
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010
963

PAPER Special Section on Formal Approach

Program Transformation Templates for Tupling Based on Term
Rewriting

Yuki CHIBA†a), Takahito AOTO††b), Nonmembers, and Yoshihito TOYAMA††c), Member

SUMMARY Chiba et al. (2006) proposed a framework of program
transformation of term rewriting systems by developed templates. Contrast
to the previous framework of program transformation by templates based
on lambda calculus, this framework provides a method to verify the correct-
ness of transformation automatically. Tupling (Bird, 1980) is a well-known
technique to eliminate redundant recursive calls for improving efficiency of
programs. In Chiba et al.’s framework, however, one can not use tuple sym-
bols to construct developed templates. Thus their framework is not capable
of tupling transformations. In this paper, we propose a more flexible notion
of templates so that a wider variety of transformations, including tupling
transformations, can be handled.
key words: program transformation, tupling, term rewriting

1. Introduction

Several techniques for optimizing functional programs by
transformation have been developed [4], [9], [14], [16], [23].
One of the general such frameworks is a program transfor-
mation by templates proposed by Huet and Lang [16]. In this
framework, a program is transformed according to a given
program transformation template—a template consists of
program schemas for input and output programs and a set of
equations that expresses the precondition of operators con-
tained in the programs. In contrast to specific program trans-
formations such as fusion [14], [23] or tupling [3], [9], [15],
the program transformation by template provides a general
framework for treating various types of program transfor-
mations by preparing suitable templates in a uniform way.

In Huet and Lang’s framework, the programs and
program schemas are given by second-order simply-typed
lambda terms. A program transformation is carried out (au-
tomatically) by the second-order matching and the correct-
ness is established (manually) based on the denotational se-
mantics. For the former part, matching algorithms for the
program transformation by template have been improved
to achieve more flexible and efficient transformations [11],
[13], [20], [24]. In contrast, the latter part, namely the ver-
ification of the correctness of program transformation, has
been paid less attention. But in general, the second-order
matching often provides many matching solutions and not

Manuscript received July 22, 2009.
Manuscript revised November 10, 2009.
†The author is with Japan Advanced Institute of Science and

Technology, Nomi-shi, 923–1292 Japan.
††The authors are with RIEC, Tohoku University, Sendai-shi,

980–8577 Japan.
a) E-mail: chiba@jaist.ac.jp
b) E-mail: aoto@nue.riec.tohoku.ac.jp
c) E-mail: toyama@nue.riec.tohoku.ac.jp

DOI: 10.1587/transinf.E93.D.963

all of them are appropriate for program transformations.
Therefore, the verification of the correctness is expected to
be important for this framework.

Chiba et al. proposed a framework of program transfor-
mation by templates based on term rewriting [5]–[8]. In this
framework, programs and program schemas are given by
term rewriting systems (TRSs for short) and TRS patterns—
a TRS in which pattern variables (which will be instantiated
for program transformations) are used in the place of func-
tion symbols. They gave a criterion for the correctness of
transformations by developed templates. The criterion con-
sists of some properties of input and output TRSs such as
confluence, sufficient completeness and of inductive valid-
ity of the instantiated precondition. The former two prop-
erties can be checked automatically in some classes and au-
tomated inductive theorem proving methods can be applied
for the last property. Thus, once a suitable developed tem-
plate is constructed, this result provides a method to verify
the correctness of transformations automatically.

Tupling [3], [9], [15], which improves efficiency of pro-
grams by eliminating redundant recursive calls, is one of
the well-known program transformation techniques in func-
tional programming. Chiba et al.’s framework, however, is
not capable of tupling, since the notion of developed tem-
plates is not expressive enough to handle tupling transfor-
mations. More precisely, one can not deal with tuple sym-
bols, which play an essential role in tupling transformations,
in the construction of developed templates. In this paper,
we give a more flexible notion of templates called correct
templates so that a wider variety of transformations, includ-
ing tupling transformations, can be handled. We introduce
a notion of carrying of signatures for term homomorphisms
to give a criterion to guarantee the correctness of program
transformation by those templates.

The rest of the paper is organized as follows. In Sect. 2,
we first explain the framework of transformation by tem-
plates based on term rewriting and then give some basic no-
tions and notations used in this paper. In Sect. 3, we explain
tupling transformation in term rewriting. In Sect. 4, we ex-
plain a method to show the correctness of program transfor-
mation based on equivalent transformations. In Sect. 5, we
introduce notions of correct templates and carrying of sig-
natures. We then prove a new criterion to guarantee correct-
ness of transformations. Several templates for tupling trans-
formations are also presented. In Sect. 6, we compare our
new framework with the old one. We conclude in Sect. 7.

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

964
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

2. Transformation by Templates

In this section, we first explain the framework of program
transformation by templates based on term rewriting [5]–[7].

Let us describe a program transformation by the fol-
lowing template 〈P,P′,H〉.

P

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f(a) → b
f(c(u1, v1)) → g(u1, f(v1))
g(b, u2) → u2

g(d(u3, v3),w3) → d(u3, g(v3,w3))

P′

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(u4) → f1(u4, b)
f1(a, u5) → u5

f1(c(u6, v6),w6) → f1(v6, g(w6, u6))
g(b, u7) → u7

g(d(u8, v8),w8) → d(u8, g(v8,w8))

H
{

g(b, u1) ≈ g(u1, b)
g(g(u2, v2),w2) ≈ g(u2, g(v2,w2))

The TRS pattern P is the source and P′ is the target, i.e. P
is a schema of input programs to be transformed and P′ is
a schema whose instantiations become the output programs.
The set H of equations is a schema of hypothesis whose
instantiations are used to verify the correctness of transfor-
mations. This template is for a program transformation from
recursive programs to iterative programs.

Consider, for example, the following TRS Rsum which
specifies a program that computes the summation of a list
of natural numbers. Here the natural numbers 0, 1, 2, . . . are
expressed as 0, s(0), s(s(0)),

Rsum

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sum([]) → 0
sum(x1:y1) → +(x1, sum(y1))
+(0, x2) → x2

+(s(x3), y3) → s(+(x3, y3))

This Rsum computes the summation of a list using a re-

cursive call. For instance, sum(1:(2:(3:(4:(5:[])))))
∗→Rsum

+(1,+(2,+(3,+(4,+(5, sum([]))))))
∗→Rsum 15.

To transform this program to the iterative form, we per-
form a pattern matching with the source P against the input
TRS Rsum. Using the matching algorithm presented in [6],
[7], one finds the following term homomorphism ϕ satisfy-
ing Rsum = ϕ(P).

ϕ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f 	→ sum(�1) a 	→ [] b 	→ 0
g 	→ +(�1,�2) c 	→ �1:�2

f1 	→ sum1(�1,�2) d 	→ s(�2)
u1 	→ x1 u2 	→ x2 u4 	→ x4

u5 	→ x5 u6 	→ x6 u7 	→ x7

v1 	→ y1 v3 	→ x3 v6 	→ y6

v8 	→ y8 w3 	→ y3 w6 	→ z6

w8 	→ z8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
The output TRS R′sum, the iterative form † of Rsum, is

obtained by applying ϕ to the target P′ i.e. R′sum = ϕ(P′).

R′sum

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

sum(x4) → sum1(x4, 0)
sum1([], x5) → x5

sum1(x6:y6, z6) → sum1(y6,+(z6, x6))
+(0, x7) → x7

+(s(y8), z8) → s(+(y8, z8))

The term homomorphism ϕ is also used to generate the
following set Esum = ϕ(H) of equations.

Esum

{
+(0, x1) ≈+(x1, 0)
+(+(x2, v2),w2)≈+(x2,+(v2,w2))

It is required to ensure the correctness of the transformation
that these equations are inductive consequences of Rsum. In
the course of the transformation the inductive validity of
these equations is verified, for example, by automated in-
ductive theorem proving methods. In this case, using the
rewriting induction [19], it is successfully proved automati-
cally that the equations in Esum are inductive consequences
of Rsum.

The correctness of the transformation, i.e. the equiva-
lence of the input TRS Rsum and the output R′sum, is guar-
anteed if Rsum is confluent and Rsum and R′sum are suffi-
ciently complete [7]—these conditions can be checked, for
example, by checking the joinability of the critical pairs [2]
and the complement substitution algorithm [18], [21], re-
spectively, provided that Rsum and R′sum are terminating.
Termination of a TRS is an undecidable property but var-
ious termination proving methods are known and are still
actively investigated. In this case, the termination of Rsum

and R′sum is successfully proved automatically using the lex-
icographic path order [2].

We now give some definitions to formalize program
transformation by template based on term rewriting that will
be used in this paper. Familiarity with term rewriting will be
helpful in what follows (see e.g. [2]).

Let F , X and V be the sets of function symbols,
pattern variables and local variables, respectively. Any
p ∈ F ∪ X has its arity, denoted by arity(p). The set
T(F ∪ X ,V) of term patterns is defined by (1) V ⊆
T(F ∪ X ,V); and (2) p(t1, . . . , tn) ⊆ T(F ∪ X ,V) for
any p ∈ F ∪ X such that arity(p) = n and t1, . . . , tn ∈
T(F ∪X ,V). A term pattern without pattern variables is
called a term. The set of terms is denoted by T(F ,V). The
sets of function symbols, pattern variables and local vari-
ables in a term pattern s are denoted by F (s), X (s) and
V (s), respectively. A ground term (pattern) is the one with-
out local variables. We abbreviate T(F ∪X , ∅), T(F , ∅),
etc. as T(F ∪X), T(F), etc.

A substitution θ is a mapping from V to T(F ∪X ,V).
A substitution θ is extended to a mapping θ̂ over term pat-
tern T(F ∪ X ,V) like this: (1) θ̂(x) = θ(x) if x ∈ V ,
(2) θ̂(p(s1, . . . , sn)) = p(θ̂(s1), . . . , θ̂(sn)). We usually iden-
tify θ̂ and θ. We denote sθ instead of θ(s). The domain of
a substitution θ (denoted by dom(θ)) is defined by dom(θ) =
{x ∈ V | x � θ(x)}.

†Precisely speaking, only the rules for sum are changed to it-
erative and those for + remain recursive.

CHIBA et al.: PROGRAM TRANSFORMATION TEMPLATES FOR TUPLING BASED ON TERM REWRITING
965

Consider special (indexed) constants �i (i ≥ 1) called
holes such that �i � F . An (indexed) context C is an
element of T(F ∪ X ∪ {�i | i ≥ 1},V). C[s1, . . . , sn]
is the result of C replacing �i by s1, . . . , sn from left to
right. C〈s1, . . . , sn〉 is the result of C replacing �i by si

for i = 1, . . . , n (indexed replacement). (For example,
f(�1, g(�1),�2)〈x, y〉 = f(x, g(x), y).) A context C with pre-
cisely one hole is denoted by C[]. The set of contexts is
denoted by T�(F ∪X ,V); its subset T(F ∪X ∪ {�i | 1 ≤
i ≤ n},V) is denoted by T�n (F ∪X ,V). T�(F) and T�n (F)
are defined in the same way as T(F).

A pair 〈l, r〉 of term patterns is a rewrite rule if l � V
and V (l) ⊇ V (r). We usually write the rewrite rule 〈l, r〉 as
l → r; l is the left-hand side (lhs for short) of the rule and r
is the right-hand side (rhs for short). A term rewriting sys-
tem pattern (TRS pattern for short) is a set of rewrite rules.
A term s reduces to a term t by R (denoted by s →R t) if
there exist a context C[], a substitution θ and a rewrite rule
l → r ∈ R such that s = C[lθ] and t = C[rθ]. The reflex-
ive transitive closure of →R is denoted by

∗→R, the transi-

tive closure by
+→R, and the equivalence closure by

∗↔R. An
equation is a pair of term patterns; we usually write an equa-
tion l ≈ r. Term patterns s and t are equivalent by a set E of
equations (denoted by s↔E t) if there exist a context C[], a
substitution θ and an equation l ≈ r ∈ E such that s = C[lθ]
and t = C[rθ], or, s = C[rθ] and t = C[lθ]. The equivalence

closure of↔E is denoted by
∗↔E.

For a set Σ ⊆ F ∪ X , we say a TRS pattern (a set
of equations) is over Σ if all rewrite rules (resp. equations)
consist of patterns in T(Σ,V). A term rewriting system (TRS
for short) is a TRS pattern over F . A rewrite rule l →
r is left-linear if no local variable appears more than once
in l. A TRS is left-linear if all rewrite rules are left-linear.
A TRS R is confluent, or has the Church-Rosser property,
(CR(R)) if, for any term s, s1, s2, s

∗→R s1 and s
∗→R s2

imply that there exists a term t such that s1
∗→R t and s2

∗→R
t. A TRS R is strongly normalizing or terminating (SN(R))
if there exists no infinite reduction s1 →R s2 →R s3 →R
· · · . We note that confluence and termination of TRSs are
undecidable problems in general. However, confluence of
terminating TRSs can be decided by checking the joinability
of critical pairs of R [2].

We assume that the set F of function symbols is di-
vided into two disjoint sets—the set Fd of defined function
symbols and the set Fc of constructor symbols. A rewrite
rule l → r is a constructor rewrite rule if l = f (l1, . . . , ln)
for some f ∈ Fd and l1, . . . , ln ∈ T(Fc,V). A TRS R is
a constructor system (CS for short) if all rewrite rules are
constructor rewrite rules.

Suppose Fc ⊆ G ⊆ F . A substitution θ is ground on
G if θ(x) ∈ T(G) for any x ∈ dom(θ). An equation s ≈ t
is an inductive consequence of R for G , or inductively valid
in R for G , (R,G �ind s ≈ t) if for any ground substitu-

tion θg on G such that V (s) ∪ V (t) ⊆ dom(θg), sθg
∗↔R tθg

holds. For a set E of equations, we write R,G �ind E when

R,G �ind s ≈ t for any s ≈ t ∈ E. It is undecidable in gen-
eral that whether an equation is an inductive consequence
of a TRS. There are, however, several automated methods,
such as the rewriting induction [19], for proving/disproving
inductive validity are known.

A TRS R is sufficiently complete for G (SC(R,G)) if
for any ground term s ∈ T(G) there exists t ∈ T(Fc) such

that s
∗→R t. Sufficient completeness of TRSs is an undecid-

able problem. However, sufficient completeness of termi-
nating TRSs can be decided by the complement substitution
algorithm [18], [21]. Furthermore, for many TRSs suitable
for programs, sufficient completeness of TRSs does not hold
if one does not consider many-sorted signature. In many-
sorted signature, function symbols are equipped with not
only the arities but with sorted specification α1 × · · · ×αn →
α0 for arguments and the return value where α0, α1, . . . , αn

are sorts. For example, considering the sort Nat for the
set of natural numbers and the sort List for the set of lists
of natural numbers, the function symbol + is assigned by
Nat × Nat → Nat (+ : Nat × Nat → Nat) and the function
symbol sum is assigned by List→ Nat (sum : List→ Nat).
However, we proceed † our discussion in the mono-sorted
framework; for, the discussion of this paper can be extended
to the many-sorted framework in the straightforward way.

A transformation template (or just template) is a triple
〈P,P′,H〉 of TRS patterns P, P′ and a set H of equations.
The TRS patterns P and P′ are the source and the target
of the template, respectively, and the set H of equations is
the hypothesis of the template. A mapping ϕ from X ∪ V
to T�(F ∪X ,V) is said to be a term homomorphism if (1)
ϕ(p) ∈ T�arity(p)(F ∪X) for any p ∈ domX (ϕ), (2) ϕ(x) ∈ V
for any x ∈ domV (ϕ), and (3) ϕ is injective on domV (ϕ),
i.e., for any x, y ∈ domV (ϕ), if x � y then ϕ(x) � ϕ(y).
Here, the domains of ϕ over pattern variables and local
variables are defined by domX (ϕ) = {p ∈ X | ϕ(p) �
p(�1, . . . ,�arity(p))} and domV (ϕ) = {x ∈ V | ϕ(x) � x}, re-
spectively. A term homomorphism ϕ is extended to a map-
ping ϕ over T(F ∪X ,V) as follows:

ϕ(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(x) if s = x ∈ V
f (ϕ(s1), . . . , ϕ(sn))

if s = f (s1, . . . , sn), f ∈ F
ϕ(p)〈ϕ(s1), . . . , ϕ(sn)〉

if s = p(s1, . . . , sn), p ∈X .

A term homomorphism is extended to a mapping on rewrite
rules and equations in the obvious way. For term homomor-
phisms ϕ and ϕ′ such that dom(ϕ) ∩ dom(ϕ′) = ∅, ϕ ∪ ϕ′ is
a term homomorphism defined by (ϕ ∪ ϕ′)(p) equals ϕ′(p)
if p ∈ dom(ϕ′) and ϕ(p) otherwise. The following basic
property of the term homomorphisms will be used later.

Proposition 1 (Proposition 1 of [6]): Let ϕ be a term ho-
momorphism, P a TRS pattern and H a set of equations.
If s →P t (s ↔H t) then we have ϕ(s) →ϕ(P) ϕ(t) (resp.
ϕ(s)↔ϕ(H) ϕ(t)).

†This is very usual (see e.g. Sect. 3 of [2]).

966
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

3. Tupling Transformations for Term Rewriting Sys-
tems

Tupling is one of the well-known program transformation
methods in the field of functional programming [3], [9],
[10], [15]. In this section, we give some examples of tupling
transformations in term rewriting.

Let us consider one source of inefficiency in
programs—namely, inefficient programs may perform the
same computations while efficient programs share this same
computations and use the result many times. Such a typical
program arises from a usual definition of Fibonacci number.

Rfib

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

fib(0) → s(0)
fib(s(0)) → s(0)
fib(s(s(x))) → +(fib(s(x)), fib(x))
+(s(x), y) → s(+(x, y))
+(0, x) → x

In this program, the function calls from fib(5) are described
in a directed graph as follows.

fib(5) fib(4) fib(3) fib(2)

fib(1)fib(2)

fib(3) fib(2)

fib(1)

We see that fib(3) is computed twice and fib(2) is computed
three times and these computations are performed indepen-
dently. Such multiple computations of the same expression
are the reason of exponential time computation of fib(n).

Tupling eliminates such multiple computations of the
same expression called in different contexts. One of the ba-
sic methods of tupling in functional programs is operated as
follows [9]. First one needs to find some suitable expres-
sions that should be computed in simultaneously. Then one
prepares a new function definition which computes these ex-
pressions together. Finally, one makes original functions de-
rived from this new function. The name of “tupling” comes
from the tuple symbols “〈·〉” used for coupling the expres-
sions that are simultaneously computed.

In our example, by tupling, one gets the following R′fib
from Rfib.

R′fib

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fib(0) → s(0)
fib(s(0)) → s(0)
fib(s(s(x))) → π1(step(fibpair(x)))
fibpair(0) → 〈s(0), s(0)〉
fibpair(s(x)) → step(fibpair(x))
step(x) → 〈+(π1(x), π2(x)), π1(x)〉
+(0, x) → x
+(s(x), y) → s(+(x, y))
π1(〈x, y〉) → x
π2(〈x, y〉) → y

In R′fib, fibpair(n) computes fib(n) and fib(n − 1) simultane-
ously. step(〈x, y〉) computes 〈x + y, x〉. If x, y are values

then this can be computed efficiently. In term rewriting,
this is done by sharing evaluation of x in rhs of the rule
step(x)→ 〈+(π1(x), π2(x)), π1(x)〉 (based on e.g. term graph
rewriting framework). Thus, fib(n) can be computed much
efficiently using R′fib instead of Rfib.

Let us see another example of tupling transformation.
In the following TRS Rfactlist, factlist(n) computes a list [(n−
1)!, . . . , 0!].

Rfactlist

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

factlist(0) → []
factlist(s(x))→ fact(x):factlist(x)
fact(0) → s(0)
fact(s(x)) →×(s(x), fact(x))
×(0, y) → 0
×(s(x), y) →+(y,×(x, y))
+(0, x) → x
+(s(x), y) → s(+(x, y))

The dependency of function calls from factlist(4) can be de-
scribed by the following graph:

factlist(4) factlist(3) factlist(2) factlist(1) factlist(0)

fact(0)

fact(1) fact(0)

fact(2) fact(1) fact(0)

fact(3) fact(2) fact(1) fact(0)

We see that fact(n−1) called from fact(n) and factlist(n) can
be shared. By a tupling transformation, we get the following
TRS R′factlist from Rfactlist.

R′factlist

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

factlist(x) → π1(factpair(x))
fact(x) → π2(factpair(x))
factpair(0) →〈[], s(0)〉
factpair(s(x))→ step(s(x), factpair(x))
step(x, y) →〈π2(y):π1(y),×(x, π2(y))〉
×(0, y) → 0
×(s(x), y) →+(y,×(x, y))
+(0, x) → x
+(s(x), y) → s(+(x, y))
π1(〈x, y〉) → x
π2(〈x, y〉) → y

In R′factlist, factpair(n) computes factlist(n) and fact(n) simul-
taneously. step(x, 〈ys, y〉) computes 〈y:ys, x × y〉. If x, y, ys
are values then this can be computed efficiently.

4. Correctness of Program Transformation

A first question that arises is how correctness of such pro-
gram transformation can be verified. In this section, we ex-
plain a method based on the equivalent transformation [6],
[7], [22] on which our framework is based.

To discuss correctness of program transformations, we
need to argue about the notion of equivalence of TRSs suit-
able for program transformations. Let G be a set of func-
tion symbols such that Fc ⊆ G ⊆ F . Two TRSs R and
R′ are said to be equivalent for G (R �G R′), if for any

CHIBA et al.: PROGRAM TRANSFORMATION TEMPLATES FOR TUPLING BASED ON TERM REWRITING
967

s ∈ T(G) and t ∈ T(Fc), s
∗→R t iff s

∗→R′ t holds [6], [7].
We note that program transformation may introduce auxil-
iary function symbols such as sum1, factpair, etc. This is
why one has to restrict his/her attention to some set G of
function symbols. Equivalent transformation [6], [7], [22]
can be used to establish the equivalence of two TRSs.

Definition 1: Let R0 be a left-linear CS over F0 and E
a set of equations over F0. An equivalent transformation
sequence under E is a sequence R0, . . . ,Rn of TRSs (over
F0, . . . ,Fn, respectively) such that Rk+1 is obtained from
Rk by applying one of the following inference rules:

(I) Introduction

Rk+1 = Rk ∪ { f (x1, . . . , xn)→ r}
provided that f � Fk, and r ∈ T(Fk, {x1, . . . , xn}),
where x1, . . . , xn are mutually distinct variables. We
put Fk+1 = Fk ∪ { f }.

(A) Addition

Rk+1 = Rk ∪ {l→ r}

provided l
∗↔Rk∪E r holds.

(E) Elimination

Rk+1 = Rk \ {l→ r}
If this is the case, we write Rk ⇒ Rk+1. (In the Addition
and Elimination rules, Fk+1 can be any set of function sym-
bols such that Fk+1 ⊆ Fk provided that Rk+1 is a TRS over
Fk+1.) The reflexive transitive closure of ⇒ is denoted by
∗⇒. We indicate the rule of ⇒ by ⇒

I
, ⇒

A
, or ⇒

E
. Finally,

we say there exists an equivalent transformation from R to
R′ under E if there exists an equivalent transformation se-

quence R ∗⇒
I
· ∗⇒

A
· ∗⇒

E
R′ under E.

The next proposition is the basis of correctness of pro-
gram transformation by template based on term rewriting.

Proposition 2 (Theorem 4.4 of [7]): Let G and G ′ be sets
of function symbols such that Fc ⊆ G ,G ′ ⊆ F . Let R be
a left-linear CS over G , E a set of equations over G , and R′
a TRS over G ′. Suppose that R,G �ind E and there exists
an equivalent transformation from R to R′ under E. Then,
CR(R) ∧ SC(R,G) ∧ SC(R′,G ′) imply R �G∩G ′ R′.

The transformation from Rfactlist to R′factlist in the pre-
vious section is based on the tupling transformation of [9].
We are now going to demonstrate how the same transforma-
tion is obtained by the method of equivalent transformations
(Definition 1) and how the correctness of the transformation
is obtained by Proposition 2.

First, we show an equivalent transformation from
Rfactlist ∪ Rπ to R′factlist under the empty set ∅, where Rπ =
{π1(〈x, y〉)→ x, π2(〈x, y〉)→ y}.

1. Let R0 = Rfactlist ∪ Rπ.

2. Let R1 = R0 ∪ {factpair(x) → 〈factlist(x), fact(x)〉}.
Here, factpair is a fresh function symbol. Thus, R0 ⇒
R1 by the Introduction rule.

3. Let R2 = R1 ∪ {step(x, y) → 〈π1(y):π2(y), x × π2(y)〉}.
Here, step is a fresh function symbol. Thus, R1 ⇒ R2

by the Introduction rule.
4. LetR3 = R2∪{factpair(0)→ 〈[], s(0)〉}. Here, we have

factpair(0) →R2 〈factlist(0), fact(0)〉 ∗→R2 〈[], s(0)〉.
Thus, R2 ⇒ R3 by the Addition rule.

5. Let R4 = R3 ∪ {factpair(s(x)) → step(s(x),
factpair(x))}. Here, we have factpair(s(x))

→R3 〈factlist(s(x)), fact(s(x))〉
∗→R3 〈fact(x):factlist(x), s(x)×fact(x)〉
∗←R3 〈π2(〈factlist(x), fact(x)〉)

:π1(〈factlist(x), fact(x)〉),
s(x)×π2(〈factlist(x), fact(x)〉)〉

∗←R3 〈π2(factpair(x)):π1(factpair(x)),
s(x)×π2(factpair(x))〉

←R3 step(s(x), factpair(x))

Thus, R3 ⇒ R4 by the Addition rule.
6. Let R5 = R4 ∪ {factlist(x) → π1(factpair(x))}. Here,

we have factlist(x) ←R4 π1(〈factlist(x), fact(x)〉) ←R4

π1(factpair(x)). Thus, R4 ⇒ R5 by the Addition rule.
7. Let R6 = R5 ∪ {fact(x) → π2(factpair(x))}. Here,

we have fact(x) ←R5 π2(〈factlist(x), fact(x)〉) ←R5

π2(factpair(x)). Thus, R5 ⇒ R6 by the Addition rule.
8. Finally, applying the Elimination rule five times to R6,

we obtain R′factlist.

Thus Rfactlist ∪ Rπ ∗⇒
I
· ∗⇒

A
· ∗⇒

E
R′factlist under ∅, i.e. there is an

equivalent transformation from Rfactlist ∪ Rπ to R′factlist under
∅.

Next, we show the correctness of the transformation
based on Proposition 2. For this, we need to consider †
the many-sorted signature additionally to guarantee the suf-
ficient completeness. We consider the following natural
many-sorted signature factlist : Nat → List, fact : Nat →
Nat, × : Nat × Nat → Nat, + : Nat × Nat → Nat,
: : Nat × List → List, [] : List, s : Nat → Nat, 0 : Nat,
〈·〉 : List × Nat → Pair, π1 : Pair → List, π2 : Pair → Nat,
factpair : Nat→ Pair, and step : Nat × Pair→ Pair.

We now show Rfactlist ∪ Rπ �G∩G ′ R′factlist where
G = {factlist, fact,×,+, :, [], s, 0, π1, π2, 〈·〉} and G ′ = G ∪
{factpair, step}. Since there is an equivalent transformation
from Rfactlist ∪ Rπ to R′factlist under ∅, it suffices to check the
rest of the conditions of Proposition 2.

It is easy to see that Rfactlist ∪ Rπ is a left-linear CS.
Since E = ∅, R,G �ind E holds trivially. To show
CR(Rfactlist ∪ Rπ), SC(Rfactlist ∪ Rπ,G) and SC(R′factlist,G

′),
we use the fact SN(Rfactlist ∪ Rπ) and SN(R′factlist)—they can
be shown automatically using the lexicographic path or-
der. Then CR(Rfactlist ∪ Rπ) follows since there is no crit-

†Recall a remark after the definition of sufficient completeness
in Sect. 2.

968
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

ical pairs in Rfactlist ∪ Rπ. Furthermore, based on the many-
sorted assumption, it is easy to check SC(Rfactlist ∪ Rπ,G)
and SC(R′factlist,G

′) using the complement substitution algo-
rithm. This complete the proof of the equivalence Rfactlist ∪
Rπ �G∩G ′ R′factlist.

As demonstrated above, once termination of a TRS
has been proved, confluence and sufficient completeness of
the TRS can be decided. Although termination is an un-
decidable property, a number of techniques are available to
show termination of TRSs. There are also several automated
methods for proving/disproving whether an equation is an
inductive consequence of a TRS. In contrast, as one may ex-
pect, it is difficult to automate the discovery of a suitable set
E of equations and an equivalent transformation sequence
from R to R′ under E, from given TRSs R and R′ only.
Thus this framework is expected to be used only when one
is working with his/her hands.

5. Extended Templates and Its Correctness

Since it is difficult to find a suitable equivalent transforma-
tion sequence automatically for each program transforma-
tion, the framework in the previous section is not directly
applicable to automated verification of the correctness of
program transformations.

In the framework of program transformation by tem-
plates, this can be partially achieved by abstracting the simi-
lar equivalent transformations of TRSs into a transformation
of templates. The idea is to prepare a template constructed
by an abstract equivalent transformation and to lift up from

an abstract equivalent transformation P ∗⇒ P′ to a concrete

equivalent transformation ϕ(P)
∗⇒ ϕ(P′).

To make such a lift up possible, the notions of devel-
oped templates and CS homomorphisms have been intro-
duced in [5]–[8]. As explained later, however, these notions
turn out to be too restrictive to deal with tupling transforma-
tions, notwithstanding the successful tupling transformation
based on equivalent transformation in the previous section.
This motivates us to extend the notion of developed tem-
plates. We first give an equivalent transformation of tem-
plates which extends the one in [5]–[8].

Definition 2: Let P0 be a TRS pattern over a set Σ0 ⊆
F ∪ X and H a set of equations over Σ0. An abstract
equivalent transformation sequence under H is a sequence
P0, . . . ,Pn of TRS patterns (over Σ0, . . . ,Σn, respectively)
such that Pk+1 is obtained from Pk by applying one of the
following inference rules:

(I) Introduction

Pk+1 = Pk ∪ {p(x1, . . . , xn)→ r}
provided that p ∈ X \ Σk and r ∈ T(Σk, {x1, . . . , xn}),
where x1, . . . , xn are mutually distinct variables. We
put Σk+1 = Σk ∪ {p}.

(A) Addition

Pk+1 = Pk ∪ {l→ r}

provided l
∗↔Pk∪H r holds.

(E) Elimination

Pk+1 = Pk \ {l→ r}
If this is the case, we write Pk ⇒Pk+1. (In the Addition and
Elimination rules, Σk+1 can be any set such that Σk+1 ⊆ Σk

provided thatPk+1 is a TRS pattern over Σk+1.) The reflexive

transitive closure of ⇒ is denoted by
∗⇒. We indicate the

rule of ⇒ by ⇒
I

, ⇒
A

, or ⇒
E

. Finally, we say that 〈P,P′,H〉
is a correct template if there exists an abstract equivalent

transformation sequence P ∗⇒
I
· ∗⇒

A
· ∗⇒

E
P′ underH .

Unfortunately, the existence of abstract equivalent

transformation P ∗⇒ P′ under H does not imply that of

equivalent transformation ϕ(P)
∗⇒ ϕ(P′) under ϕ(H) for

any term homomorphism ϕ. More specifically, the appli-
cation of Introduction rule is not preserved. For example,
ϕ(p(x1, . . . , xn)) → ϕ(r) may be (1) f(x1) → g(x1, x2), (2)
g(x1, x1)→ r, (3) f(f(x1))→ r, or (4) x1 → r, all of which do
not satisfy the conditions of Introduction rule for an equiva-
lent transformation. Namely, for (1), the variable condition
(V (r) ⊆ V (l)) is violated; for (2), lhs is not linear; for (3),
the proper subterm of lhs is not a variable; and for (4), the
root symbol of lhs is not a function symbol. Similarly, one
needs to guarantee f � Fk and F (r) ⊆ Fk. Therefore, in
order to guarantee the successful lift up of abstract equiva-
lent transformation sequences, one has to impose some con-
ditions on the term homomorphism ϕ to use. The following
condition of term homomorphisms is helpful to specify the
needed conditions.

Definition 3: Let Σ ⊆ F ∪ X and G ⊆ F . A term
homomorphism ϕ carries Σ to G if Σ ∩ F ⊆ G and
ϕ(p) ∈ T(G ∪Harity(p)) for all p ∈ Σ ∩X .

Note that it immediately follows from this definition
that s ∈ T(Σ,V) implies ϕ(s) ∈ T(G ,V) for any term ho-
momorphism ϕ that carries Σ to G . We also note that, for
term homomorphism ϕ with a finite domain, it is decidable
whether ϕ carries Σ to G .

Lemma 1: Let Σ ⊆ F ∪X and P andH be a TRS pattern
and a set of equations over Σ, respectively. Suppose Σ′ ⊆
F ∪X , P′ is a TRS pattern over Σ′, and that there is an
abstract equivalent transformation sequence under H from
P to P′. Let G ⊆ F and ϕ a term homomorphism such
that (1) ϕ carries Σ to G , (2) ϕ(P) is a left-linear CS, and
(3) for each p ∈ X \ Σ, ϕ(p) = fp(�1, . . . ,�arity(p)) with
mutually distinct fp ∈ Fd\Σ. Then there exists an equivalent

transformation sequence ϕ(P)
∗⇒ ϕ(P′) under ϕ(H).

Proof. We lift up the abstract equivalent transforma-
tion sequence P = P0 ⇒ · · · ⇒ Pn = P′ (over Σ =
Σ0, . . . ,Σn = Σ

′, respectively) to the equivalent transfor-
mation sequence ϕ(P) = ϕ(P0) ⇒ · · · ⇒ ϕ(Pn) = ϕ(P′)
(over G = F0, . . . ,Fn, respectively) using the correspond-

ing transformation rules. For the transformation P0
∗⇒
I
Pk,

CHIBA et al.: PROGRAM TRANSFORMATION TEMPLATES FOR TUPLING BASED ON TERM REWRITING
969

we have Σi+1 = Σi ∪ {pi+1} (0 ≤ i < k), for some
pi+1 � Σi. For each i, we put Fi+1 = Fi ∪ {p̃i+1} where
p̃i+1 = root(ϕ(pi+1)). We simultaneously show by induction

on k that (a) ϕ(P0)
∗⇒ ϕ(Pk) and (b) if P0

∗⇒
I
Pk then ϕ

carries Σk to Fk.
The base step for (b) follows from the condition (1).

For the induction step, we divide the cases by the last infer-

ence rule applied to P0
∗⇒ Pk.

1. The case of Pk ⇒
I
Pk+1. Let Pk+1 = Pk ∪

{pk+1(x1, . . . , xn) → r}. By the condition of the Intro-
duction rule x1, . . . , xn are mutually distinct variables
and pk+1 ∈ X \ Σk and r ∈ T(Σk, {x1, . . . , xn}). By
the assumption (3) and the way we took F0, . . . ,Fk,
ϕ(pk+1) = fpk+1 (�1, . . . ,�arity(pk+1)) with fpk+1 � Fk.
Since any term homomorphism is injective on lo-
cal variables, ϕ(pk+1(x1, . . . , xn)) = fp(y1, . . . , yn) and
V (ϕ(r)) ⊆ {y1, . . . , yn} where ϕ(xi) = yi with distinct
local variables y1, . . . , yn. Since ϕ carries Σk to Fk by
the induction hypothesis and r ∈ T(Σk, {x1, . . . , xn}),
we have ϕ(r) ∈ T(Fk, {y1, . . . , yn}) and thus ϕ(Pk) ⇒

I
ϕ(Pk+1). Furthermore, since Σk+1 = Σk ∪ {pk+1},
Fk+1 = Fk ∪ { fpk+1 }, ϕ carries Σk to Fk, and ϕ(pk+1) =
fpk+1 (�1, . . .�arity(pk+1)) ∈ T(Fk ∪Harity(pk+1)), ϕ carries
Σk+1 to Fk+1.

2. The case Pk ⇒
A
Pk+1. Then Pk+1 = Pk ∪ {l →

r} with l
∗↔Pk∪H r. From Proposition 1, we have

ϕ(l)
∗↔ϕ(Pk)∪ϕ(H) ϕ(r). Thus ϕ(Pk)⇒

A
ϕ(Pk+1).

3. The case Pk ⇒
E
Pk+1. Clearly, ϕ(Pk)⇒

E
ϕ(Pk+1).

�
The conditions of suitable transformations are summa-

rized in the following definition.

Definition 4: Let 〈P,P′,H〉 be a correct template whereP
and P′ are TRS patterns over Σ and Σ′, respectively. A TRS
R over G is transformed to a TRS R′ over G ′ by the correct
template 〈P,P′,H〉 if there exist a term homomorphism ϕ
and a TRS Rcom over G such that:

1. R = ϕ(P) ∪ Rcom,
2. ϕ carries Σ to G ,
3. R′ = ϕout(P′) ∪ Rcom, where ϕout = ϕ ∪ {p 	→

fp(�1, . . . ,�arity(p)) | p ∈ X \ Σ} where each fp is a
fresh function symbol, and

4. R,G �ind ϕ(H).

Note that although R′ can be obtained from the tem-
plates and term homomorphism ϕ, our definition of trans-
formation by correct templates also imposes the additional
conditions 2 and 4 which are used to guarantee the correct-
ness of the transformation †.

The next theorem gives a sufficient condition to guaran-
tee the correctness of TRS transformations by correct tem-
plates.

Theorem 1: Let Fc ⊆ G ,G ′ ⊆ F . If a left-linear CS

R over G is transformed to a TRS R′ over G ′ by a correct
template 〈P,P′,H〉, then CR(R) ∧ SC(R,G) ∧ SC(R′,G ′)
implies R �G∩G ′ R′.

Proof. Suppose that a left-linear CS R over G is
transformed to a TRS R′ over G ′ by a correct template
〈P,P′,H〉. Then there exist a term homomorphism ϕ and
a TRS Rcom over G that satisfies conditions of Definition 4.
By the condition 3, we have ϕ(P) = ϕout(P). Further-
more, since Rcom is over G , we have R = ϕ(P ∪ Rcom) and
R′ = ϕ(P′ ∪ Rcom). Then, by conditions 2, 3, 4, it follows
from Lemma 1 that there is an equivalent transformation se-
quence from R to R′ under ϕout(H) (= ϕ(H)). Then the
claim follows from Proposition 2. �

Below we present several correct templates for tupling
transformations.

Example 1: Let 〈P,P′,H〉 be a template where

P

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(a) → b
p(c(x, y))→ h(e(x, c(x, y)), p(y), q(y)))
q(a) → d
q(c(x, y))→ k(e(x, c(x, y)), p(y), q(y))
π1(〈x, y〉)→ x
π2(〈x, y〉)→ y

P′

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(x) → π1(r(x))
q(x) → π2(r(x))
r(a) →〈b, d〉
r(c(x, y)) → r1(e(x, c(x, y)), r(y))
r1(x, y) →〈h(x, π1(y), π2(y)), k(x, π1(y), π2(y))〉
π1(〈x, y〉)→ x
π2(〈x, y〉)→ y

H = ∅.
Here, π1, π2, and 〈·〉 are function symbols. We now show
that the template 〈P,P′,H〉 is a correct template.

1. Let P0 = P.
2. Let P1 = P0 ∪ {r(x) → 〈p(x), q(x)〉}. Here, r is a fresh

pattern variable. Thus, P0 ⇒ P1 by the Introduction
rule.

3. Let P2 = P1 ∪ { r1(x, y) → 〈 h(x, π1(y), π2(y)),
k(x, π1(y), π2(y)) 〉 }. Here, r1 is a fresh pattern vari-
able. Thus, P1 ⇒ P2 by the Introduction rule.

4. Let P3 = P2 ∪ {r(a) → 〈b, d〉}. Here, we have
r(a) →P2 〈p(a), q(a)〉 ∗→P2 〈b, d〉. Thus, P2 ⇒ P3

by the Addition rule.
5. Let P4 = P3 ∪ {r(c(x, y)) → r1(e(x, c(x, y)), r(y))}.

Here, we have r(c(x, y))→P3 〈p(c(x, y)), q(c(x, y))〉

†We regard the verification of these conditions as a part of veri-
fication of correctness of the program transformation by templates.

970
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

∗→P3〈h(e(x, c(x, y)), p(y), q(y)),
k(e(x, c(x, y)), p(y), q(y))〉

∗←P3

〈h(e(x, c(x, y)), π1(〈p(y), q(y)〉), π2(〈p(y), q(y)〉)),
k(e(x, c(x, y)), π1(〈p(y), q(y)〉), π2(〈p(y), q(y)〉))〉

∗←P3 〈h(e(x, c(x, y)), π1(r(y)), π2(r(y))),
k(e(x, c(x, y)), π1(r(y)), π2(r(y)))〉

←P3 r1(e(x, c(x, y)), r(y)).

Thus, P3 ⇒ P4 by the Addition rule.
6. Let P5 = P4 ∪ {p(x) → π1(r(x))}. Here, we have

p(x) ←P4 π1(〈p(x), q(x)〉) ←P4 π1(r(x)). Thus, P4 ⇒
P5 by the Addition rule.

7. Let P6 = P5 ∪ {q(x) → π2(r(x))}. Here, we have
q(x) ←P5 π2(〈p(x), q(x)〉) ←P5 π2(r(x)). Thus, P5 ⇒
P6 by the Addition rule.

8. Finally, applying the Elimination rule five times to P6,
we obtain P′.

Thus P ∗⇒
I
· ∗⇒

A
· ∗⇒

E
P′ under H and hence 〈P,P′,H〉 is a

correct template.
The transformation from TRS Rfactlist ∪ Rπ to R′factlist in

Sect. 3 is obtained by this template as follows. By matching
the source P and the TRS (Rfactlist ∪ Rπ) \ Rcom, we obtain
the term homomorphism ϕ =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

p 	→ factlist(�1) a 	→ 0
b 	→ [] c 	→ s(�2)
h 	→�3:�2 e 	→�2

q 	→ fact(�1) d 	→ s(0)
k 	→×(�1,�3)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
where Rcom =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

×(0, y) → 0
×(s(x), y) → +(y,×(x, y))
+(0, x) → x
+(s(x), y) → s(+(x, y)).

It is checked automatically that the term homomorphism
ϕ carries {p, a, b, c, h, e, q, d, k, π1, π2, 〈·〉} to {factlist, fact,×,
+, :, [], s, 0, π1, π2, 〈·〉}. We have Rfactlist′ = ϕ̃(P′) ∪ Rcom

where ϕ̃ = ϕ ◦ {r 	→ factpair(�1), r1 	→ step(�1,�2)}. Since
H = ∅, Rfactlist ∪ Rπ,G �ind ϕ(H) holds trivially. Hence the
TRS Rfactlist ∪ Rπ is transformed to R′factlist.

As explained in the end of Section 4, CR(Rfactlist ∪Rπ),
SC(Rfactlist ∪ Rπ,G) and SC(R′factlist,G

′) can be proved au-
tomatically (under the assumption of many-sorted signa-
ture). The correctness of the transformation also follows
from Theorem 1, i.e. Rfactlist ∪ Rπ �{factlist,fact,×,+,:,[],s,0,π1,π2,〈·〉}
R′factlist.

Example 2: A list of numbers is said to be steep if each
element is greater than the sum of the elements that follow
it [12]. The following TRS Rsteep specifies a program which
checks whether the input list is steep. Rsteep =

Rcom ∪

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

steep([]) → tt
steep(x:xs)→ and(gt(x, sum(xs)), steep(xs))
sum([]) → 0
sum(x:ys) →+(x, sum(ys))
π1(〈x, y〉) → x
π2(〈x, y〉) → y

where Rcom =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

gt(0, 0) → ff gt(s(x), 0) → tt
gt(0, s(y)) → ff gt(s(x), s(y)) → gt(x, y)
and(tt, tt) → tt and(tt, ff) → ff
and(ff, tt) → ff and(ff, ff) → ff
+(0, x) → x +(s(x), y) → s(+(x, y)).

Let 〈P,P′,H〉 be the template in Example 1. The fol-
lowing term homomorphism ϕ is a matcher between the
source P and the TRS Rsteep \ Rcom, that is, ϕ(P) = Rsteep \
Rcom.

ϕ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p 	→ steep(�1)
a 	→ []
b 	→ tt
c 	→�1:�2

h 	→ and(gt(�1,�3),�2)
e 	→�1

q 	→ sum(�1)
d 	→ 0
k 	→+(�1,�3)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
It is easy to check that the above term homomorphism ϕ car-
ries {p, a, b, c, h, e, q, d, k, π1, π2, 〈·〉} to {steep, sum, gt, and,
+, :, [], tt, ff, s, 0, π1, π2, 〈·〉}. Since H = ∅, Rsteep,G �ind

ϕ(H) holds trivially. Let R′steep = Rcom ∪ ϕ̃(P′) =

Rcom ∪

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

steep(x) → π1(fr(x))
sum(x) → π2(fr(x))
fr([]) →〈tt, 0〉
fr(x:y) → fr1(x, fr(y))
fr1(x, y) →
〈and(gt(x, π2(y)), π1(y)),+(x, π2(y))〉
π1(〈x, y〉)→ x
π2(〈x, y〉)→ y

where ϕ̃ = ϕ ◦ {r 	→ fr(�1), r1 	→ fr1(�1)}. Thus the
TRS Rsteep is transformed to the TRS R′steep by the template
〈P,P′,H〉.

The termination of the TRSs Rsteep and R′steep can
be proved automatically using the lexicographic path or-
der; from this, CR(Rsteep), SC(Rsteep,G) and SC(R′steep,G

′)
are checked by computing the critical pairs and the com-
plement substitution algorithm (under the assumption of
many-sorted signature). Therefore, the correctness of
the transformation is guaranteed by Theorem 1, that is,
Rsteep �{steep,sum,gt,and,+,:,[],tt,ff,s,0,π1,π2,〈·〉} R′steep.

Example 3: Let 〈P̃, P̃′, H̃〉 be a template where

CHIBA et al.: PROGRAM TRANSFORMATION TEMPLATES FOR TUPLING BASED ON TERM REWRITING
971

P̃

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(a) → c
p(b(a)) → d
p(b(b(x))) → q(p(b(x)), p(x))
π1(〈x, y〉) → x
π2(〈x, y〉) → y

P̃′

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(a) → c
p(b(a)) → d
p(b(b(x))) → π1(r1(r(x)))
r(a) → 〈d, c〉
r(b(x)) → r1(r(x))
r1(x) → 〈q(π1(x), π2(x)), π1(x)〉
π1(〈x, y〉) → x
π2(〈x, y〉) → y

H̃ = ∅.
We now show that the template 〈P̃, P̃′, H̃〉 is a correct tem-
plate.

1. Let P0 = P̃.
2. Let P1 = P0 ∪ {r(x) → 〈p(b(x)), p(x)〉}. Here, r is a

fresh pattern variable. Thus, P0 ⇒ P1 by the Introduc-
tion rule.

3. Let P2 = P1 ∪ {r1(x)→ 〈q(π1(x), π2(x)), π1(x)〉}. Here,
r1 is a fresh pattern variable. Thus, P1 ⇒ P2 by the
Introduction rule.

4. Let P3 = P2 ∪ {r(a) → 〈d, c〉}. Here, we have
r(a) →P2 〈p(b(a)), p(a)〉 ∗→P2 〈d, c〉. Thus, P2 ⇒ P3

by the Addition rule.
5. Let P4 = P3 ∪ {r(b(x))→ r1(r(x))}. Here, we have

r(b(x)) →P3 〈p(b(b(x))), p(b(x))〉
→P3 〈q(p(b(x)), p(x)), p(b(x))〉
∗←P3 〈q(π1(r(x)), π2(r(x))), π1(r(x))〉
←P3 r1(r(x)).

Thus, P3 ⇒ P4 by the Addition rule.
6. Let P5 = P4 ∪ {p(b(b(x))) → π1(r1(r(x)))}. Here, we

have

p(b(b(x))) ←P4 π1(〈p(b(b(x))), p(b(x))〉)
←P4 π1(r(b(x)))
→P4 π1(r1(r(x))).

Thus, P4 ⇒ P5 by the Addition rule.
7. Finally, applying the Elimination rule twice to P5, we

obtain P̃′.
Thus P̃ ∗⇒

I
· ∗⇒

A
· ∗⇒

E
P̃′ under H̃ and hence 〈P̃, P̃′, H̃〉 is a

correct template.
The transformation from TRS Rfib∪Rπ to R′fib in Sect. 3

is obtained by this template as follows. By matching the
source P and the TRS (Rfib ∪Rπ) \ R̃com, we obtain the term
homomorphism ϕ =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p 	→ fib(�1)
a 	→ 0
c 	→ s(0)
b 	→ s(�1)
d 	→ s(0)
q 	→ +(�1,�2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where

R̃com =

{
+(0, x) → x
+(s(x), y) → s(+(x, y)).

It is easily checked that ϕ carries {p, a, c, b, d, q, π1, π2, 〈·〉} to
{fib,+, s, 0, π1, π2, 〈·〉}. Since H̃ = ∅, Rfib ∪ Rπ,G �ind ϕ(H̃)
holds trivially. Since R′fib = R̃com∪ϕ̃(P′) where ϕ̃ = ϕ◦{r 	→
fibpair(�1), r1 	→ step(�1)}, the TRSRfib∪Rπ is transformed
to the TRS R′fib.

The termination of the TRSs Rfib ∪ Rπ and R′fib can be
shown automatically by lexicographic path order; from this,
CR(Rfib∪Rπ), SC(Rfib∪Rπ,G) and SC(R′fib,G

′) are checked
by computing the critical pairs and the complement substi-
tution algorithm (under the assumption of many-sorted sig-
nature). Therefore, the correctness of the transformation is
guaranteed by Theorem 1, that is, Rfib ∪ Rπ �{fib,+,s,0,π1,π2,〈·〉}
R′fib.

6. Comparison with the Previous Framework

As mentioned earlier, in our previous framework, we guar-
antee the successful lift up of abstract equivalent transfor-
mation sequence by the notions of CS homomorphism and
developed templates. In this section, we compare our new
framework with the previous one given in [6], [7].

Definition 5 ([6], [7]): Suppose P is partitioned into sets
Pd, Pc of defined pattern symbols and constructor pat-
tern symbols. A term homomorphism ϕ is said to be a CS
homomorphism if (1) for any p ∈ Pd of arity n, ϕ(p) =
f (�i1 , . . . ,�in) for some f ∈ Fd and mutually distinct in-
dexes i1, . . . , in; and (2) for any p, q ∈ Pd, p � q implies
root(ϕ(p)) � root(ϕ(q)). A template is developed if there
is an abstract equivalent transformation sequence such that
p(x1, . . . , xn) → r in the Introduction rule is restricted as
p ∈Pd \ Σk and r ∈ T(Σk ∩Pd,V).

It is easy to see that P ⇒
I
P′ under the restricted Intro-

duction rule implies ϕ(P) ⇒
I
ϕ(P′) for any CS homomor-

phism ϕ [6], [7].
As demonstrated in Examples 1 and 3, templates for tu-

pling transformations need to introduce rewrite rules r(x)→
〈s1, . . . , sn〉 and r1(x) → 〈s′1, . . . , s′m〉 using a tuple symbol
〈·〉 by the Introduction rule. However, since 〈·〉 ∈ Fc, one
can not introduce such a rewrite rule by the condition of
abstract equivalent transformation sequence for developed
templates that rhs of the introduced rule should be contained
in T(Σk ∩Pd,V). Hence templates for tupling transforma-
tions can not be expressed by developed templates. This is
why the previous framework of [5]–[8] fails to handle tu-
pling transformations.

In the previous framework, templates are constructed
on T(P ,V) and thus function symbols are excluded. Then
one may wonder why a pattern variable q ∈Pc had not been
allowed in the Introduction rule for the developed templates.
In general, if one allows a pattern variable q ∈ Pc occur in
the rhs r of the rewrite rule introduced by the Introduction

972
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

rule, then, for a CS homomorphism ϕ, P ⇒
I
P′ may not im-

ply ϕ(P) ⇒
I
ϕ(P′). For example, let p(x, y) → q(x, r(x, y))

be a rewrite rule in the input template and ϕ = {p 	→
f(�1,�2), q 	→ g(�1), r 	→ h(�1,�2)} be a matcher. Then one
can not guarantee h ∈ Fk because h � F (ϕ(q(x, r(x, y)))).
One can not exclude the case of r ∈ Σk but F (ϕ(r)) � Fk.
In our new criterion, such a case is forbidden by introducing
the notion of carrying of signature.

7. Conclusion

We extended a framework of program transformation by
templates based on term rewriting. We introduced a notion
of correct templates by which a wider variety of transfor-
mations by template, including tupling transformations, can
be handled. We proved a criterion to guarantee the correct-
ness of program transformations by these templates. We
gave several correct templates for tupling transformations
and demonstrated some examples of tupling transformations
by templates.

RAPT †[5] is an implementation of program transfor-
mation by templates based on term rewriting. For a given
TRS R and a correct template, it automatically verifies the
correctness of transformation of R by that template, and out-
puts the result of transformation. We have implemented the
new version of RAPT based on the framework presented in
this paper. For all examples in this paper, program transfor-
mations and their verification have been operated in RAPT
successfully. To complete the each program transformation
and verification of Examples 2, 3, 4, it took 820, 620 and
40 msec, respectively, on a workstation with UltraSPARC
IIIi 1.34 GHz CPU. Furthermore, it is confirmed experi-
mentally that the new version is also capable of all examples
prepared for the old version.

Another implementation of program transformation us-
ing templates is the MAG system [13], [20]. MAG supports
transformations that include modifications of expressions
and matching with the help of hypothesis; its target also
includes higher-order programs. In contrast, the target of
RAPT is limited to first-order term rewriting systems but it
cooperates with automated theorem-proving techniques of
term rewriting to verify the correctness of transformations.

In general, constructing a suitable template for a partic-
ular program transformation is operated manually and it is
often not easy to construct a correct template that is widely
applicable to many programs. To improve this situation, we
are working toward the development of a method for con-
structing possible candidates of template automatically [8].

Another possible future extension is to extend the
framework to deal with higher-order functions. We ex-
pect that the equivalent transformation technique can be
extended to higher-order TRSs without much difficulties.
However, an integration of automated verification methods
for properties such as sufficient completeness, and an incor-
poration of higher-order inductive theorem proving [1], [17]

†Available from http://www.jaist.ac.jp/˜chiba/RAPT/

seem yet not clear. The extension toward this direction re-
mains as a future work.

References

[1] T. Aoto, Y. Yamada, and Y. Toyama, “Inductive theorems for higher-
order rewriting,” Proc. RTA2004, vol.3091 of LNCS, pp.269–284,
Springer-Verlag, 2004.

[2] F. Baader and T. Nipkow, “Term rewriting and all that,” Cambridge
University Press, 1998.

[3] R.S. Bird, “Using circular programs to eliminate multiple traversals
of data,” Acta Informatica, vol.21, pp.239–250, 1984.

[4] R.M. Burstall and J. Darlington, A transformation system for devel-
oping recursive programs, J. ACM, vol.24, no.1, pp.44–67, 1977.

[5] Y. Chiba and T. Aoto, “RAPT: A program transformation system
based on term rewriting,” Proc. RTA 2006, vol.4098 of LNCS,
pp.267–276, Springer-Verlag, 2006.

[6] Y. Chiba, T. Aoto, and Y. Toyama, “Program transformation by tem-
plates based on term rewriting,” Proc. PPDP 2005, pp.59–69, ACM
Press, 2005.

[7] Y. Chiba, T. Aoto, and Y. Toyama, “Program transformation by tem-
plates: A rewriting framework,” IPSJ Trans. Programming, 47 (SIG
16 (PRO 31)), pp.52–65, 2006.

[8] Y. Chiba, T. Aoto, and Y. Toyama, “Automatic construction of pro-
gram transformation templates,” IPSJ Trans. Programming, 49 (SIG
1 (PRO 35)), pp.14–27, 2008.

[9] W.N. Chin, “Towards an automated tupling strategy,” Proc.
PEPM’93, pp.119–132, ACM Press, 1993.

[10] W.N. Chin and Z. Hu, “Towards a modular program derivation via
fusion and tupling,” Proc. GPCE 2002, vol.2487 of LNCS, pp.140–
155, Springer-Verlag, 2002.

[11] R. Curien, Z. Qian, and H. Shi, “Efficient second-order matching,”
Proc. RTA’96, vol.1103 of LNCS, pp.317–331, Springer-Verlag,
1996.

[12] O. de Moor and G. Sittampalam, “Generic program transformation,”
Proc. 3rd International Summer School on Advanced Functional
Programming, vol.1608 of LNCS, pp.116–149, Springer-Verlag,
1999.

[13] O. de Moor and G. Sittampalam, “Higher-order matching for pro-
gram transformation,” TCS, 269, pp.135–162, 2001.

[14] A. Gill, J. Launchbury, and S. Peyton-Jones, “A short cut to defor-
estation,” Proc. FPCA’93, pp.223–232, ACM Press, 1993.

[15] Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano, “Tupling calcu-
lation eliminates multiple data traversals,” Proc. ICFP’97, pp.164–
175, ACM Press, 1997.

[16] G. Huet and B. Lang, “Proving and applying program transfor-
mations expressed with second order patterns,” Acta Informatica,
vol.11, pp.31–55, 1978.

[17] K. Kusakari, M. Sakai, and T. Sakabe, “Primitive inductive the-
orems bridge implicit induction methods and inductive theorems
in higher-order rewriting,” IEICE Trans. Inf. & Syst., vol.E88-D,
no.12, pp.2715–2726, Dec. 2005.

[18] A. Lazrek, P. Lescanne, and J.J. Thiel, “Tools for proving inductive
equalities, relative completeness, and ω-completeness,” Information
and Computation, vol.84, pp.47–70, 1990.

[19] U.S. Reddy, “Term rewriting induction,” Proc. 10th International
Conference on Automated Deduction, vol.449 of LNAI, pp.162–
177, 1990.

[20] G. Sittampalam, Higher-order matching for program transformation,
PhD Thesis, Magdalen College, 2001.

[21] J.J. Thiel, “Stop loosing sleep over incomplete data type specifica-
tions,” Proc. POPL’84, pp.76–82, 1984.

[22] Y. Toyama, “How to prove equivalence of term rewriting systems
without induction,” TCS, vol.90, pp.369–390, 1991.

[23] P. Wadler, “Deforestation: Transforming programs to eliminate
trees,” TCS, vol.73, pp.231–248, 1990.

CHIBA et al.: PROGRAM TRANSFORMATION TEMPLATES FOR TUPLING BASED ON TERM REWRITING
973

[24] T. Yokoyama, Z. Hu, and M. Takeichi, “Deterministic second-order
patterns,” IPL, vol.89, no.6, pp.309–314, 2004.

Yuki Chiba received his M.S. and Ph.D.
from Tohoku University in 2005 and 2008. He
has been in Japan Advanced Institute for Sci-
ence and Technology (JAIST) as an assistant
professor. His research interests include term
rewriting and program transformation. He is a
member of IPSJ and JSSST.

Takahito Aoto received his M.S. and Ph.D.
from Japan Advanced Institute for Science and
Technology (JAIST). He was at JAIST from
1997 to 1998 as an associate, at Gunma Univer-
sity from 1998 to 2002 as an assistant professor,
and at Tohoku University from 2003 to 2004 as
a lecturer. He has been in Tohoku University
from 2004 as an associate professor. His current
research interests include term rewriting, auto-
mated theorem proving, and foundation of soft-
ware. He is a member of IPSJ, JSSST, EATCS,

and ACM.

Yoshihito Toyama was born in 1952. He re-
ceived his B.E. from Niigata University in 1975,
and his M.E. and Ph.D. from Tohoku University
in 1977 and 1990. He worked as a Research Sci-
entist at NTT Laboratories from 1977 to 1993,
and as a Professor at the Japan Advanced Insti-
tute of Science and Technology (JAIST) from
1993 to 2000. Since April 2000, he has been
a professor of the Research Institute of Elec-
trical Communication (RIEC), Tohoku Univer-
sity. His research interests include term rewrit-

ing systems, program theory, and automated theorem proving. He is a
member of IPSJ, JSSST, ACM, and EATCS.

