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Voronoi Game on a Path

Masashi KIYOMI†a), Toshiki SAITOH††, Nonmembers, and Ryuhei UEHARA†, Member

SUMMARY The Voronoi game is a two-person perfect information
game modeling a competitive facility location. The original version of
the game is played on a continuous domain. Only two special cases (1-
dimensional case and 1-round case) have been extensively investigated.
Recently, the discrete Voronoi game of which the game arena is given as
a graph was introduced. In this note, we give a complete analysis of the
discrete Voronoi game on a path. There are drawing strategies for both the
first and the second players, except for some trivial cases.
key words: Discrete Voronoi game, combinatorial game theory

1. Introduction

The Voronoi game is an idealized model for a competitive
facility location. It was proposed by Ahn, Cheng, Cheong,
Golin, and Oostrum [1]. The Voronoi game is played on a
bounded continuous arena by two players. Two players B
(black) andW (white) put marks on a predetermined num-
ber t of points alternately, and the continuous field is sub-
divided according to the nearest neighbor rule. At the final
step, the player who dominates larger area wins. There is a
web site introducing the game [6]. You can play the game
on the site.

The Voronoi game is a natural game, but the general
case seems to be very hard to analyze from the theoretical
point of view. Hence, Ahn et al. investigated the case where
the game field is a bounded 1-dimensional continuous do-
main in [1]. On the other hand, Cheong, Har-Peled, Linial,
and Matoušek [2], and Fekete and Meijer [4] dealt with a
2-dimensional case, but they restricted the games to be one-
round; B puts his t marks first, and nextW puts his t marks.

Recently, a natural discrete model was proposed inde-
pendently by Teramoto, Demaine, and Uehara [5] and Dürr
and Thang [3]. The discrete Voronoi game is played on a
given finite graph G, instead of a bounded continuous arena.
Each vertex of G can be assigned to nearest vertices occu-
pied by B or W, according to the nearest neighbor rule.
(Hence, a vertex can be “tie” when it has the same distance
from a vertex occupied by B and another vertex occupied
byW.) Finally, the player who dominates larger area (or a
larger number of vertices) wins.

Teramoto et al. showed that the discrete Voronoi game
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is PSPACE-complete for general case, and NP-complete for
one-round case. They also investigated complete k-ary trees,
and showed that the first player B has an advantage for the
discrete Voronoi game on a complete k-ary tree, when the
tree is sufficiently large (comparing to t). Their results for a
complete k-ary tree require some conditions for k, n, and t.
Hence, one of the simplest case cannot be captured; what if
G is a path?

In this note, we show a complete analysis of the dis-
crete Voronoi game on a path. We state that it always ends
up in a draw except for some trivial cases. We give the more
precise statement below.

Theorem 1: None of the players B andW has a winning
strategy of the discrete Voronoi game on a path, except the
case that the length of the path is even and the number of
the rounds is equal to one. In this exceptional case, B has a
trivial winning strategy.

The proof of the theorem has two parts. In one part, we show
that the first player B has no winning strategy (except the
trivial case). Then in the other part we show that the second
playerW also has no winning strategy. These complete the
proof.

2. Definitions

In this section, we formulate the discrete Voronoi game on
a graph. We denote a Voronoi game by VG(G, t), where
G = (V, E) is a simple undirected graph, and t is the number
of rounds.

The two players, B (black) andW (white), alternately
occupy an empty vertex on the graph G. The empty vertex is
a vertex not occupied yet. This implies thatB andW cannot
occupy the same vertex, and each player cannot occupy the
same vertex twice or more. Hence, it is implicitly assumed
that 0 < 2t ≤ |V | holds.

Let Bi (resp. Wi) be the set of vertices occupied by
player B (resp. W) at the end of the i-th round. We de-
fine the distance d(v,w) between two vertices v and w as the
number of edges on the shortest path between them. Each
vertex of G can be assigned to the nearest vertices occupied
by B and W, according to the nearest neighbor rule. We
define a dominated set V(A, B) (or Voronoi regions) of a
subset A ⊂ V against a subset B ⊂ V , where A ∩ B = ∅ as

V(A, B) =
{
u ∈ V

∣∣∣∣ min
v∈A d(u, v) < min

w∈B
d(u,w)

}
\A.

The dominated sets V(Bi,Wi) and V(Wi, Bi) represent the
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sets of vertices dominated at the end of the i-th round by B
andW, respectively. LetVB andVW denoteV(Bt,Wt) and
V(Wt, Bt), respectively. Since some vertices can be “tie”
when they have the same distance from a vertex occupied by
B and another vertex occupied byW, there may exist the set
Ni of the neutral vertices, Ni := {u ∈ V | minv∈Bi d(u, v) =
minw∈Wi d(u,w)}. Clearly, each vertex in Ni belongs neither
toV(Bi,Wi) nor toV(Wi, Bi).

The player who dominates larger number of vertices at
the end of the final round wins, in the discrete Voronoi game.
More precisely, B wins if |VB| > |VW|, andW wins (or B
loses) if |VB| < |VW|. The game is draw otherwise.

We denote by Pn a path of length n. Note that the length
of a path is the number of edges in it, not the number of
vertices in it. We denote the vertices of Pn by v0, v1, . . . , vn,
and we denote the edges of Pn by e1, e2, . . . , en, where an
edge ei connects vi−1 and vi.

We call a subpath P of Pn with at least one empty vertex
as a segment, if both the ends of P are occupied, and all the
other vertices are empty. We sometimes call a subpath P of
Pn a segment, too, if P’s one end is empty v0 or empty vn, the
other end is occupied, and the other vertices are empty. A
segment whose ends are occupied by B is a black segment,
and a segment whose ends are occupied by W is a white
segment. A segment whose ends are occupied by B andW
is neutral. Clearly, a black segment contributes toVB, and a
white segment contributes to VW, while a neutral segment
contributes neither toVB nor toVW.

We first observe the following trivial cases.

Observation 1:
(1) VG(G = (V, E), t) is draw if |V | = 2t.
(2-1) B wins on VG(Pn, 1) if n is even.
(2-2) VG(Pn, 1) is draw if n is odd.

Note that Pn, a path of length n, has n+1 vertices. Thus, the
number of vertices in Pn is even, if n is odd.
Proof: (1): Every vertex is finally occupied.
(2-1): The first playerB occupies the center vertex vn/2; then
the second playerW should lose.
(2-2): If the first player B does not occupy one of two center
vertices v(n−1)/2 and v(n−1)/2+1, the second playerW can win
by occupying one of the two center vertices that is closer
to the vertex occupied by the first player. Thus, the first
player occupies one of the two center vertices, then the sec-
ond player occupies the other one, and the game ends in a
draw. �

3. B has No Winning Strategy Except the Trivial Case

Assume that t > 1. We show that B has no winning strat-
egy. In order to show this, we show thatW has a drawing
strategy. The idea is simple. IfW occupies the vertex sym-
metric to that last occupied by B in each round, then clearly
VB and VW are symmetric, and thus, |VB| = |VW| holds.
Therefore, we have the following lemma.

Lemma 2: B has no winning strategy of the game

VG(Pn, t), when t is greater than one, and n is odd.

When n is even (Pn has odd number of vertices), B can
occupy the center vertex. In this case, W cannot occupy
the symmetric vertex. We consider this case next. First, we
prove the following lemma.

Lemma 3: W has a drawing strategy on the VG(Pn, t),
when B1 = {v0}, and W1 = {vn}.
Proof: At the beginning of the round 2, the number of black
segments is zero. Occupying a vertex, B can increase the
number of black segments by at most one. When B in-
creased the number of black segments, W can decrease it
by occupying a vertex in a black segment. Therefore, the
number of black segments can be always zero at the end of
W’s move.

Clearly, vertices in neutral segments do not contribute
VB nor VW. Vertices in white segments only contribute
VW, and does not contribute VB. Therefore, B cannot
make VB positive, since the number of black segments is
zero. Hence B cannot win. �

We can prove the following lemma in the similar man-
ner.

Lemma 4: Suppose that
|V(Bk−1,Wk−1)| ≤ |V(Wk−1, Bk−1)| holds for some positive
k ≤ t. IfB occupies, in round k, a vertex in a neutral segment
P,W can keep |V(Bk,Wk)| ≤ |V(Wk, Bk)|.
Proof: Occupying a vertex in a neutral segment, B can in-
crease the number of black segments at most one. If B
made a new black segment, W can decrease the number
of black segments by occupying a vertex in the black seg-
ment made in the round. Hence, W can make all the seg-
ments in P at the end of the round k be neutral. Thus,
|V(Bk,Wk)| ≤ |V(Wk, Bk)| holds.

Note that, in the case that the number of empty vertices
in P is exactly one at the beginning of the round k,W can-
not occupy any vertex in P. However, in this case, W can
occupy a vertex in some black segment. If there is no black
segment, |V(Bk−1,Wk−1)| = |V(Bk,Wk)| = 0. Therefore,
|V(Bk,Wk)| ≤ |V(Wk, Bk)| holds. �

Next, we consider the case that B does not occupy the
center vertex vn/2 at the first round.

Lemma 5: W has a drawing strategy on the VG(Pn, t),
when t > 1, n is even, and B1 � {vn/2}.
Proof: W continues the symmetric strategy until B occu-
pies the center vertex. Let k be the round at that B occupies
the center vertex.

Clearly, |V(Bk−1,Wk−1)| = |V(Wk−1, Bk−1)| holds.
Moreover, vn/2 is in a neutral segment P at the beginning of
the round k. Thus, W can keep |V(Bk,Wk)| ≤ |V(Wk, Bk)|
by Lemma 4.

At the round k′ > k, if B occupies an empty vertex
not contained in P, W takes the symmetric strategy. Of
course, |V(Bk′ ,Wk′ )| ≤ |V(Wk′ , Bk′ )| holds. If B occupies an
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empty vertex contained in P, W can keep |V(Bk′ ,Wk′ )| ≤
|V(Wk′ , Bk′ )| by Lemma 4.

Note that, it is possible that W cannot take the sym-
metric strategy, since the method in Lemma 4 sometimes
forces W to occupy a vertex not in P. However, in this
case, occupying a vertex in a black segment, W can keep
|V(Bk′ ,Wk′ )| ≤ |V(Wk′ , Bk′ )|, since the reason whyW can-
not take the symmetric strategy is always that the vertex is
already occupied byW. �

The last case that we have to consider is thatB occupies
the center vertex at the first round.

Lemma 6: W has a drawing strategy on the VG(Pn, t),
when t > 1, n is even, and B1 = {vn/2}.
Proof:W occupies vn/2+1 at the first round. If B occupies
a vertex whose symmetric vertex is empty,W occupies the
symmetric vertex, and changes to the strategy of Lemma 5.
Otherwise,W occupies the vertex adjacent to the vertex B
occupied last, unless it is not the last round. At the last
round, W occupies the vertex v0 or vn to win. Then, this
strategy is a drawing strategy. �

From Lemmas 2, 5, and 6, we have the following theo-
rem.

Theorem 7: B has no winning strategy on VG(Pn, t), when
t is greater than one.

4. W has No Winning Strategy

The basic idea is that, if B can occupy the vertices at regular
intervals (see Fig. 1),B does not lose. Note that we represent
vertices by boxes in figures in this paper.

Lemma 8: W cannot win on VG(Pn, t), if n = t×(l+1)−1,
and
Bt = {v	l/2
, v	l/2
+(l+1), v	l/2
+2(l+1), . . . ,

v	l/2
+(t−1)(l+1) = vn−�l/2�},
for some positive integer l.

Proof: Since all the moves of B are specified, we can re-
gard the game as one-round game. Regarding the two end
segments as one segment, there are t black segments of
length l, at the end of the B’s round. Occupying exactly one
empty vertex of each segment, W can make the B’s out-
come |VB|− |VW| at most one. Note thatW should occupy
v	l/2
+(t−1)(l+1)+1 in the end segment. Otherwise,W loses. In

Fig. 1 Let l, t, and n be 7, 5, and t × (l + 1) − 1 = 39, respectively. If B can occupy these vertices, B
does not lose on VG(Pn, t). Note that we illustrate a vertex by a box.

Fig. 2 B can occupy one of each vertex pair.

this case, since there is no white segment, W cannot win.
Precisely, there can be one white segment at the end. How-
ever, there is a longer or the same size black segment at the
opposite end. If W wants to win, W should occupy two
vertices in a black segment to make a white segment. How-
ever, to do so, the number of empty vertices in the white
segment is at most l − 2, and W have to give up a black
segment of l empty vertices. Thus,W cannot win. �

In fact, W can easily avoid this strategy, since W
can occupy some of the vertices that B wants to occupy.
However, there is a good break-though for B. Let n be
t × (l + 2) − 1. Then B can occupy one of v	l/2
 and v	l/2
+1,
one of v	l/2
+(l+2) and v	l/2
+(l+2)+1, . . . , one of v	l/2
+(t−1)(l+2)

and v	l/2
+(t−1)(l+2)+1 (see Fig. 2). Thus, we have the lemma
below.

Lemma 9: W cannot win on VG(Pn, t), if n = t× (l+2)−1
for some positive integer l.

Proof: B can occupy one of v	l/2
 and v	l/2
+1, one of
v	l/2
+(l+2) and v	l/2
+(l+2)+1, . . . , one of v	l/2
+(t−1)(l+2) and
v	l/2
+(t−1)(l+2)+1. If W occupies one vertex in each black
segment,W cannot make a white segment. IfW occupies
two vertices in a black segment,W can make a white seg-
ment of at most l empty vertices. However, in this case,W
have to give up a black segment of at least l empty vertices.
Therefore,W cannot win. �

The lemma above deals with a very special case. In
most cases, there is no integer l satisfying the condition. We
separate the other cases into the following two cases

1. 0 < (n + 1) mod t ≤ t/2.
2. (n + 1) mod t > t/2.

Now, we consider the case 1. Let r = (n + 1) mod t,
and let l = (n − r + 1)/t−2. The idea is that, we alternately
arrange l + 1 empty vertices and l empty vertices r times
(with separators of two vertices), and then we arrange the
remaining l empty vertices t − 2r − 1 times. Precisely, when
t = 2, and r = 1 hold, we only arrange l + 1 empty vertices
on the center. See Fig. 3. In order to avoid the complex
indices, we denote the vertices that B wants to occupy by
w1, w2, . . . , w2t (w1 = v	l/2
, . . . , w2t = vn−�l/2�). We
define a function p(i) as follows.

p(i) =

{
i − 1, when i is even,
i + 1, when i is odd.
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Fig. 3 B’s strategy in the case 0 < (n + 1) mod t ≤ t/2.

Fig. 4 The strategies changed.

Then, wi and wp(i) are adjacent vertex pair, and B has to
occupy one of them.

Lemma 10: W cannot win on VG(Pn, t), if 0 < (n +
1) mod t ≤ t/2.

Proof: The basic strategy is the same as that of Lemma 9.
First, B occupies w2t−1. If W occupies wi, and if wp(i) is
empty, then B occupies wp(i). Otherwise, B occupies wj for
some 1 ≤ j ≤ 2t such that wp( j) is empty. However, with this
strategy, B may lose, sinceW can make r white segments
of l + 1 empty vertices. Therefore, B has to slightly change
the strategy.

The problem is that W can make a white segment of
l + 1 empty segments. This occurs whenW occupies both
wi and wi+1 such that there are l + 1 empty vertices between
wi and wi+1. In order to avoid this situation, B must change
the strategy. See Fig. 4.

(a) B does not occupy wi, if wi and wp(i) are empty, and
wp(i) is adjacent to l + 1 empty vertices.

(b) B does not occupy wi, if wp(i) is adjacent to l+ 1 empty
vertices, andW occupied wp(i). Instead of occupying
wi, B occupies the vertex wj, such that there are l + 1
segment between wj and wp(i). If wj is already occu-
pied by B, B occupies wi. Note that wj is not occu-
pied byW, since if so, wp(i) has to be occupied by B.
Further, wp( j) is not occupied by B, since the strategy
above forbids B to occupy wp( j).

If B takes this strategy,W cannot make a white segment of

l + 1 empty vertices anymore. The new strategy (b) allowed
W to occupy both wi and wp(i). However,W has no advan-
tage to do so. We explain the reason below. We can assume
that i = p(i) − 1 without loss of generality. Occupying wp(i),
W can increase the number of white segments of length
equal to l by at most one. However, to do so,W can occupy
one less vertices outside the path from wi to wi+2 compared
the case thatW occupies a vertex outside the path. There-
fore, the number of black segments of length more than or
equal to l at the end of the game is exactly greater than that
of white segments, outside the path. Therefore, B can oc-
cupy a vertex inside the path to win. �

Finally, we consider the last case, case 2. The idea is
very similar to that of the case 1. We alternately arrange
black segments of l + 1 empty vertices and those of l empty
vertices r times, and then we arrange the remaining black
segments of l + 1 empty vertices.

Lemma 11: W cannot win on VG(Pn, t), if (n+1) mod t >
t/2.

Proof: Using the same strategy as the case 1, B can keep
the number of black segments of l empty vertices less than
that of white segments of l empty vertices. Therefore,VB is
never less thanVW. �

From Lemmas 9, 10, and 11, we have the theorem be-
low.

Theorem 12: W has no winning strategy on VG(Pn, t).

From Theorems 7 and 12, we have the main theorem (The-
orem 1).

5. Concluding Remarks

We solved an unsolved case of the discrete Voronoi game
which cannot be captured in the framework stated in [5].
VG(Pn, t) is draw, with a trivial exception. Our proof can be
easily applied to show that VG(Cn, t) is draw, where Cn is a
cycle of length n. It is a challenging open problem to de-
termine if there is a polynomial time algorithm for Voronoi
game on a tree determining which player will win. Voronoi
game on a grid graph also seems interesting, since it models
more “realistic” situation than the ordinary Voronoi game.
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