
994
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

PAPER Special Section on Formal Approach

An Abstraction Refinement Technique for Timed Automata Based
on Counterexample-Guided Abstraction Refinement Loop

Takeshi NAGAOKA†a), Nonmember, Kozo OKANO†, and Shinji KUSUMOTO†, Members

SUMMARY Model checking techniques are useful for design of high-
reliable information systems. The well-known problem of state explosion,
however, might occur in model checking of large systems. Such explo-
sion severely limits the scalability of model checking. In order to avoid
it, several abstraction techniques have been proposed. Some of them are
based on CounterExample-Guided Abstraction Refinement (CEGAR) loop
technique proposed by E. Clarke et al.. This paper proposes a concrete ab-
straction technique for timed automata used in model checking of real time
systems. Our technique is based on CEGAR, in which we use a counter
example as a guide to refine the abstract model. Although, in general, the
refinement operation is applied to abstract models, our method modifies the
original timed automaton. Next, we generate refined abstract models from
the modified automaton. This paper describes formal descriptions of the
algorithm and the correctness proof of the algorithm.
key words: model checking, timed automaton, model abstraction, CEGAR

1. Introduction

A model checker checks if a given system modeled in a
finite automaton satisfies given specifications by searching
the finite transition system exhaustively. It sometimes has,
however, limitation in scalability. In order to improve the
scalability, a model abstraction technique is important [1]–
[3].

In verification of real time systems, a timed automa-
ton has widely been used [7], [8], which can describe behav-
ior of realtime systems. In a timed automaton, real-valued
clock constraints are assigned to its control state (called a lo-
cation). Therefore, it has an infinite state space represented
in a product of discrete state space made by locations and
continuous state space made by clock variables. In the tra-
ditional model checking for a timed automaton, using the
property that we can treat the state space of clock variables
as a finite set of regions; we can perform model checking on
timed automata models. However, the size of such regions
increases exponentially with the number of clock variables;
thus an abstraction technique is also needed.

Clarke et al. proposed an abstraction algorithm
called CEGAR (CounterExample-Guided Abstraction Re-
finement) [1] shown in Fig. 1. The algorithm is used for ab-
straction of finite models [1], [2], hybrid systems [3], timed
automata [11]–[13], and other models. In the CEGAR al-
gorithm, we use a counter example produced by a model

Manuscript received July 17, 2009.
Manuscript revised November 10, 2009.
†The authors are with the Graduate School of Information

Science and Technology, Osaka University, Suita-shi, 565–0871
Japan.

a) E-mail: t-nagaok@ist.osaka-u.ac.jp
DOI: 10.1587/transinf.E93.D.994

Fig. 1 General CEGAR algorithm.

checker as a guide to refine excessively abstracted models.
A general CEGAR algorithm consists of several steps. First,
it abstracts the original model (the obtained model is called
abstract model) and performs model checking on the ab-
stract model. Next, if a counter example (CE) is found, it
checks the counter example on the concrete model. If the
CE is spurious, it refines the abstract model. The last step is
repeated until the valid output is obtained. In the CEGAR
loop, an abstract model must satisfy the following property;
if the abstract model satisfies a given specification, the con-
crete model also satisfies it.

This paper proposes a new concrete CEGAR algorithm
for a timed automaton. The first step of the algorithm is
abstraction, in which we delete all of time attributes from
the given timed automaton. The obtained automaton is just
a finite automaton preserving the transition relations of the
timed automaton; therefore the obtained finite automaton is,
in general, over-approximated of the original one. We re-
strict the class of the verification properties into reachabil-
ity; thus if an abstract model satisfies a given property then
the concrete model also satisfies the property.

In general, CEGAR algorithms [1]–[3], [11]–[13] di-
rectly transforms an abstract model using counter exam-
ples in the refinement step. Our proposed method, how-
ever, doesn’t directly transform an abstract model. It first
transforms the original model using counter examples and
then it creates a new abstract model from it by removing
clock attributes; thus our algorithm indirectly refines the ab-
stract model. The algorithm transforms the original timed
automaton by adding extra transitions and removing some
transitions but it preserves the behavioral equivalence of the
timed automaton and prevents the spurious counter exam-
ples. More concretely, it duplicates locations and transi-
tions so that its abstract model can tell behavioral difference
caused by clock values which affects the counter examples.

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

NAGAOKA et al.: AN ABSTRACTION REFINEMENT TECHNIQUE FOR TIMED AUTOMATA BASED ON CEGAR LOOP
995

Consequently the obtained new abstract model does not ac-
cept the spurious counter example.

Related works [11]–[13] have proposed CEGAR based
abstraction techniques for timed automata. Although these
techniques mainly refine the abstract models by adding
clock variables which have removed by abstraction, our re-
finement method modifies the original timed automata and
produces the refined abstract model from the modified mod-
els, instead of adding clock variables.

The rest of the paper is organized as follows. In Sect. 2,
some definitions are described. Section 3 gives our CEGAR
algorithm and its application to a simple example. Section 4
proves the correctness of the algorithm. Section 5 concludes
the paper.

2. Preliminaries

In this section, we give definitions of a timed automaton,
semantics of the timed automaton, and the general CEGAR
algorithm.

2.1 Timed Automaton

Definition 2.1 (Differential Inequalities on C). Syntax and
semantics of a differential inequality E on a finite set C of
clocks is given as follows:
E ::= x − y ∼ a | x ∼ a,
where x, y ∈ C, a is a literal of a real number constant, and
∼∈ {≤,≥, <, >}.
Semantics of a differential inequality is the same as the or-
dinal inequality.

Definition 2.2 (Clock Constraints on C). Clock constraints
c(C) on a finite set C of clocks are defined as follows:
A differential inequality in on C is an element of c(C).
Let in1 and in2 be elements of c(C), in1 ∧ in2 is also an ele-
ment of c(C).

Definition 2.3 (Timed Automaton). A timed automaton A
is a 6-tuple (A, L, l0,C, I,T), where
A: a finite set of actions;
L: a finite set of locations;
l0 ∈ L: an initial location;
C: a finite set of clocks;
I ⊂ (L → c(C)): a mapping from locations to clock con-
straints, called a location invariant; and
T ⊂ L × A × c(C) ×R × L,
where c(C) is a clock constraint, called guards;
R = 2C: a set of clocks to reset.

A transition t = (l1, a, g, r, l2) ∈ T is denoted by l1
a,g,r−→

l2. A map ν : C → R≥0 is called a clock assignment. We
define (ν + d)(x) = ν(x) + d for d ∈ R≥0. r(ν) = ν[x
→
0], x ∈ r, where ν[x
→ 0] means the valuation that maps x
into zero, is also defined for r ∈ 2C . By N, a set of whole ν
is denoted.

Definition 2.4 (Semantics of Timed Automaton). Given a
timed automaton A = (A, L, l0,C, I,T), let S = L × N be
a set of whole states of A . The initial state of A shall be
given as (l0, 0C) ∈ S .

For a transition l1
a,g,r−→ l2 (∈ T), the following two kinds

of transitions are derived from T. The former one is called
an action transition, while the latter one is called a delay
transition.

l1
a,g,r−→ l2, g(ν), I(l2)(r(ν))

(l1, ν)
a⇒ (l2, r(ν))

,
∀d′ ≤ d I(l1)(ν + d′)

(l1, ν)
d⇒ (l1, ν + d)

Definition 2.5 (A Semantic Model of Timed Automaton).
For timed automaton A = (A, L, l0,C, I,T), an infinite tran-
sition system is defined according to the semantics of A ,
where the model begins with the initial state. By T (A) =
(S , s0,⇒), the semantic model of A is denoted.

In this paper, a state on a location l means an arbitrary
semantic state (l, ν) such that ν satisfies l’s invariant.

2.2 Zone Graph

In [7], a state space of timed automata, which has infinite
semantic states, is represented as a finite state transition sys-
tem called a zone graph. A zone D ∈ c(C) is described as
a product of finite differential inequalities on clock set C,
which represents a set of clock assignments that satisfy all
the inequalities. In this paper, we treat a zone D as a set
of clock assignments ν ∈ RC

≥0 (For a zone D, ν ∈ D means
the assignment ν satisfies all the inequalities in D). In ad-
dition to this, using a location l and a zone D, we describe
a set of semantic states as (l,D) = {(l, ν) |ν ∈ D}. Also,
for an initial location l0, a set of initial states is denoted by

(l0,D0) = {(l0, 0C + d)|(l0, 0C)
d⇒ (l0, 0C + d) ∈⇒}.

Paper [7] also gives operation functions on zones, such
as up, and and other functions, which represent elapsing
time, intersection of time spaces and so on, respectively. For
a given zone D, there is a minimal set of differential inequal-
ities which is enough to represent D [7]. We use Ineqset(D)
to denote such a minimal set for D. Ineqset(D) can be ob-
tained by reduction operations on zones. A set of every state
which satisfies an invariant I(l) of location l is denoted by
(l,DI(l)) (= {(l, ν)|I(l)(ν)}).

When we create a zone graph from a timed automaton,
we perform zone normalization called k-normalization [7],
where k : C → N is a clock ceiling, to prevent zones
from increasing infinitely. The clock ceiling k is given by
the maximal clock constants appearing in the automaton. In
k-normalization, we represent zones that may contain arbi-
trarily large constants as a single representative zone. The
details are given as follows; we remove the constraints of
the form x < m, x ≤ m, x − y < m, x − y ≤ m from the
given zone, and also we replace the constraints of the form
x > m, x ≥ m, x − y > m, x − y ≥ m with x > k(x), x ≥ k(x),
x − y > k(x), x − y ≥ k(x), where x, y ∈ C and m > k(x),
respectively.

996
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

2.3 General CEGAR Algorithm

Model abstraction sometimes over-approximates an original
model. It may produce spurious counter examples which
are not actually counter examples in the original model. Pa-
per [1] gives an algorithm called CEGAR (Counterexample-
Guided Abstraction Refinement) (Fig. 1).

In the algorithm, at the first step (called Initial Ab-
straction), it over-approximates the original model. Next,
it performs model checking on the abstract model. In this
step, if the model checker reports that the model satisfies a
given specification, we can conclude that the original model
also satisfies the specification, because the abstract model is
an over-approximation of the original model. If the model
checker reports that the model does not satisfy the specifi-
cation, however, we have to check whether the counter ex-
ample detected is spurious counter example or not in the
next step (called Simulation). In the Simulation step, if we
find the counter example is valid, we stop the loop. Other-
wise, we have to refine the abstract model to eliminate the
spurious counter example, and repeat these steps until valid
output is obtained.

3. Our CEGAR Algorithm for a Timed Automaton

Our proposed algorithm generates an abstract model M̂ from
a given timed automaton A , and performs model checking
on M̂. M̂ is in fact a finite automaton. If a counter example
ρ̂ (represented as a sequence of states and labels on M̂) is
detected by model checking, we check whether ρ̂ is feasible
on the concrete model T (A) or not at Simulation step (In
this paper, for an abstract model M̂ obtained from a timed
automaton A , we call the semantic model T (A) a concrete
model of M̂) . In this step, we obtain a set Π of sequences
of transitions on A corresponding to ρ̂, and check whether
each path inΠ is feasible on T (A) or not. If every path inΠ
is infeasible, the next step shall refine the model so that the
counter example ρ̂ becomes infeasible. Our algorithm does
not directly refine M̂ but it modifies A and then obtains a
new abstract model from the modified timed automaton A .
Figure 2 shows flow of our CEGAR algorithm.

The proposed algorithm checks a property AG
∧

e∈E¬e,
where E (⊂ L) of a timed automaton A is a set of error lo-
cations of the target system. The property means there is no
path to locations in E from the initial state. Please note that
any counter example of such a property can be represented
in a finite length of sequence without infinite loops. There-
fore, hereafter, we assume that counter examples are finite
sequences.

3.1 Abstract Model

The proposed method abstracts a given timed automata
A = (A, L, l0,C, I,T) by removing clock variables from
A . Therefore, the obtained abstracted model M̂ will be
(Ŝ , ŝ0, ⇒̂), where Ŝ = L, ŝ0 = l0.

Fig. 2 Our proposed algorithm.

Here, we define the abstraction function h : S → Ŝ
which is a mapping from S to Ŝ .

Definition 3.1 (Abstraction Function h). For a timed au-
tomaton A and its semantic model T (A) = (S , s0,⇒), an
abstraction function h : S → Ŝ is defined as follows:

h((l, ν)) = l.

The inverse function h−1 : Ŝ → 2S of h is also defined as
h−1(ŝ) = (l,DI(l)) where ŝ = l.

The abstraction function should be defined for each it-
eration of the refinement, because both the concrete model
and abstract models are deformed. Let Ai and M̂i be a timed
automaton and an abstract model of i-th iteration, respec-
tively. The abstraction function hi for the i-th loop is defined
in the similar way as Definition 3.1.

Symbols decorated with ‘ˆ’ represent those of an ab-
stract model (i.e. Ŝ represents a state set of an abstract
model). Definition 3.2 gives an abstract model M̂ of a given
timed automaton A using the abstraction function h defined
in Definition 3.1.

Definition 3.2 (Abstract Model). An abstract model M̂ =

(Ŝ , ŝ0, ⇒̂) of a given timed automaton A = (A, L, l0,C, I,T)
and its semantic model T (A) = (S , s0,⇒) is defined as
follows:

• Ŝ = L,
• ŝ0 = h(s0), and

• ⇒̂ = {(h(s1), a, h(s2)) | s1
a⇒ s2)}.

The i-th iteration of the refinement loop generates the
i-th abstract model M̂i = (Ŝ i, ŝi,0, ⇒̂i) from the i-th timed
automaton Ai = (Ai, Li, li,0,Ci, Ii,Ti) by Definition 3.2.

Definition 3.3 (Abstract Counter Example). A counter ex-
ample on M̂ = (Ŝ , ŝ0, ⇒̂) is a sequence of states of Ŝ and
labels. An abstract counter example ρ̂ of length n is rep-

resented in ρ̂ = 〈ŝ0
a1→ ŝ1

a2→ ŝ2
a3→ · · · an−1→ ŝn−1

an→ ŝn〉.
A set P of run sequences on T (A) obtained by concretiz-
ing a counter example ρ̂ is also defined as follows using the
inverse function h−1:

NAGAOKA et al.: AN ABSTRACTION REFINEMENT TECHNIQUE FOR TIMED AUTOMATA BASED ON CEGAR LOOP
997

Fig. 3 An abstraction algorithm.

The location E is an error location.

Fig. 4 Example of a timed automaton and its abstract model.

P = {〈s0
d0→ s′0

a1→ s1
d1→ s′1

a2→ s2
d2→ · · · an→ sn〉 |

n−1∧

i=0

(si ∈ h−1(ŝi) ∧ di ∈R≥0 ∧ si
di⇒ s′i ∧ s′i

ai⇒ si+1)}.

If P has at least one element, we find that the counter
example ρ̂ is feasible on the original timed automaton. Oth-
erwise we find that ρ̂ is spurious.

3.2 Initial Abstraction

Initial Abstraction generates an abstract model M̂0 shown in
Sect. 3.1 from a timed automaton A0. Figure 4 represents
an example of a timed automaton and its abstract model ob-
tained by applying Initial Abstraction to the timed automa-
ton.

Figure 3 shows the algorithm of Initial Abstraction.

3.3 Simulation

For an abstract counter example ρ̂ = 〈ŝ0
a1→ ŝ1

a2→ ŝ2
a3→

· · · an→ ŝn〉, Simulation checks if a set P of the corresponding
run sequences on the semantic model is empty or not.

It is difficult to obtain P directly on the semantic model,
because P may have infinite of sequences. Therefore, in the
algorithm, first we obtain a set Π of sequences of transitions
on A corresponding to ρ̂. Then, we check if each element
in Π is feasible on the T (A) or not. If there is an element
π ∈ Π that is feasible on T (A), we can conclude that ρ̂
is a feasible counter example. On the other hand, if all the
elements inΠ are infeasible on T (A), we can conclude that
ρ̂ is spurious.

The setΠ of sequences of transitions on A correspond-
ing to ρ̂ is given as follows;

Π = {〈l0 a1,g1,r1−→ l1
a2,g2,r2−→ l2

a3,g3,r3−→ · · · an,gn,rn−→ ln〉 |
n∧

i=0

ŝi = li ∧
n∧

i=1

(li−1, ai, gi, ri, li) ∈ T }.

Fig. 5 A simulation algorithm.

Π may have a number of sequences corresponding to ρ̂
because there might be several transitions in A correspond-

ing to the transition ŝi−1
ai⇒ ŝi even if ŝi always corresponds

to the single location li.
Whether π ∈ Π is feasible on the A is determined by

calculating a reachable state set on A along with π. In this
process, when the reachable state set becomes empty, we
can conclude that π is infeasible.

In the Definition 3.4, we define the successor state set
to be reachable by one action transition followed by arbi-
trary delay transitions.

Definition 3.4 (Successor State Set). Given a state set
(l1,D1) on T (A) for a timed automaton A and a transi-
tion e = (l1, a, g, r, l2), a successor state set succ((l1,D1), e)
from (l1,D1) through the transition e is defined as follows;

succ((l1,D1), e) = {(l′, r(ν) + d) |
ν ∈ D1 ∧ d ∈ R≥0∧
(l1, ν)

a⇒ (l2, r(ν))∧
(l2, r(ν))

d⇒ (l2, r(ν) + d) }.
Lemma 3.1. Given a state set (l1,D1) on T (A) of a timed
automaton A and a transition e = (l1, a, g, r, l2), a reach-
able state set succ((l1,D1), e) (= (l2,D2)) satisfies the fol-
lowing property;

∀ν ∈ D2, d ∈ R≥0. (l2, ν)
d⇒ (l2, ν + d) implies

ν + d ∈ D2 .

Lemma 3.1 is proved by Definition 3.4 obviously.
From Definition 3.4, a k-th reachable state set from the

initial state set (l0,D0) is obtained by applying succ func-
tion k times like succ(succ(succ(. . . succ((l0,D0), e0) . . .),
ek−2), ek−1). In the rest of this paper, by succk(π) the k-th
reachable state set for π is denoted.

For the sequence π of the length n, π is feasible if
succn(π) � ∅, and π is infeasible if there exists 1 ≤ k ≤ n
such that succk(π) equals ∅.

Figure 5 represents our Simulation algorithm whose in-
puts are a timed automaton A and an element π in Π. It

998
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

Fig. 6 An algorithm to obtain a successor state set.

Fig. 7 A simulation process.

checks whether π is feasible on T (A) or not. The algo-
rithm outputs NULL if π is feasible, and otherwise the list
of reachable state set succ list along with π, which is used
in the Refinement step. Figure 6 shows the algorithm to
obtain the successor state set from a given state set and an
action transition. The functions and : c(C) × c(C) → c(C),
up : c(C) → c(C), and reset : c(C) × 2C → c(C) used in
the algorithm are defined as follows. and(D, g) = {ν|ν ∈
D ∧ g(ν)}, up(D) = {ν′|ν ∈ D ∧ d ∈ R≥0 ∧ ν d⇒ ν′},
reset(D, r) = {r(ν)|ν ∈ D}.

Figure 7 represents a Simulation process in which an
abstract counter example on the abstract model of Fig. 4 is
checked. As shown in the figure, a reachable state set is
represented as a product of a location and a zone. Since any
reachable states on the location C don’t satisfy the guard
condition x ≤ 3 ∧ y ≥ 10 for the transition from C to E,
they cannot reach to the error location E. Therefore, we can
conclude the counter example is spurious.

3.4 Abstraction Refinement

In the example of Fig. 7, from any state on the location
C that is reachable from the initial state, the control can-
not move to E due to the guard condition. On its abstract
model, however, Ê is reachable because we do not consider
the clock constraints on it. This is the cause of the spurious
counter example. Generally in such a case, we have to refine
the abstract model by dividing the abstract state Ĉ so that the
state set which is reachable from initial state and the state
set which is able to move to D become disjoint. Dividing a
state space of a timed automaton usually needs subtraction
operation on zones. However, zones are not closed under a
subtraction operation [10]; therefore, applying such an ap-
proach is difficult. In our approach, we transform the tran-
sition relation on the timed automaton preserving its equiv-
alence so that the model behaves correctly even if we don’t

Fig. 8 A refinement algorithm.

Fig. 9 The duplication of the initial location.

consider the clock constraints.
Figure 8 represents our abstraction refinement algo-

rithm. In the algorithm, we first apply equivalent transfor-
mation to the original model. Next, we generate the refined
abstract model by removing clock variables from the trans-
formed model. The transformation algorithm on the orig-
inal model is composed of three steps; Duplication of Lo-
cations, Duplication of Transitions, and Removal of Tran-
sitions. Since we have to preserve model equivalence, we
impose the restriction for applying removal of transitions.

These transformation steps add or remove some loca-
tions and transitions. Therefore, at each step, we have to
construct a timed automaton for the step with new locations
and transitions as well as invariants. We can discuss equiv-
alence on each of the new timed automaton and the original

NAGAOKA et al.: AN ABSTRACTION REFINEMENT TECHNIQUE FOR TIMED AUTOMATA BASED ON CEGAR LOOP
999

C is the error location

Fig. 10 An example of the algorithm reaches to the initial location.

timed automaton.
The algorithm starts with the reachable last location

along with π, and if it cannot apply Removal of Transitions,
it traces back π applying the refinement algorithm until be-
ing able to apply the removal operation. Finally, if the algo-
rithm reaches to the initial location, it duplicates (l0,D0) as
l̂′0. Figure 10 shows an example where the algorithm reaches
the initial location. Here, at the location A, the algorithm
cannot remove a transition from A to B. For such a case, it
duplicates the initial location A. We let the new duplicated
location A1 be the initial location. Figure 9 shows the algo-
rithm for the duplication of the initial location.

3.4.1 Duplication of Locations

In Definitions 3.5, 3.6 and 3.7, we give some definitions re-
lated to the duplicated locations.

Definition 3.5 (A Parent of a Location). Let l′ be a dupli-
cation of the location l, and we call l the parent of l′. The
function parent : L→ L is defined as follows;

parent(l) =

⎧⎪⎪⎨⎪⎪⎩
l’s parent, if l has the parent

⊥, if l has no parent.

Definition 3.6 (A Root of a Location). A root of a location
is the eldest ancestor parent of the location. The function
root : L→ L is defined as follows;

root(l) =

⎧⎪⎪⎨⎪⎪⎩
l, if parent(l) = ⊥
root(parent(l)), if parent(l) � ⊥.

In this paper, we use the function root to decide
whether given locations are duplicated from the same orig-
inal location. For example, for locations l1 and l2 with
root(l1) = root(l2), we regard l1 and l2 are derived from
the same original location.

Definition 3.7. Let T (A) = (S , s0,⇒) be a semantic model
of a timed automaton A = (A, L, l0,C, I,T). For a location
l ∈ L and a zone D ∈ c(C), the function duplicateo f :
2S × (L→ c(C))→ L is defined as follows;

duplicateo f ((l,D), I) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

l′, if there exists a location l′ ∈L

such that root(l′) = root(l)

∧ DI(l′) = D

⊥, otherwise.

For a given state set (l,D), duplicateo f returns the
duplicated location l′ of l such that the invariant I(l′) cor-
responds to D. In the definition, DI(l′) = D means the
equivalence of a zone corresponding to I(l′) and D (i.e.
ν ∈ DI(l′) ⇐⇒ ν ∈ D).

The algorithm in Fig. 12 implements the function
duplicateo f defined in Definition 3.7. The function normk

is the k-normalization function defined in [7]. At the line
4 of the algorithm, it checks whether the given zone D is
equivalent to I(l′) though D is normalized to Dnorm. If this
condition is satisfied for l′, we can find that the duplicated
location based on the state set (l,D) is already generated,
and is l′.

Definition 3.8 (Duplication of Locations). Given a timed
automaton A = (A, L, l0,C, I,T) and a path π corre-
sponding to the spurious counter example, suppose that
we apply refinement to the k-th location lk and transition
ek of π. And let succk(π) equal (lk,Dk). In this case,
we generate a new location l′k as a duplicate of lk only if
duplicateo f ((lk,Dk), I) = ⊥. Also, we impose a location
invariant on l′k as I(l′k) = Ineqset(Dk).

Invariant I(l′) for the duplicated location l′ is stronger
than that (I(l)) of the original location l. Therefore, for zone
representation of them, DI(l′) ⊂ DI(l) holds.

For semantic states s = (l, ν) and s′ = (l′, ν′), we con-
sider s′ is the duplicate of s if l = parent(l′) and ν′ = ν
hold.

3.4.2 Duplication of Transitions

Suppose that we apply refinement to the k-th location lk
and transition ek of a path π corresponding to the spurious
counter example. In Duplication of Transition, we duplicate
the transition ek and also transitions which is feasible on the
reachable states on lk. In Def. 3.9, we define the transitions
to duplicate.

Definition 3.9 (Duplication of Transitions). For a timed au-
tomaton A = (A, L, l0,C, I,T) and a path π correspond-
ing to the spurious counter example, suppose that we ap-
ply refinement to the k-th location lk and transition ek =

(lk−1, ak, gk, rk, lk) of π. And also let l′k be the duplicate of
k-th reachable state set succk(π) (= (lk,Dk)). Then l′k equals
duplicateo f ((lk,Dk), I) (� ⊥). In Duplicate of Transitions,
we duplicate the following transitions;

• a duplicate of ek

(lk−1, ak, gk, rk, l
′
k) (1)

• duplicates of action transitions e = (lk, a, g, r, l) ∈ T
which are feasible from (lk,Dk)

– In the case when a duplicate location correspond-
ing to succ((lk,Dk), e) has not been generated;

{ (l′k, a, g, r, l) | e = (lk, a, g, r, l) ∈ T

∧ (l,D) = succ((lk,Dk), e) � ∅
∧ duplicateo f ((l,D), I) = ⊥ } (2)

1000
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

Fig. 11 An algorithm for duplication.

– In the case when a duplicate location correspond-
ing to succ((lk,Dk), e) has been generated;

{ (l′k, a, g, r, l
′) | e = (lk, a, g, r, l) ∈ T

∧ (l,D) = succ((lk,Dk), e) � ∅
∧ l′ = duplicateo f ((l,D), I) � ⊥} (3)

Expression (1) duplicates a transition ek (a transition
from lk−1 to lk). The duplicated one is a transition from lk−1

to l′k.
Expressions (2) and (3) duplicate a transition e such

that its starting location is lk and can fire from succk(π). The
duplicated one is a transition from l′k. Expression (3) is for
the case that there exists a duplicated location l′ such that l′
is derived from (l,D) and (l,D) is reachable from succk(π)
via e. For such a case, it duplicates a transition to l′ instead
of l.

Figure 11 shows both of the duplication algorithms for
locations and transitions, because duplication algorithm for
transitions depends on the information of that for locations.

Here, we give a lemma about transitions duplicated in
the algorithm.

Lemma 3.2. Given a timed automaton A and a path π cor-
responding to the spurious counter example, suppose that
we apply refinement to the k-th location lk and transition
ek of π, and let (lk,Dk) = succk(π). The semantic model
T (A) = (S , s0,⇒) of A satisfies a following property;

There exists a transition (s1, a, s2) ∈⇒ such that
s1 ∈ (lk,Dk), if and only if there exists a dupli-
cated transition (s′1, a, s

′
2) ∈⇒ such that s′1 is the

duplicate of s1, and s′2 = s2 or s′2 is the duplicate

Fig. 12 An algorithm to check if there is a duplicated location of (l,D)
or not.

Fig. 13 An algorithm for removal of transitions.

Fig. 14 An algorithm to check if the transition is removable or not.

of s2.

Proof. From the Expressions (2) and (3) in the Defini-
tion 3.9, we duplicate all the transitions which are feasible
from the states in (lk,Dk). Also, for transitions duplicated in
the step, the transformed automaton has the original transi-
tions on which the duplication is based. Therefore, T (A)
satisfies the given property. �

3.4.3 Removal of Transitions

Let ek = (lk−1, ak, gk, rk, lk) be the k-th action transition in a
path π, and (lk,Dk) = succk(π) be the k-th reachable state
set on π. Here, we also assume that a duplicated loca-
tion l′k = duplicateo f ((lk,Dk), I) and a duplicated transi-
tion e′k = (lk−1, ak, gk, rk, l′k) are generated by the latest ap-
plication of the duplication operations. Here, let us con-
sider that a semantic state s = (lk, ν) and its duplicated state
s′ = (l′k, ν) are essentially equivalent (all the enable transi-
tions from the states are equivalent) for all ν ∈ Dk. Then,
if the successor state set succ((lk−1,DI(lk−1)), ek) is equal to
(lk,Dk), it seems that we can substitute e′k for ek because
succ((lk−1,DI(lk−1)), e′k) is equal to (l′k,Dk). From this fact we
can conclude that even if we remove the transition ek, the
equivalence among the semantic models is preserved. The
equivalence is proved in Sect. 4.

We define the condition to remove transitions in Def-
inition 3.10. The function isRemovable in the definition is
implemented as represented in Fig. 14.

NAGAOKA et al.: AN ABSTRACTION REFINEMENT TECHNIQUE FOR TIMED AUTOMATA BASED ON CEGAR LOOP
1001

Definition 3.10 (Removable Transitions). Let T (A) =
(S , s0,⇒) be a semantic model of a timed automaton A =

(A, L, l0,C, I,T). For a transition e = (l1, a, g, r, l2) ∈ T
and a state set (l2,D2) ⊂ S , the function isRemovable :
T × 2S × (L→ c(C))→ bool is defined as follows;

isRemovable(e, (l2,D2), I) =
⎧⎪⎪⎨⎪⎪⎩

true, if succ((l1,DI(l1)), e)= (l2,D2)

false, otherwise.

In our approach, as represented in Fig. 8, we finish the
refinement operation when isRemovable(ek, succk(π), I) be-
comes true for the first time. Though we are able to produce
a finer model if we continue the refinement operation, we
finish the operation at this point to produce a coarser model
that is enough to remove the spurious counter example.

We define transitions to remove in Definition 3.11, and
in Fig. 13 the algorithm for removal of transitions is repre-
sented.

Definition 3.11 (Removal of Transitions). For a path π on a
timed automaton A = (A, L, l0,C, I,T) corresponding to the
spurious counter example, let m be a minimum positive in-
teger which satisfies succm(π) = ∅. For a maximum positive
integer k ≤ m which satisfies isRemovable(ek, succk(π), I) =
true, we remove k-th transition ek from T in the removal of
transitions, if there exists such an integer k.

In the rest of this paper, we describe isRemovable(ek,
succk(π), I) as isRemovable(π, k, I) simply.

Lemma 3.3. If a transition was removed by Removal of
Transitions, the same transition will not be generated by Du-
plication of Transition.

Proof. Without loss of generality, we assume that a transi-
tion e = (l1, a, g, r, l2) is removed in the i-th loop.

Here, there is (l2,D2) such that isRemovable(e,(l2,D2),
I j) is true, and succ((l1,DIj(l1)), e) is equal to (l2,D2) by Def-
inition 3.11. By Sect. 3.4.3, there is a duplicated location
l′2 such that l′2 = duplicateof ((l2,D2), I j)) and a duplicated
transition (l1, a, g, r, l′2). D2 ⊂ DIi(l2) also holds.

We have to consider three cases that the transition e
is regenerated in j(> i)-th loop. The three cases are corre-
sponding to Expressions (1), (2), and (3) of Definition 3.9.
Let assume that a sequence which is corresponding to a
counter example detected in the j-th loop, is π j.

Case Expression (1): In such a case, the (k − 1)-
th location of π j is l1. Also the k-th transition is
ek = (l1, a, g, r, lk)(root(lk) = root(l2)), where l2 equals
duplicateof (succ(π j, k)), I j). However, a set of every reach-
able state from l1 via ek is (lk,D2). From the fact D2 ⊂
DIj(l2)(= DIi(l2))), l2 = duplicateof (succ(π, k)), I j) does not
hold.

Case Expression (2) and (3): Let assume that the k-
th location of π j is lk and succ(π j, k) is equal to (lk,Dk).
Then for a transition e′ = (lk, a, g, r, l) ∈ T j(root(l) =
root(l2)), It should hold that l1 = duplicateof (lk,Dk), and

Fig. 15 The refinement process for the path in Fig. 7.

duplicateof (succ(lk,Dk), e′), I j) = l2 or ⊥. From the facts
duplicateof (succ(lk,Dk), e′), I j) = l′2 and l′2 � l2 hold, which
contradicts.

Thus, we can conclude that for any case of Defini-
tion 3.9, the transition e will not be duplicated. Therefore,
the lemma is proved. �

3.4.4 Example

Figure 15 shows a process of Refinement for a counter ex-
ample in Fig. 7. The last states reachable form the initial lo-
cation through the path is represented as (C, x ≤ 3∧ x == y).
The algorithm duplicates the location C and obtains a dupli-
cated location C1. Then it duplicates transitions by Defini-
tion 3.9. This process is shown in Fig. 15 (a)–(c). The tran-
sition form C to B can fire in the state (C, x ≤ 3 ∧ x == y).
Therefore it generate a transition from C1 (Fig. 15 (c)), how-
ever it does not duplicate the transition from C to E, because
it cannot fire in the state (C, x ≤ 3 ∧ x == y).

At this point, if we could remove a transition form B to
C, we would have removed the counter example. However,
we cannot remove the transition, because the state set of C
reachable from any state which satisfies the invariant of B is
(C, x ≤ 3) and it does not equal (C, x ≤ 3∧ x == y) which is
the reachable state set of C through the path. Instead of this,
we perform the algorithm to location B backwards the path
(Fig. 15 (d)–(g)).

Figure 15 (f) shows the process of Duplication of Tran-
sitions from B to C. Here, the state set of C reachable from
the state set (B, x == y), which is the reachable state set on B
via the path, is (C, x ≤ 3∧ x == y). The corresponding loca-
tion for (C, x ≤ 3 ∧ x == y) is already generated as location
C1, hence duplicateof ((C, x ≤ 3 ∧ x == y), I) = C1. There-

1002
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

Fig. 16 The timed automata after the second ((a) of the Figure) and third
((b) of the Figure) refinement steps respectively.

fore the transition from B to C is duplicated as a transition
from B1 to C1.

Figure 15 (g) shows the process of removal of a transi-
tion. A state set of B reachable from (A, true) is (B, x == y),
which is equal to a state set of B reachable from the initial
state set (A, x == y). Therefore a transition e1 from A to B is
removable, because isRemovable(e1, (B, x == y), I) is true.

Figure 16 (a) and (b) show the obtained timed automata
applying second and third refinements, respectively. In the

second iteration, a spurious counter example 〈Â τ→ B̂1 τ→
Ĉ1 τ→ B̂

τ→ Ĉ
τ→ Ê〉 is detected for the abstract model for

the model in Fig. 15 (g) (We assume that unlabelled transi-
tion is labelled by τ). For such a spurious counter example,
we can obtain a timed automaton in Fig. 16 (b).

In a similar way, the third iteration detects counter ex-

ample 〈Â τ→ B̂1 τ→ Ĉ1 τ→ B̂2 τ→ Ĉ2 τ→ B̂
τ→ Ĉ

τ→ Ê〉,
which is a true counter example. As a result, the algorithm
terminates with the report of the counter example.

4. Correctness Proof

Paper [2] gives a theorem on a conservative class of ab-
stractions which attempts to preserve semantics of automata
against state reductions under the condition that it checks
only a property AG p for a proposition p.

From the theorem, we can derive the following theo-
rem.

Theorem 4.1. Given a timed automaton A = (A, L, l0,C,
I,T), E ⊂ L be a set of error location and M̂ be the abstract
model. The following statement always holds.

M̂ |= AG
∧

e∈E
¬ê ⇒ A |= AG

∧

e∈E
¬e (4)

Proof. Let the semantic model of A be T (A) = (S , s0,⇒).
For a proposition p, if an abstraction function h satisfies the
following for every s ∈ S :

h(s) |= p⇒ s |= p (5)

then M̂ |= AG p ⇒ M |= AG p holds by Theorem 1 in Pa-
per [2].

Here we assume that p equals
∧

e∈E ¬e. From the Def-
inition 3.1, h(l, ν) equals l. Therefore, h((l, ν)) |= ∧e∈E e ⇒

The transitions at the top are those of the semantic model of
Fig. 4 and at the bottom are those of Fig. 15 (g).

Fig. 17 An example of the case when s1
a⇒ s2 �⇒′ in the proof (i) of

lemma 4.1.

(l, ν) |= ∧e∈E e obviously holds. As a result, the abstrac-
tion function h satisfies the statement 5; Theorem 4.1 is
proved. �

Next, we prove that the transformation on a timed au-
tomaton is equivalent transformation, and also that the ab-
stract model generated by the refinement algorithm is the
refined model of the former abstract model.

We prove the equivalence of the transformation by
proving that the semantic model of the timed automaton af-
ter the transformation is bi-simulation equivalent to the orig-
inal one.

Lemma 4.1. Let A ′ be a timed automaton model obtained
by applying refinement algorithm into a timed automaton
A . Then the semantic models of them are bi-simulation
equivalent to each other.

Proof. For semantic models T (A) = (S , s0,⇒) and
T (A ′) = (S ′, s′0,⇒′), we define a relation R ⊆ S × S ′
as follows, and prove that R is a bi-simulation relation.

R = {(s, s′)|s ∈ S ∧ s′ ∈ S ′ ∧
((s = s′) ∨ (s′ is the duplicate of s))}

Let us denote a path on the A corresponding to the
spurious counter example used in the refinement step by

π = 〈l0 a1,g1,r1−→ l1
a2,g2,r2−→ · · · an,gn,rn−→ ln〉, and denote the i-th

transition (li−1, ai, gi, ri, li) on π by ei.
Let m be the minimum positive integer which satisfies

succm(π) = ∅, and k be the maximum integer within 1 ≤
k ≤ m which satisfies isRemovable(π, k, I) = true. If there
is no such an integer k, we let k be 0. We are going to prove
that R is a bi-simulation relation by proving the following
properties (i) to (iv).

(i) For all (s1, s′1) ∈ R and a ∈ A, if there exists an action

transition s1
a⇒ s2, there exists a corresponding transition

s′1
a⇒′s′2 and (s2, s′2) ∈ R holds.

First, we consider the case when s1 equals s′1 holds.
If s1

a⇒′s2 holds, then the property is obviously satisfied.
In the case when s1

a⇒′s2 does not hold, (See Fig. 17)

NAGAOKA et al.: AN ABSTRACTION REFINEMENT TECHNIQUE FOR TIMED AUTOMATA BASED ON CEGAR LOOP
1003

that is when the transition s1
a⇒ s2 is related to the transi-

tion ek, then k � 0, s1 ∈ (lk−1,DI(lk−1)), s2 ∈ (lk,DI(lk)) and
a = ak hold. In addition to this, isRemovable(π, k, I) is true
due to Definition 3.11. Also, if isRemovable(π, k, I) is true,
any successor state from s1 through ek is included in (lk,Dk)
due to Definition 3.10, and this implies s2 ∈ (lk,Dk). Also,
there is a duplicated location corresponding to (lk,Dk), and
therefore, s2 has its duplication s′. In addition, by the Du-
plication of Transitions, the transition s1

a⇒′s′2 is generated as

the duplicate of s1
a⇒ s2, and (s2, s′2) ∈ R holds.

In the case that holds s1 � s′1, i.e. s′1 is the duplicate of
s1, by Lemma 3.2 there always exists s′1

a⇒′s′2 as the duplicate

transition of s1
a⇒ s2. In this case, s′2 is s2 itself or the

duplicate of s2. Thus, (s2, s′2) ∈ R holds.

(ii) For every (s1, s′1) ∈ R and d ∈ R≥0, if there exists a delay

transition s1
d⇒ s2, there exists a corresponding transition

s′1
d⇒′s′2 and (s2, s′2) ∈ R holds.

In the case s1 = s′1, it obviously holds.
In the case s1 � s′1, i.e. s′1 is the duplicate of s1, let

s1 and s′1 be (l, ν) and (l′, ν) respectively, which satisfies
l � l′ and l = parent(l′). Also, l′ is the duplicated lo-
cation based on a state set (l,D) (ν ∈ D) which is ob-
tained by the succ operation. According to Lemma 3.1, a
state set obtained by the succ operation closes under de-
lay transitions. Here, although the invariants on l and l′
are different, l′ is the duplicated location of l. Therefore,
the invariant of l′ is stronger than that of l and this implies
D ⊂ DI(l). From this fact, we find that for all ν and d ,

(l, ν)
d⇒ (l, ν+d) implies (l, ν+d) ∈ (l,D). Similarly for such

ν and d, (l′, ν+d) ∈ (l′,D) holds. Therefore, (l′, ν) d⇒′(l′, ν+d)
and ((l, ν + d), (l′, ν + d)) ∈ R holds.

(iii) For every (s1, s′1) ∈ R and a ∈ A, if there exists an ac-
tion transition s′1

a⇒′s′2, there exists a corresponding transition

s1
a⇒ s2 and (s2, s′2) ∈ R holds.

If s′1
a⇒′s′2 is not a duplicated transition, s′1

a⇒ s′2 holds
obviously.

Otherwise, s′1
a⇒ s′2 does not hold. As implied in

Lemma 3.2, however, a duplicated transition always has the
original one, and therefore, there exists the original transi-

tion s1
a⇒ s2, and (s2, s′2) ∈ R.

(iv) For every (s1, s′1) ∈ R and d ∈ R≥0, if there exists a de-

lay transition s′1
d⇒′s′2, there exists a corresponding transition

s1
d⇒ s2 and (s2, s′2) ∈ R holds.

This is proved by Lemma 3.1 in a similar manner of the
proof of (ii).

From the proof of (i), (ii), (iii) and (iv), R is proved
to be a bi-simulation relation. Thus, T (A ′) is bi-simulation

The hashed locations, and bold transiitons mean duplicated lo-
cations and duplicated transitions respectively.

Fig. 18 An overview of the timed automaton after the refinement step for
the path π.

equivalent to T (A). �

Next, we show that an abstract model generated by ap-
plying our algorithm will be a refined model of the previous
one.

Lemma 4.2. Let M̂′ be a refined abstract model from M̂ by
our proposing technique. M̂′ is a refined model of M̂.

We prove the lemma by prove that M̂ simulates M̂′.
Let M̂ and M̂′ equal (Ŝ , ŝ0, ⇒̂), and (Ŝ ′, ŝ′0, ⇒̂′), re-

spectively. Then we can define a relation R̂ ⊆ Ŝ ′ × Ŝ as
follows and we have only to prove that R̂ is a simulation
relation.

R̂ = {(ŝ′, ŝ)|ŝ′ ∈ Ŝ ′ ∧ ŝ ∈ Ŝ∧
(ŝ′ = ŝ) ∨ (ŝ = parent(ŝ′))}

In this paper, we omit the detailed proof because it is similar
to the case (iii) in the proof of Lemma 4.1.

Next, we show that our refinement removes ρ̂ for a

counter example ρ̂ = 〈ŝ0
a1→ ŝ1

a2→ · · · an→ ŝn〉 on an abstract
model M̂i of i-th iteration.

Here, we show the simple case only. However, other
cases are also discussed in a similar way. We assume that
path set Π corresponding to ρ̂ on timed automaton Ai, has a

single element π = 〈l0 a1,g1,r1−→ l1
a2,g2,r2−→ · · · an,gn,rn−→ ln〉.

Let integers k and b be the integers defined by Defi-
nition 3.11. The algorithm generates duplicated locations
l′k, l
′
k+1, · · · l′m−1 for the location lk to lm−1, if these locations

have not been generated, and also, it removes the transition
(lk−1, ak, gk, rk, lk) as shown in Fig. 18. It also duplicates re-
lated transitions as shown in Fig. 18.

These transitions are duplicated using Expression (3) in
Definition 3.9. Each transition from l j−1 to l j is duplicated
as a transition from l′j−1 to l′j, where k ≤ j ≤ m − 1.

For abstract model M̂i+1 of a timed automaton Ai+1

which is obtained after the i-th iteration, we can reach a state
ŝ′m−1(= l′m−1) through a path ρ̂. However, we cannot reach a
state ŝm even considering duplicated transitions. Thus, the
sprious counter example is removed.

Theorem 4.2 (Correctness). Our abstraction refinement al-
gorithm refines abstract models correctly.

1004
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

Proof. By Lemma 4.1, abstract models before and after
the refinement step are bi-simulation equivalent. Also, by
Lemma 4.2, an original abstract model simulates its refined
abstract model. These lemmas imply our abstraction refine-
ment algorithm refines abstract models correctly. �

Theorem 4.3 (Termination). The proposed CEGAR algo-
rithm terminates.

Proof. The proposed algorithm consists of three operations,
Duplication of Location, Duplication of Transition, and Re-
moval of Transition.

For a given finite counter example without loop, at least
one of the three operations is executed at each iteration.
Therefore, our goal is to show that the numbers of duplicated
locations, duplicated transitions, and removal of transition
are finite. And also we have to show that the algorithm never
repeats the process of regeneration of a transition which is
once removed.

Duplication of Location duplicates the location for a
given location l ∈ L and zone D ∈ c(C). In general, a zone
on C is finite [7] under the k-normalization. Therefore, the
duplicated location also be finite.

Duplication of Transition duplicates a transition. The
number of locations including the duplicated ones is finite.
And also the number of application of Duplication of Tran-
sition is limited to the number of locations. Therefore the
number of duplicated transition is also finite.

The transition set which will be removed is subset of
whole transitions; it is finite. Lemma 3.3 states that the al-
gorithm never repeats the process of the regeneration. Thus,
the algorithm terminates. �

5. Conclusion

This paper proposes a model abstraction technique for timed
automata based on the CEGAR algorithm. In general, most
CEGAR based algorithms obtain refined abstract models
from the previous abstract models by modifying some trans-
formations. In our algorithm, however, the refined model
is obtained indirectly; we transform the original timed au-
tomaton preserving the equivalence and from it we generate
an abstract model by eliminating clock attributes.

This paper gives a formal description and correctness
proof of our algorithms.

Future work contains applying subtraction opera-
tion [10] in order to divide a bad state into a reachable state
and unreachable one instead of duplicating it, during refine-
ment of an abstract model. Comparison its efficiency with
the method proposed in this paper is also considered.

Acknowledgments

This work is partially supported by the research grant of
the Okawa Foundation, (ref.no. 08-09) and Grant-in-Aid for
Scientific Research (C) No.2150036.

Also, this work is being conducted as a part of Stage

Project, the Development of Next Generation IT Infrastruc-
ture, supported by Ministry of Education, Culture, Sports,
Science and Technology.

References

[1] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and V. Helmut,
“Counterexample-guided abstraction refinement for symbolic model
checking,” J. ACM, vol.50, no.5, pp.752–794, 2003.

[2] E.M. Clarke, A. Gupta, J. Kukula, and O. Strichman, “SAT based
abstraction-refinement using ILP and machine learning techniques,”
Proc. 14th Int. Conf. on Computer Aided Verification, Lecture Notes
in Computer Science, vol.2404, pp.695–709, 2002.

[3] E.M. Clarke, A. Fehnker, Z. Han, J. Ouaknine, O. Stursberg, and
M. Theobald, “Abstraction and counterexample-guided refinement
in model checking of hybrid systems,” Int. J. Found. Comput. Sci.,
vol.14, no.4, pp.583–609, 2003.

[4] R. Alur, Techniques for Automatic Verification of Real-Time Sys-
tems, PhD thesis, Stanford University, 1991.

[5] R. Alur, C. Courcoubetis, and D.L. Dill, “Model-checking for real-
time systems,” Proc. 5th Annual Symposium on Logic in Computer
Science, pp.414–425, 1990.

[6] S. Das, D.L. Dill, and S. Park, “Experience with predicate abstrac-
tion,” Proc. 11th Int. Conf. on Computer Aided Verification, Lecture
Notes in Computer Science, vol.1633, pp.160–171, 1999.

[7] J. Bengtsson and W. Yi, “Timed automata: Semantics, algorithms
and tools,” Lectures on Concurrency and Petri Nets, Lecture Notes
in Computer Science, vol.3098, pp.87–124, 2004.

[8] F. Wang, K. Schmidt, G.D. Huang, F. Yu, and B.Y. Wang, “For-
mal verification of timed systems: A survey and perspective,” Proc.
IEEE, vol.92, no.8, pp.1283–1307, 2004.

[9] G. Behrmann, A. David, and K.G. Larsen, “A tutorial on UPPAAL,”
Proc. 4th Int. School on Formal Methods for the Design of Com-
puter, Communication, and Software Systems, Lecture Notes in
Computer Science, vol.3185, pp.200–236, 2004.

[10] A. David, J. Hakansson, K.G. Larsen, and P. Pettersson, “Model
checking timed automata with priorities using DBM subtraction,”
Proc. 4th Int. Conf. on Formal Modelling and Analysis of Timed
Systems, Lecture Notes in Computer Science, vol.4202, pp.128–
142, 2006.

[11] H. Nakajima and Y. Kameyama, “Improvement on real-time
model checking using abstraction-refinement,” Trans. IPSJ, vol.45,
no.SIG12 (PRO23), pp.11–24, 2004.

[12] S. Kemper and A. Platzer, “SAT-based abstraction refinement for
real-time systems,” Proc. Third Int. Workshop on Formal Aspects of
Component Software, vol.182, pp.107–122, 2006.

[13] H. Dierks, S. Kupferschmid, and K G. Larsen, “Automatic abstrac-
tion refinement for timed automata,” Proc. 5th Int. Conf. on Formal
Modelling and Analysis of Timed Systems, Lecture Notes in Com-
puter Science, vol.4763, pp.114–129, 2007.

[14] T. Nagaoka, K. Okano, and S. Kusumoto, “Abstraction of timed
automata based on counterexample-guided abstraction refinement
loop,” IEICE Technical Report, SS2007-74, 2008.

NAGAOKA et al.: AN ABSTRACTION REFINEMENT TECHNIQUE FOR TIMED AUTOMATA BASED ON CEGAR LOOP
1005

Takeshi Nagaoka received the M.I. degree
in Computer Science from Osaka University in
2007. He currently belongs in a doctoral course.
His research interests include abstraction tech-
niques in model checking, especially timed au-
tomaton.

Kozo Okano received the BE, ME, and Ph.D
degrees in Information and Computer Sciences
from Osaka University, in 1990, 1992, and 1995,
respectively. Since 2002 he has been an asso-
ciate professor in the Graduate School of Infor-
mation Science and Technology, Osaka Univer-
sity. In 2002, he was a visiting researcher of the
Department of Computer Science, University of
Kent at Canterbury. In 2003, he was a visiting
lecturer at the School of Computer Science, Uni-
versity of Birmingham. His current research in-

terests include formal methods for software and information system design.
He is a member of IEEE, and IPS of Japan.

Shinji Kusumoto received the BE, ME, and
DE degrees in information and computer sci-
ences from Osaka University in 1988, 1990, and
1993, respectively. He is currently a professor in
the Graduate School of Information Science and
Technology at Osaka University. His research
interests include software metrics and software
quality assurance technique. He is a member of
the IEEE, the IEEE Computer Society, IPSJ, and
JFPUG.

