
term gk(a(w(ε),w(ε))). Then we have an infinite se-
quence f (t, t, t) −→

R
+ f (t, gk(b(w(ε),w(ε))), gk−1(c)) −→

R
+

f (t, b(ε, ε), c) −→
R

f (t, t, t) −→
R
+ · · · .

(⇒): If R is non-terminating then there ex-
ists a −→

R
-terminating term t such that f �(t, t, t) −→

R
∗

f �(t, b(ε, ε), c) −−−−→
DP(R)

f �(t, t, t) −→
R
∗ · · · by Theorem 1 and

the definition of chains. Since t must be reachable to both
b(ε, ε) and c, the term t must be in forms of gk(a(w(ε),w(ε)))
for some integer k > 0 and string w ∈ A+. Note that k � 0
because a(w(ε),w(ε)) is not reachable to c, and that w � ε
because gk(a(ε, ε)) with k > 0 is not reachable to b(ε, ε).
Moreover t is reachable to b(ε, ε). Therefore w is a solution
of the instance of PCP. �

8. Conclusion

In this paper, we have shown the followings.

1. The termination and the innermost termination of a
term are decidable properties for TRSs all of whose de-
pendency pairs are right-shallow. (Theorem 7)

2. The termination and the innermost termination proper-
ties are decidable for TRSs all of whose dependency
pairs are right-linear and right-shallow. (Theorem 15)

3. The innermost termination is decidable for TRSs all of
whose dependency pairs are shallow. (Theorem 20)

4. An extension of these results by combining with the
result of semi-constructor TRSs and other techniques
related to dependency pairs. (Theorem 22)

5. The termination is undecidable for TRSs all of whose
dependency pairs are left-linear and shallow. (Theo-
rem 27)

Theorem 22 is useful because it guarantees that decision
procedures in this paper can be incorporated into termina-
tion provers as a dependency pair processor and may im-
prove their efficiency.

Termination provers such as AProVE [16] have been
developed and improved capabilities to prove and disprove
(innermost) termination. They look like to work as a deci-
sion procedure for classes treated in this paper. Thus it is
interesting to clarify properties in this direction. Especially
it is interesting topic whether narrowing based method [17]
to show non-termination eventually halts for classes of TRSs
in this paper or not.

It is also interesting to clarify decidability of context-
sensitive termination for TRSs proposed in this paper.
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