
1008
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.5 MAY 2011

PAPER

A State-Aware Protocol Fuzzer Based on Application-Layer
Protocols

Takahisa KITAGAWA†a), Miyuki HANAOKA†, Nonmembers, and Kenji KONO†,††, Member

SUMMARY In the face of constant malicious attacks to network-
connected software systems, software vulnerabilities need to be discov-
ered early in the development phase. In this paper, we present AspFuzz, a
state-aware protocol fuzzer based on the specifications of application-layer
protocols. AspFuzz automatically generates anomalous messages that ex-
ploit possible vulnerabilities. The key observation behind AspFuzz is that
most attack messages violate the strict specifications of application-layer
protocols. For example, they do not conform to the rigid format or syntax
required of each message. In addition, some attack messages ignore the
protocol states and have incorrect orders of messages. AspFuzz automati-
cally generates a large number of anomalous messages that deliberately vi-
olate the specifications of application-layer protocols. To demonstrate the
effectiveness of AspFuzz, we conducted experiments with POP3 and HTTP
servers. With AspFuzz, we can discover 20 reported and 1 previously un-
known vulnerabilities for POP3 servers and 25 reported vulnerabilities for
HTTP servers. Two vulnerabilities among these can be discovered by the
state-awareness of AspFuzz. It can also find a SIP state-related vulnerabil-
ity.
key words: fuzzing, software vulnerability testing, protocol specification

1. Introduction

Internet servers are constantly exposed to malicious attacks
launched remotely. For example, attackers may send mali-
cious messages that cause buffer overflows to execute arbi-
trary malicious code. To defend against malicious attacks,
eliminating all vulnerabilities in software systems before
they are shipped is essential. In spite of recent advances
in software development/testing techniques, product-quality
software systems are far from vulnerability-free. Vulnera-
bilities in software systems have instead increased in num-
ber. Symantec [1] documented 5491 vulnerabilities in 2008;
this is a 19% increase over the 4625 vulnerabilities docu-
mented in 2007.

Fuzzing is a software testing technique to reduce the
number of vulnerabilities in software systems. Fuzzing is
a kind of black box testing; it prepares random or semi-
random inputs to target programs. Since these inputs are
random, they are likely to be unexpected and incorrect in-
puts to the target programs. If the target program does
not reject the incorrect inputs, it will hang or crash during
fuzzing. Since critical security flaws often lie in incorrect or
insufficient checking of program inputs, software systems

Manuscript received March 29, 2010.
Manuscript revised November 27, 2010.
†The authors are with Keio University, Yokohama-shi, 223–

8522 Japan.
††The author is with CREST, Japan Science and Technology

Agency.
a) E-mail: kita@sslab.ics.keio.ac.jp

DOI: 10.1587/transinf.E94.D.1008

that cannot survive fuzzing have a high probability of secu-
rity holes. Fuzzing is known to be a quick and cost-effective
approach to finding security flaws; according to the “Month
of Browser Bugs” project, a new vulnerability was discov-
ered each day of July 2006 [2] by use of fuzzing.

To apply fuzzing to networked software, network mes-
sages must be created carefully because random inputs may
not conform to the specifications of application-layer pro-
tocols and, if so, are rejected immediately. State-of-the-
art fuzzers create input messages from the specifications of
application-layer protocols such as POP3 and HTTP. These
specifications detail 1) the format and syntax of each mes-
sage and 2) the order in which messages are exchanged.
Usually, the message order can be described in a state au-
tomaton. Each state determines a set of messages that can
be accepted in that state. When a message is received or
sent, the protocol state is changed to another. For fuzzing to
be performed on networked software, fuzzers must be aware
of protocol states. Since networked software handles differ-
ent sets of messages in different states, fuzzers should gen-
erate anomalous messages according to the current state of
the target protocol.

To the authors’ knowledge, most existing fuzzers use
message-level fuzzing [3]–[7]; it adds anomalies at the mes-
sage level and preserves the correct order of message ex-
changes. Although message-level fuzzing has been proven
effective, it cannot find exploitable vulnerabilities if the
message order is anomalous. Suppose a protocol specifica-
tion says message A must be followed by exactly one mes-
sage B. Message-level fuzzers generate anomalous versions
of messages A and B but cannot generate an incorrect se-
quence of messages such as B→A and A→B→B. Some
networked software has vulnerabilities if the message order
is not correct. For example, Apache HTTP Servers 2.0.37
through 2.0.45 are susceptible to remote attacks causing de-
nials of service [8]. This vulnerability is exploited if an
HTTP request is followed by multiple Host headers, which
is prohibited by HTTP/1.1; it defines that there should be
only one Host header.

To mitigate this shortcoming of message-level fuzzers,
scenario-based fuzzers have been proposed [9], [10]. To use
scenario-based fuzzers, the user must describe a scenario
that specifies the order in which messages are sent during
fuzzing. However, writing a scenario is a tedious and daunt-
ing task. To increase the coverage of fuzzing, the user must
carefully design a scenario that covers multiple patterns of
message exchanges.

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



KITAGAWA et al.: A STATE-AWARE PROTOCOL FUZZER BASED ON APPLICATION-LAYER PROTOCOLS
1009

In this paper, we present AspFuzz, a state-level (or
state-aware) protocol fuzzer that sends network messages
in an anomalous order as well as in an incorrect format
or syntax. AspFuzz targets networked software that im-
plements application-layer protocols such as POP3, IMAP,
SIP, and HTTP. AspFuzz is a superset of conventional pro-
tocol fuzzers; it generates anomalous messages similar to
the conventional anomalous messages. In addition, it sends
them in an anomalous order. Instead of describing scenarios
for fuzzing, AspFuzz automatically re-orders messages to
discover vulnerabilities. For effective generation of anoma-
lous messages, AspFuzz leverages the protocol specifica-
tions usually published as RFC. To use AspFuzz, a proto-
col specification is described in a special language for each
application-layer protocol. From this specification, Asp-
Fuzz automatically generates anomalous attack messages in
both correct orders and anomalous orders. Preparing pro-
tocol specifications would not be a problem because previ-
ously prepared specifications can be reused.

We implemented a prototype of AspFuzz. To demon-
strate the effectiveness of AspFuzz, we searched for vulner-
abilities of POP3, HTTP, and SIP reported in SecurityFo-
cus [11]. A closer examination showed that AspFuzz can
discover 20 vulnerabilities in POP3 servers, 25 vulnerabili-
ties in HTTP servers, and 1 SIP vulnerability. Three vulner-
abilities among these are state-related ones. We collected 4
POP servers and 19 HTTP servers with vulnerabilities and
tested them using AspFuzz. AspFuzz discovered all 4 re-
ported and 1 unknown vulnerabilities for POP3, and 16 re-
ported vulnerabilities for HTTP. The 3 HTTP vulnerabili-
ties are not exploitable even with exploit code provided by
SecurityFocus and neither discovered AspFuzz.

The remainder of this paper is organized as follows.
We discuss the related work in the next section. Section 3
presents AspFuzz, and Sect. 4 describes its implementation.
Section 5 presents our experimental results. Finally, we con-
clude the paper in Sect. 6.

2. Related Work

Fuzzing is a software testing technique that provides ran-
dom data as inputs for software. It is particularly useful
for testing network protocols or file formats. The work
most related to ours is AJECT [3]. Like AspFuzz, AJECT
uses an application-layer protocol specification to generate
well-formed input messages. The specification represents
the definition of a state, flow graph of the protocols, and
message syntax that can be sent in each state. Inputs are
generated based on heuristics to find specific vulnerabili-
ties, such as buffer overflow or format string vulnerabilities.
In each state, AJECT generates messages that are accept-
able in that state but with invalid arguments. Like AJECT,
AspFuzz generates messages that violate the specified for-
mat or syntax of messages. However, AspFuzz also gen-
erates messages in anomalous orders. Some reported vul-
nerabilities can be exploited by messages in incorrect orders
and therefore can be discovered only by AspFuzz. Other

fuzzing tools, such as PROTOS [4], Peach [5], Spike [6],
and Autodafé [7], use a similar approach to that of AJECT.
SNOOZE [9] and KiF [10] are scenario-based stateful pro-
tocol fuzzers. The former targets network applications, and
the latter targets SIP applications. To generate well-formed
input messages, these fuzzers require a scenario in addition
to a protocol specification. A scenario specifies how to per-
form the fuzzing, such as using mutated fields and the order
in which messages are sent. Thus, they do not automatically
generate inputs from the protocol specification. Because the
tester must carefully design a scenario that covers multiple
patterns of message exchanges, writing it manually is a te-
dious and daunting task. Sparks et al. [12] propose a fuzzing
approach based on a genetic algorithm to increase code cov-
erage. A tester specifies the grammar that encodes message
syntax and input production rules. Since this approach does
not generate inputs by considering the protocol state, how-
ever, it cannot discover vulnerabilities which are related to
the protocol state.

Pistachio [13] performs static source code analysis to
check the C implementation of a network protocol. Pista-
chio uses rules that describe acceptable messages and se-
quences of messages during each communication, which are
defined in RFCs or similar standards document. Pistachio
can find bugs in the protocol implementations, but it requires
the source code of the program.

Vulnerability assessment tools, designed for discov-
ering known vulnerabilities, include Nessus [14], McAfee
Vulnerability Manager [15], COPS [16], Internet Scan-
ners [17], and QualysGuard [18]. These tools collect known
vulnerabilities and regularly scan a system to determine
whether or not these vulnerabilities exist. Although these
tools are useful for improving the security of a system, they
cannot discover unknown vulnerabilities.

To automatically generate test inputs, some approaches
use symbolic execution and constraint solving [19]–[25].
For example, EXE [19] and KLEE [20] perform symbolic
execution at a source code level. Godefroid et al. [21], [22]
propose a whitebox fuzzing that performs symbolic execu-
tion of binary programs. These techniques automatically
generate inputs for finding bugs in an application, but they
do not focus on finding bugs that are related to the protocol
state.

Protocol reverse engineering can help specify proto-
col definitions. It is the process of extracting application-
level specifications for network protocols. For example,
Prospex [26] and the research by Wondracek et al. [27] au-
tomatically infer specifications for stateful network proto-
cols by giving sample protocol messages. We believe that
they are complementary to AspFuzz. If AspFuzz generates
inputs using a specification that is extracted by these tech-
niques, AspFuzz could perform fuzzing without manually
specifying protocol definitions.



1010
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.5 MAY 2011

3. AspFuzz

3.1 Overview

In this paper, we present AspFuzz, a state-aware protocol
fuzzer. AspFuzz targets network-connected software that
implements application-layer protocols. The key observa-
tion behind AspFuzz is that most attack messages do not
conform to the application-layer protocol specification. The
specification consists of the state, format, and syntax of mes-
sages, which are defined in RFCs. For example, accord-
ing to SecurityFocus BID 11705, an attack message for a
buffer overflow vulnerability in the Digital Mappings Sys-
tems POP3 server exceeds the POP3 command length limi-
tation of protocol specification. According to RFC 1939, the
POP3 argument length is up to 40 characters. In addition,
some vulnerabilities are exploited by messages in incorrect
orders. For example, Apache HTTP Servers 2.0.37 through
2.0.45 have a denial of service vulnerability [8]. This vul-
nerability can be exploited if an HTTP request is followed
by multiple Host headers. Because HTTP/1.1 does not al-
low multiple Host headers, this attack message does not
conform to HTTP/1.1.

To automatically generate attack messages that exploit
possible vulnerabilities, AspFuzz leverages the application-
layer protocol specification. Figure 1 shows an overview of
AspFuzz. AspFuzz generates various types of attack mes-
sages that deliberately violate the format or state specifica-
tion of the protocol. By doing so, AspFuzz discovers sev-
eral types of vulnerabilities, such as buffer overflow, denial
of service, and format string vulnerabilities. For example,
POP3 defines that a response should be an alphabetic string
of up to 512 characters. AspFuzz generates messages that
violate this protocol format. AspFuzz also generates mes-
sages in an anomalous order. For example, HTTP/1.1 de-
fines that there be only one Host header. AspFuzz gener-
ates attack messages that have multiple Host headers. The
vulnerabilities exploited by attack messages conforming to
the format or order specification are out of the scope of Asp-
Fuzz.

3.2 Application-Layer Protocol Specification

The application-layer protocol specification consists of the
state, format, and syntax of messages, which are defined in

Fig. 1 Fuzzing process in AspFuzz.

RFCs. We exemplify the specification of POP3. The state
transition of POP3 servers is shown in Fig. 2. A POP3 ses-
sion starts in the authorization state. A POP3 server receives
a user name and password in the POP3 authorization state,
and then it makes a transition to the transaction state. In this
state, the client can get mail lists or the body of mail. If the
server receives the QUIT command, it makes a transition to
the update state and then the connection is terminated.

A POP3 message from the client to the server consists
of a command that represents the desired operation and cor-
responding argument. The main POP3 command, syntax,
format, and acceptable state are shown in Table 1. For ex-
ample, the USER command is used to send a user name to
the server for authentication; it can be used only in the au-
thorization state and takes one argument (a user name). The
argument length should be less than or equal to 40 charac-
ters, the responses may be up to 512 characters long, and
messages should consist of printable ASCII characters. The
RETR command is used to retrieve a message that is speci-
fied in its argument. The argument is a message number that
should be a positive integer.

To use AspFuzz, an application-layer protocol specifi-
cation is described as a protocol definition. A protocol def-
inition is described in the tsfrule language that was de-
veloped in TCP Stream Filter [28]. By use of the tsfrule
language, the primary application-layer protocol definitions
can be described; the authors described four application-
layer protocol definitions for POP3, HTTP, SMTP, and
FTP [28]. Protocol definitions are divided into two parts:
definitions of messages and definitions of states. Definitions
of messages define the syntax, length limitation, character
restriction, and sequence of messages. These definitions are
described as a regular expression. Definitions of states de-
fine messages that are sent or received and the state transi-
tion in each protocol state. These definitions are described
as a finite state machine.

Part of the POP3 protocol definition is shown in

Fig. 2 State transition of POP3 servers.

Table 1 Main POP3 message specification. SP means space, and CRLF
means carriage return/line feed as termination of command.

Command syntax and format State

USER SP Name CRLF
AuthorizationName: up to 40 printable ASCII characters

PASS SP Pass CRLF
AuthorizationPass: up to 40 printable ASCII characters

QUIT CRLF Any
LIST CRLF Transaction
{LIST | RETR} SP Message number CRLF

TransactionMessage number: positive integer



KITAGAWA et al.: A STATE-AWARE PROTOCOL FUZZER BASED ON APPLICATION-LAYER PROTOCOLS
1011

Fig. 3 Part of POP3 protocol definition.

Fig. 3. Lines 1 to 9 describe the definitions of messages.
([’\033’-’\126’]+) in line 3 means that the character
range of the ASCII code should be between the decimal val-
ues of 33 and 126 (i.e., printable characters) and should re-
peat more than once. [<=40] in line 3 means that the length
of the string should be less than or equal to 40 characters. In
lines 10 to 28, the definitions of states are expressed. Lines
10 to 13 define the authorization state, in which the USER or
QUIT commands can be used. A rule for a state transition is
represented by “message -> next state”, which means that
if a message is received or sent, a transition is made to the
next state. The symbols <: and :> denote the direction of
the message; <: means a message from client to server, and
:> means a message from server to client. Line 11 defines
that if a client sends a User Cmd, a transition is made to
the auth reply state. Line 12 defines that if a client sends a
Quit Cmd, a transition is made to the terminate state.

Some messages must contain dynamically determined
information, such as HTTP cookies and SIP Call-ID, to
continue valid communication. For example, if a cookie is
needed in a HTTP communication, HTTP software rejects
the message that do not contain the cookie. Since a cookie
is dynamically supplied by the server to preserve state in-
formation, AspFuzz should dynamically include the cookie
when AspFuzz sends generated messages. We can describe
this in a protocol definition by extracting and including dy-
namically determined information in the attack messages.
If a protocol definition defines that the cookie is provided in
the Set-Cookie header in the HTTP reply message and the
following request message contains it in the Cookie header,
AspFuzz analyzes the reply messages to extract the cookie
and generates an attack messages that contain it.

Describing a protocol definition is not difficult if a
tester has knowledge about the protocol. Since develop-

ers of networked software normally have enough knowl-
edge about the protocol specification, it is not difficult for
them to describe the protocol definition to test software in
development. In fact, we could describe the POP3 and
HTTP definitions, which have about 120 and 130 lines of
code, respectively, by extracting application-layer protocol
specifications based on RFCs. In addition, once someone
writes a protocol definition, other people can reuse it to test
software that implements the same application-layer proto-
col. Furthermore, the approach to automatically extracting
application-layer specifications [26], [27] can be helpful for
AspFuzz to perform fuzzing without manually specifying
protocol definitions.

3.3 Crafting Attack Messages

To discover potential vulnerabilities, AspFuzz automatically
generates attack messages that exploit possible vulnerabili-
ties by leveraging the application-layer protocol specifica-
tion. AspFuzz uses two types of attacks, format violation
and anomalous order, and also generates attack messages
that combine the two.

3.3.1 Format Violation Attack

A format violation attack deliberately violates the format or
syntax specification. We introduce several kinds of fuzzing
methods by using real examples of POP3 and HTTP. Asp-
Fuzz also crafts attacks that combine two kinds of fuzzing
methods.

• Contains long string: If a message has a length limi-
tation in the protocol specification, AspFuzz generates
an attack message that has a string longer than the de-
fined length limitation. In addition, although RFC does
not specify the length limitations, the URI of HTTP
messages normally does not have an exceedingly long
string (e.g., more than 1000 characters). AspFuzz gen-
erates a message that has an exceedingly long string in
the URI part of an HTTP message.
• Violates character restriction: If acceptable charac-

ters are restricted in the protocol specification, Asp-
Fuzz generates an attack message that contains pro-
hibited characters. For example, since messages used
in POP3 should consist of printable ASCII charac-
ters, AspFuzz generates a message that contains non-
printable ASCII characters.
• Contains erroneous value: If a message field specifies

a value for desired operation, AspFuzz generates an at-
tack message that contains an erroneous or unexpected
value. For example, since an argument of a POP3 LIST
command should be a positive integer, AspFuzz gener-
ates an attack message that has a negative value or huge
value as an argument.
• Contains format string: A format string vulnerability

is common in the software of text-based protocols such
as POP3, HTTP, and SIP. AspFuzz generates an attack



1012
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.5 MAY 2011

message that contains a format string such as “%s” and
“%d”.
• Changes number of fields: If the number of message

fields is limited, AspFuzz generates an attack message
by adding or eliminating fields. For example, since
the POP3 RETR command takes one field as its argu-
ment, AspFuzz generates an attack RETR message that
has two or more fields or no field.
• Removes delimiter: Many application-layer protocols

use delimiter bytes to divide a message into individual
fields. AspFuzz generates an attack message that does
not have delimiter bytes. For example, since the POP3
command uses a carriage return/line feed (CRLF) as
the termination of a command, AspFuzz generates at-
tack messages without CRLFs.

3.3.2 Anomalous Order Attack

An anomalous order attack deliberately violates the state
specification. SecurityFocus BIDs 7723, 13873, and 14174
report vulnerabilities that are exploited by messages that
have an incorrect order. As explained in Sect. 3.2, a pro-
tocol specification defines a set of message types that can
be handled in a particular protocol state and the order in
which message are exchanged. To automatically generate
an anomalous order of messages, AspFuzz uses a message
that cannot be used in the current protocol state. For ex-
ample, since the POP3 USER command can be used only
in the authorization state, AspFuzz sends the USER com-
mand in the transaction state. In some protocols, includ-
ing multiples of the same headers in a message is prohib-
ited. HTTP/1.1 defines that there be only one Host header
or Content-Length header. AspFuzz generates messages
that have multiple Host or Content-Length headers. Asp-
Fuzz generates anomalous message ordering using the fol-
lowing heuristics.

• Exchanges messages: AspFuzz exchanges the order
of messages to be sent to a target server. If a protocol
definition says messages A and B must be sent in the
order A→B (A is followed by B), AspFuzz exchanges
the order and sends them like B→A. Many protocols
have a request/response pattern; i.e., request A is sent,
response B is received, and another request C is sent.
In this case, AspFuzz sends request C before request A
to exchange the order of messages.
• Duplicates a message: AspFuzz duplicates messages

to generate anomalous message orders. When AspFuzz
identifies a pattern of sending two messages A and B
successively, it duplicates messages A or B; AspFuzz
tries A→A→B and A→B→B. When AspFuzz identi-
fies a request/response pattern, it duplicates the request
message. For example, if a protocol definition specifies
message A is sent, message B is received, and another
message C is sent, AspFuzz duplicates message A; i.e.,
AspFuzz sends A, receives B, and sends A again.

• Eliminates a message: AspFuzz eliminate some mes-
sages. When AspFuzz identifies a pattern of sending
two messages A and B successively, it eliminates ei-
ther message A or B. If a protocol definition specifies
the messages A and B must be sent in the order A→B,
AspFuzz sends message A or B exclusively. Note the
difference from the heuristics of exchanging message
orders in which both messages are sent in the prob-
ably incorrect order. When AspFuzz identifies a re-
quest/response pattern, it eliminates the request and re-
sponse pair entirely.
• Sends a message in another state: As described in

Sect. 3.1, many application-layer protocols have states
which define a set of valid messages. To check for vul-
nerabilities, AspFuzz selects a message invalid in the
current state but valid in another state.
• Unexpected termination: AspFuzz closes a connec-

tion at random to simulate unexpected termination of
the current session. AspFuzz closes a connection when
a message is being transmitted.

The current implementation does not guarantee the in-
correctness of the generated messages. For example, Asp-
Fuzz exchanges the order of two successive messages with-
out checking a protocol inhibits the exchanged order. Asp-
Fuzz tries the exchanged order (B→A) whenever it finds
successive messages (A→B). If the protocol allows B→A,
the generated messages are not anomalous. AspFuzz uses
the heuristics to generate anomalous orders. Since there are
many formal methods to describe state-based protocols, we
believe model checking can be used to generate anomalous
message orders.

In addition, AspFuzz can automatically craft an attack
message whose format and order are incorrect. For example,
AspFuzz crafts an attack message that uses a USER com-
mand whose arugment is over 40 characters and then sends
it in the transaction state instead of the authorization state.

4. Implementation

The architecture of AspFuzz is shown in Fig. 4. We im-
plemented AspFuzz in Java. AspFuzz consists of two sys-
tems: the attack generation system and the attack manage-
ment system. The attack generation system generates at-
tack messages based on a protocol definition. The attack
management system sends attack messages and receives re-
sponse messages. In addition, it tracks the target software’s
protocol state by analyzing both sent and received messages
to send attacks in a certain protocol state.

Fig. 4 Architecture of AspFuzz.



KITAGAWA et al.: A STATE-AWARE PROTOCOL FUZZER BASED ON APPLICATION-LAYER PROTOCOLS
1013

4.1 Attack Generation System

The attack generation system analyzes a given protocol def-
inition and generates attack messages based on the protocol
definition. We implemented it based on a tsfrule com-
piler, which was developed in TCP Stream Filter.

An example of attacks that are automatically gener-
ated using the POP3 USER and LIST command definitions
is shown in Table 2. Suppose AspFuzz uses a proto-
col definition shown in Fig. 3. The attack generation sys-
tem analyzes ([’\033’-’\126’]+)[<=40] defined in line
3. ([’\033’-’\126’]+)[<=40] means that the character
range of the ASCII code should be between the decimal val-
ues of 33 and 126 (i.e., printable character) and the length of
the string should be less than or equal to 40 characters. The
attack generation system records this character and length
limitation. Then the attack generation system generates at-
tack messages that contain non-printable characters (the sec-
ond row in Table 2) or over 40 characters, such as 41, 255,
or 1024 characters, which are possibly the boundary length
of buffer overflows in the target software (the first row in
Table 2). Lines 10 to 13 in Fig. 3 defines that USER com-
mand can be used in the authorization state, and lines
24 to 28 define that USER command can not be used in the
transaction state. Then the attack management system ana-
lyzes these definitions, and records that USER command can
be used only in the authorization state. Then the attack
management system generates anomalous order attack mes-
sages that contain USER command in the transaction state
instead of the authorization state (the eighth row). The last
row shows combination of anomalous order and format vio-
lation attack message that contains over 40 characters.

To send attack messages in a specific protocol state,
AspFuzz generates not only attack messages but also nor-
mal messages that transitions to a specified protocol state
by leveraging the target protocol’s state machine. State ma-
chine is extracted from the protocol definition. For exam-
ple, the third row in Table 2 shows an example of attack

Table 2 Example of attack messages using POP3 USER and LIST com-
mand definitions. ‘A’ x N means that character ‘A’ repeats N times.

Attack message Attack type

USER SP ‘A’ x N CRLF
Long stringN= {41, 255, 1024 · · ·}

USER SP binary CRLF Violated character
binary: non-printable ASCII characters restriction
LIST SP value CRLF

Erroneous valuevalue= {-10000, -0, 1111111111 · · ·}
USER SP string x 20 CRLF

Format stringstring= {“%s”,“%d”, “%s%s%s” · · ·}
USER SP ‘A’ x 20 SP ‘A’ x 20 CRLF Duplicated fields
USER SP CRLF No fields
USER SP ‘A’ x N (without CRLF) Long string and
N= {41, 255, 1024 · · ·} no delimiters
USER SP “test” CRLF

Anomalous ordersent in transaction state
USER SP ‘A’ x 255 CRLF Long string in
sent in transaction state anomalous order

message that contains LIST command with erroneous value.
Since LIST command should be sent in the transaction state,
the attack generation system generates valid USER and PASS
command to make a transition to the transaction state of the
target software.

To generate attack messages flexibly, AspFuzz uses at-
tack generation rules. Attack generation rules are the con-
figurations for generating attack messages, and a tester can
easily add site-specific rules. The attack generation rules in-
clude many variables to generate attacks, such as the number
of characters in a long string or strings that may exploit a for-
mat string vulnerability. The default rules are defined based
on our heuristics. The rules also include information for
successfully sending attack messages, such as a user name
and password for authenticating POP3 servers. If a new type
of attack is discovered or a tester wants to add site-specific
rules, he/she can write his/her own rules. For example, if a
tester wants to contain specific format string, the tester de-
scribes a specific format string in the attack generation rules
and the attack generation system generates attack messages
that contain it. Suppose a tester wants to test HTTP requests
that access a CGI program in the target software. If the tester
describes a specific CGI program name in the attack gener-
ation rule, AspFuzz generates HTTP requests that access it.

If necessary, AspFuzz contains dynamically deter-
mined information such as HTTP cookie and SIP Call-ID
in the generated message.

4.2 Attack Management System

The attack management system sends attack messages to
the target software and receives response messages. The
attack management system automatically tracks the target
software’s protocol state by using the state tracking system,
which was developed in TCP Stream Filter. The state track-
ing system monitors both sent and received messages and
tracks the state based on the protocol definition. If an attack
message is sent in a certain protocol state, AspFuzz sends
some messages to make a transition to the protocol state be-
fore sending the attack message. For example, since the at-
tack message shown in the third row in Table 2 should be
sent in the transaction state, the attack management system
sends valid USER and PASS command and checks the pro-
tocol state. If the target software transits to the transaction
state, the attack management system sends attack message
to the target software.

In the current implementation, we manually decide
whether the attack succeeds or not. To help manual analy-
sis, the attack management system checks responses against
attack messages and the network socket condition. If target
software do not respond, target software disconnects the at-
tack management system, or an error occurs in the network
socket, AspFuzz may exploit a vulnerability in the target
software. In that case, the attack management system auto-
matically issues the warning message. We decide whether
the attack succeeds or not by leveraging warning messages,
behavior of the target software, and the target software’s



1014
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.5 MAY 2011

Table 3 Discovered POP3 vulnerabilities.

BID Software First successful attack Attack type
4295 QPopper 4.03 USER SP ‘A’ x 2048 (without CRLF) Long string and removes delimiter

7724 BaSoMail 1.24
LIST SP -10000 CRLF

Erroneous value(sends 100 times successively)
11256 YahooPOPS! 0.6 USER SP ‘A’ x 2000 CRLF Long string
11705 Digital Mapping Systems POP3 Server USER SP ‘A’ x 1024 CRLF Long string

– BaSoMail 1.24 USER SP ‘A’ x 2048 CRLF Long string

log, and so on. In the future, we plan to detect success-
ful attacks automatically by using buffer overflow runtime
detection systems such as StackGuard [29], LibSafe [30],
TaintCheck [31], and MemSherlock [32], intercepting sig-
nals such as SIGSEGV (which indicates an illegal memory
reference), or monitoring resource usage of the target soft-
ware.

5. Experiments

5.1 Experimental Setup

We conducted experiments to show that AspFuzz can dis-
cover vulnerabilities. First, we searched for vulnerabilities
of POP3, HTTP, and SIP implementations published in Se-
curityFocus [11]. We analyzed the details of the collected
vulnerabilities to determine whether our approach could in
principle find the vulnerabilities. Then we collected the real
POP3 and HTTP vulnerable software and sent attack mes-
sages generated by AspFuzz to determine whether AspFuzz
could actually find the vulnerabilities. We also used the
Common Vulnerabilities and Exposures database [33], and
several other hacker and security sites to check the vulnera-
bility information and find exploit codes for the vulnerabili-
ties.

We described POP3 and HTTP protocol definitions and
specific attack generation rules, such as authentication in-
formation for POP3 servers and specific file name to some
software for the experiment. We used a testbed machine that
ran AspFuzz on Fedora 8 with an Intel Pentium 4 3.40 GHz
and 1 GByte of main memory. We installed each target soft-
ware in WindowsXP or Fedora Core 6 on a VMware virtual
machine that was allocated 256 MBytes of memory in the
testbed machine. AspFuzz sent generated messages to each
software in the VMware virtual machine and received re-
sponse messages from them.

Most vulnerabilities described in this section are
caused by format violation. In our investigation, there
are three vulnerabilities triggered by anomalous ordering
of messages. This fact implies that AspFuzz can discover
vulnerabilities that may be overlooked by traditional state-
unaware fuzzers even though there are not so many vulner-
abilities caused by anomalous message ordering.

5.2 POP3 Results

We searched for all the POP3 server vulnerabilities reported
from January 2002 to March 2009 in SecurityFocus. Re-
ports of 61 POP3 vulnerabilities were made, and 40 reports

had details of the vulnerabilities. Since the rest of reports did
not have enough information about vulnerabilities, we could
not decide whether AspFuzz can discover these vulnerabili-
ties or not. A closer examination of the reports showed that
AspFuzz can discover 20 vulnerabilities. They include 14
buffer overflow vulnerabilities, 5 denial of service vulner-
abilities, and 1 format string vulnerability. The remaining
20 vulnerabilities are not target vulnerabilities of AspFuzz
because these vulnerabilities are not exploited by the attack
messages that do not conform to the application-layer pro-
tocol.

We attempted to collect POP3 servers that contained
the 20 discoverable vulnerabilities and finally obtained 4 of
them. As a result of sending the messages generated by Asp-
Fuzz, we successfully exploited all four known vulnerabil-
ities. The discovered vulnerabilities and successful attacks
are shown in Table 3. The table indicates the report iden-
tifiers assigned by SecurityFocus (BID), the name of target
software, the attack message that AspFuzz exploited vulner-
ability for the first time (first successful attack), and gen-
erated attack message type. We explain the details of the
Qpopper vulnerability as a successful attack example. Ac-
cording to SecurityFocus BID 4295, Qpopper 4.03 has a re-
mote denial of service vulnerability. If a string longer than
2048 characters is sent to the qpopper process, a denial of
service condition occurs. The first successful attack gener-
ated by AspFuzz contains 2048 characters as a USER com-
mand argument and does not contain CRLF which repre-
sents the command termination. Because this attack did not
contain CRLF, the server did not reply. After sending the at-
tack, we found that the Qpopper process had gone into an in-
finite loop by monitoring the CPU usage and Qpopper’s log.
As a result, the Qpopper process could not provide POP3
services.

In addition to the reported vulnerabilities, we discov-
ered one previously unknown vulnerability. This vulnera-
bility was found when we conducted an experiment with
BaSoMail 1.24. The successful attack message has 2055
characters that comprise a USER command, space, a 2048-
character user name, and CRLF. When AspFuzz sent it to
BaSoMail 1.24, a denial of service condition occurred, such
as the software crashing, multiple access violation windows
being shown, or the reply message not being sent. After
manual testing, we found that if a string longer than 2049
characters is sent to BaSoMail, a denial service condition
occurs. This message is different from the successful attack
for SecurityFocus BID 7724 of the same software. Note
that this vulnerability differs from the one reported in CVE-
2004-2168, which causes denial-of-service when an attacker



KITAGAWA et al.: A STATE-AWARE PROTOCOL FUZZER BASED ON APPLICATION-LAYER PROTOCOLS
1015

Table 4 Discoverable POP3 vulnerabilities.

BID Software Example of attack Attack type
4055 Delegate 7.8.0 USER SP ‘A’ x 242 CRLF Long string
4427 FTGatePro 1.0 5 APOP SP “user” SP ‘A’ x 1000 CRLF Long string
5285 SmartMax MailMax 4.8 USER SP ‘A’ x 247 CRLF Long string

5327 T.Hauck Jana WebServer 1.46
DELE SP Value CRLF

Erroneous valueValue: large message number
6053 Alt-N Mdaemon 6.07 DELE SP -1 CRLF Erroneous value
6074 SmartMail Server 2.0 Sends “AAAA” and closes the connection Sends anomalous message
6183 IISPop 1.181 ‘A’ x 289999 Long string
6197 MailEnable 1.5018 USER SP ‘A’ x 2009 CRLF Long string
7519 SLMail 5.1.0.4420 PASS SP ‘A’ x 4654 CRLF Long string
8473 vhost-3.05r3 USER SP “%s%s” x 5000 CRLF Long format string
9794 1st Class Mail Server 4.0 APOP SP “user” SP ‘A’ x 626 CRLF Long string

10728 Gattaca Server 2003 1.1.10.0 LIST SP 9999999999999999 CRLF Erroneous value
12711 Foxmail Email Server 2.0 USER SP ‘A’ x 5000 CRLF Long string
15972 Floosietek FTGate 4.4 USER SP “%n” x 20 CRLF Format string
19651 Alt-N MDaemon 8.1.3 USER SP ‘A’ x 3370 CRLF Long string
25496 Hexamail Server 3.0.001 USER SP ‘A’ x 1024 CRLF Long string

Table 5 Discovered HTTP vulnerabilities.

BID Software First successful attack Attack type

13873 Squid 2.5 stable 4
Content-Length: SP 0 CRLF Erroneous value and
(sends multiple times) sends anomalous order

22791 Apache Software Foundation mod jk 1.2.19 POST SP “/A” x 3000 SP HTTP/1.1 CRLF Long string
23341 Wserve 4.6 HEAD SP ‘A’ x 2000 SP HTTP/1.1 CRLF Long string
23445 KarjaSoft Sami HTTP Server 2.01 HEAD SP “%s%s%s” x 20 SP HTTP/1.1 CRLF Format string
23545 3proxy 0.53g Host: SP ‘A’ x 20000 CRLF Long string
23713 Pi3Web 2.0.3 HEAD SP “/A” x 1024 SP HTTP/1.1 CRLF Long string
24649 Apache 2.24 Cache-Control: SP max-age= CRLF Removes field

28757 Novell eDirectory 8.8
Connection: SP String CRLF Long string and violates
String: 100 random characters that include ‘,’ character restriction

29661 BitTorrent 6.0.1 Range: SP bytes‘1’ x 20000-‘1’ x 20000 CRLF
Erroneous value
and removes field

30273 BEA Systems WebLogic Server 8.1 SP6
HEAD SP /weblogic/index.jsp SP

Long stringHTTP‘A’ x 2048/‘A’ x 2048 CRLF
30869 Fedora Directory Server 1.1.1-3 Accept-Language: SP ‘A’ x 255 CRLF Long string
31416 CCProxy Server 6.6 CONNECT: SP ‘A’ x 2000 SP HTTP/1.1 CRLF Long string
33898 Steamcast 0.9.75 Content-Length: SP -100000 CRLF Erroneous value
34134 HP OpenView Network Node Manager 7.53 Cookie: SP aaaaa=‘A’ x 10000 CRLF Long string
34135 HP OpenView Network Node Manager 7.53 Accept-Language: SP ‘A’ x 500 CRLF Long string
34294 HP OpenView Network Node Manager 7.53 Cookie: SP aaaaa=‘A’ x 10000 CRLF Long string

creates multiple connections to ports 25 and 110.
Other vulnerabilities that are discoverable but cannot

be tested by AspFuzz are shown in Table 4. In Table 4, there
is one notable vulnerability that is triggered by anomalous
message ordering. According to SecurityFocus BID6074,
SmartMail Server 2.0 is prone to a denial of service if a
client sending data does not follow the normal protocol and
closes the connection unexpectedly to quit the session. In
this table, examples of attack are decided by vulnerability
reports and the results of manual analysis of public exploit
code. AspFuzz can generate these attack messages. How-
ever, they were unable to be tested, because the software
was not available or could not be installed in our testbed
environment.

5.3 HTTP Results

We searched for all the vulnerabilities of HTTP implementa-
tions reported from January 2007 to March 2009 and several

vulnerabilities reported before 2007 in SecurityFocus. Re-
ports of 71 HTTP vulnerabilities were made, and 54 reports
had details of the vulnerabilities. Since the rest of reports did
not have enough information about vulnerabilities, we could
not decide whether AspFuzz can discover these vulnerabili-
ties or not. A closer examination of the reports showed that
AspFuzz can discover 25 vulnerabilities. They include 11
buffer overflow vulnerabilities, 10 denial of service vulner-
abilities, 2 memory corruption vulnerabilities, 1 HTTP re-
quest smuggling vulnerability, and 1 arbitrary code execu-
tion vulnerability. The remaining 29 HTTP vulnerabilities
are not target vulnerabilities of AspFuzz because they are
not exploited by attack messages that do not conform to the
application-layer protocol.

We attempted to collect HTTP software of the 25 dis-
coverable vulnerabilities and obtained 19. AspFuzz success-
fully exploits 16 of the known vulnerabilities. Table 5 shows
the discovered vulnerabilities. First successful attack shows
part of attack message that is believed to exploit vulnera-



1016
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.5 MAY 2011

Table 6 Discoverable HTTP vulnerabilities.

BID Software Example of attack Attack type
27701 IEA Software RadiusX 5.1.38 Content-Length: SP 2147483647 CRLF Erroneous value
28572 Novell eDirectory 8.82 HEAD SP ‘<’ x 2048 SP HTTP/1.1 CRLF Long string
28610 SmarterTools SmarterMail 5.0 TRACE SP ‘A’ x 8784 CRLF Long string
28795 BigAnt IM Server 2.23 GET SP ‘A’ x 2048 CRLF Long string
30652 OmniSwitch OS9000 Series Cookie: SP Session= ‘A’ x 2932 CRLF Long string
32560 Rumpus FTP Server 6.0 ‘A’ x 2908 Long string

bility. We explain here the details of the Steamcast vulner-
ability as an example of a successful attack. According to
SecurityFocus BID 33898, Steamcast is prone to multiple
memory-corruption vulnerabilities. If a Content-Length
header that contains a negative value is sent to Steamcast, a
denial of service condition occurs or an attacker can execute
an arbitrary code in the context of the application. A suc-
cessful attack message generated by AspFuzz consists of a
POST request, Host header, Content-Length header that
has “-100,000”, and a message body. Steamcast crashed af-
ter this attack message was sent to it.

We also discovered a HTTP/1.1 RFC violation bug in
a HTTP proxy that leads to the HTTP Request Smuggling
vulnerability [34]. HTTP Request Smuggling is a hack-
ing technique against HTTP devices/entities (e.g., cache
server and proxy server). HTTP/1.1 RFC does not allow
multiple Content-Length headers, and a Watchfire tech-
nical report [34] discloses that violation of this rule leads
to the HTTP Request Smuggling vulnerability. The tech-
nical report notes that Squid 2.5.stable4 is observed to
process a HTTP request with anomalous order as a valid
HTTP request. This implies that Squid 2.5.stable has an
HTTP request smuggling vulnerability that is triggered by
anomalous message ordering. In our experiment, Asp-
Fuzz sent generated attack messages that contained multiple
Content-Length headers whose value were “0” to Squid
2.5.stable4. Squid responded with an “HTTP/1.1 200 OK”
response message. Since the attack messages did not con-
form to HTTP/1.1 RFC, Squid should have sent error re-
sponse codes. This behavior shows that Squid 2.5.stable4
processes an HTTP request with anomalous order that vio-
lates HTTP/1.1 RFC as a valid HTTP request.

AspFuzz could not exploit three vulnerabilities:
Apache memory corruption vulnerability (BID 7723),
xserver HTTP request buffer overflow vulnerability (BID
25030), and SW-HTTPD HTTP request denial of service
vulnerability (BID 34188). Even though we sent the known
exploit code for these vulnerabilities, the vulnerabilities
could not be exploited. We believe this was because the ob-
tained software had already been fixed or some conditions
for exposing the vulnerability were not satisfied.

Other vulnerabilities that are discoverable but cannot
be tested by AspFuzz are shown in Table 6. The column of
“Example of attack” shows part of the attack messages that
are believed to exploit vulnerability. AspFuzz can generate
these attack messages. However, they were unable to be
tested, because the software was not available or could not
be installed in our testbed environment.

5.4 SIP Results

We searched for SIP vulnerabilities in SecurityFocus. Ac-
cording to SecurityFocus BID 14174, the multiple vendor
VoIP phones handle spoofed SIP status message in an im-
proper manner, and this vulnerability can be exposed only
by using an anomalous order attack. According to RFC
3265, the SIP NOTIFY message is used to notify an event
that has been requested by an earlier SUBSCRIBE message.
If the notified event is not previously subscribed to by the
SUBSCRIBE message, the client has to respond with a “481
Subscription does not exist” error message. The vulnera-
ble phones process NOTIFY messages on events that are not
previously subscribed instead of rejecting them. This is be-
cause they do not correctly verify the Call-ID, tag, and
branch headers of NOTIFY messages. AspFuzz can auto-
matically generate an anomalous order attack message that
exploits this vulnerability.

6. Conclusion

We presented AspFuzz, a state-aware protocol fuzzer based
on the specifications of application-layer protocols. Asp-
Fuzz targets network-connected software that implements
application-layer protocols. The key observation behind
AspFuzz is that most of attack messages exploit networked
software vulnerabilities, which violate the strict definitions
of application-layer protocols. AspFuzz automatically gen-
erates a large number of attack messages in incorrect for-
mat or syntax as well as in anomalous orders by leveraging
application-layer protocols of the target software. We inves-
tigated the reported vulnerabilities for POP3, HTTP, and SIP
software and sent generated messages to them. With Asp-
Fuzz, we discovered 20 reported and 1 previously unknown
vulnerabilities for POP3 and 25 reported vulnerabilities for
HTTP. Two vulnerabilities among these can be discovered
by the state-awareness of AspFuzz. It can also find a SIP
state-related known vulnerability.

References

[1] Symantec Corporation, “Internet Security Threat Report XIV,”
http://www.symantec.com/business/theme.jsp?themeid=threatreport,
2009.

[2] “Month of Browser Bugs,” http://browserfun.blogspot.com/, July
2006.

[3] N. Neves, J. Antunes, M. Correia, P. Verı́ssimo, and R. Neves,
“Using attack injection to discover new vulnerabilities,” Proc. 36th



KITAGAWA et al.: A STATE-AWARE PROTOCOL FUZZER BASED ON APPLICATION-LAYER PROTOCOLS
1017

IEEE International Conference on Dependable Systems and Net-
works (DSN ’06), pp.457–466, 2006.

[4] “PROTOS-Security Testing of Protocol Implementations,”
http://www.ee.oulu.fi/research/ouspg/protos/

[5] “Peach Fuzzing Platform,” http://peachfuzzer.com/, 2008.
[6] D. Aitel, The advantages of block-based protocol analysis for secu-

rity testing, Immunity Inc., 2002.
[7] M. Vuagnoux, “Autodafé: An act of software torture,” tech. rep.,

Swiss Federal Institute of Technology (EPFL), Cryptography and
Security Laboratory (LASEC), 2006.

[8] “Apache APR PSPrintf Memory Corruption Vulnerability.”
http://www.securityfocus.com/bid/7723

[9] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer, and
G. Vigna, “SNOOZE: Toward a stateful network protocol fuzzer,”
Proc. 9th Information Security Conference (ISC ’06), pp.343–358,
2006.

[10] H.J. Abdelnur, R. State, and O. Festor, “KiF: A stateful SIP Fuzzer,”
Proc. 1st International Conference on Principles, Systems and Ap-
plications of IP Telecommunications (IPTComm ’07), pp.47–56,
2007.

[11] “SecurityFocus,” http://www.securityfocus.com/
[12] S. Sparks, S. Embleton, R. Cunningham, and C. Zou, “Automated

vulnerability analysis: Leveraging control flow for evolutionary in-
put crafting,” Proc. 23rd Annual Computer Security Applications
Conference (ACSAC ’07), pp.477–486, 2007.

[13] O. Udrea, C. Lumezanu, and J.S. Foster, “Rule-based static analysis
of network protocol implementations,” Proc. 15th USENIX Security
Symposium, pp.193–208, 2006.

[14] Tenable Network Security Inc., “Nessus vulnerability scanner,”
http://www.nessus.org/nessus/

[15] McAfee Inc, “McAfee Vulnerability Manager,”
http://www.mcafee.com/

[16] D. Farmer and E.H. Spafford, “The COPS security checker system,”
Proc. USENIX Summer Conference, pp.165–170, 1990.

[17] IBM Inc, “Internet Scanner,” http://www.iss.net/
[18] Qualys Inc, “QualysGuard,” http://www.qualys.com/
[19] C. Cadar, V. Ganesh, P.M. Pawlowski, D.L. Dill, and D.R. Engler,

“EXE: Automatically generating inputs of death,” Proc. 13th ACM
Conference on Computer and Communications Security (CCS ’06),
pp.322–335, 2006.

[20] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems pro-
grams,” Proc. 8th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI ’08), pp.209–224, 2008.

[21] P. Godefroid, M.Y. Levin, and D. Molnar, “Automated whitebox
fuzz testing,” Proc. 15th Annual Network and Distributed System
Security Symposium (NDSS ’08), 2008.

[22] P. Godefroid, A. Kieżun, and M.Y. Levin, “Grammar-based white-
box fuzzing,” Proc. 2008 ACM Conference on Programming Lan-
guage Design and Implementation (PLDI ’08), pp.206–215, 2008.

[23] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed auto-
mated random testing,” Proc. 2005 ACM Conference on Program-
ming Language Design and Implementation (PLDI ’05), pp.213–
223, 2005.

[24] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” Proc. 5th Joint Meeting of the European Software
Engineering Conference and the ACM Symposium on Foundations
of Software Engineering (ESEC/FSE ’05), pp.263–272, 2005.

[25] D. Molnar, X.C. Li, and D.A. Wagner, “Dynamic test generation to
find integer bugs in x86 binary linux programs,” Proc. 18th USENIX
Security Symposium, pp.67–81, 2009.

[26] P.M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda,
“Prospex: Protocol specification extraction,” Proc. 30th IEEE Sym-
posium on Security and Privacy (S&P ’09), pp.110–125, 2009.

[27] G. Wondracek, P.M. Comparetti, C. Kruegel, and E. Kirda, “Auto-
matic network protocol analysis,” Proc. 15th Annual Network and
Distributed System Security Symposium (NDSS ’08), 2008.

[28] K. Kono, T. Shinagawa, and M.R. Kabir, “Improving internet server
security by filtering on TCP streams,” IPSJ Trans. Advanced Com-
puting Systems, vol.46, no.SIG4 (ACS 9), pp.33–44, 2005.

[29] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A.
Grier, P. Wagle, Q. Zhang, and H. Hinton, “StackGuard: Automatic
adaptive detection and prevention of buffer-overflow attacks,” Proc.
7th USENIX Security Symposium, pp.63–78, 1998.

[30] A. Baratloo, T. Tsai, and N. Singh, “Libsafe: Protecting critical ele-
ments of stacks,” Tech. Rep., Bell Labs, Lucent Technologies, 1999.

[31] J. Newsome and D. Song, “Dynamic taint analysis for automatic de-
tection, analysis, and signature generation of exploits on commodity
software,” Proc. 12th Annual Network and Distributed System Se-
curity Symposium (NDSS ’05), pp.123–130, 2005.

[32] E.C. Sezer, P. Ning, C. Kil, and J. Xu, “Memsherlock: An auto-
mated debugger for unknown memory corruption vulnerabilities,”
Proc. 14th ACM Conference on Computer and Communications Se-
curity (CCS ’07), pp.562–572, 2007.

[33] “Common Vulnerabilities and Exposures,” http://cve.mitre.org/
[34] C. Linhart, A. Klein, R. Heled, and S. Orrin, HTTP REQUEST

SMUGGLING, Watchfire Inc., 2005.

Takahisa Kitagawa received the B.E. de-
gree from Keio University in 2008. He is cur-
rently a master student in the Graduate School of
Science and Technology, Keio University. His
current research interests include system soft-
ware and network security.

Miyuki Hanaoka received the B.E. degree
from the University of Electro-Communications
in 2005, and M.E. from Keio University in 2007.
She is currently a Ph.D. candidate in the Grad-
uate School of Science and Technology, Keio
University. Her research interests include net-
work security and system software. She is a stu-
dent member of IEEE, ACM, and IPSJ.

Kenji Kono received the B.Sc. degree in
1993, and M.Sc. degree in 1995, and Ph.D. de-
gree in 2000, all in computer science from the
University of Tokyo. He is an associate profes-
sor of the Department of Information and Com-
puter Science at Keio University. His research
interests include operating systems, system soft-
ware and Internet security. He is a member of
IEEE/CS, ACM, and USENIX.


