1190

IEICE TRANS. INF. & SYST., VOL.E94-D, NO.6 JUNE 2011

[PAPER

Typing ZINC Machine with Generalized Algebraic Data Types

Kwanghoon CHOI™*¥, Nonmember and Seog PARK', Member

SUMMARY The Krivine-style evaluation mechanism is well-known in
the implementation of higher-order functions, allowing to avoid some use-
less closure building. There have been a few type systems that can verify
the safety of the mechanism. The incorporation of the proposed ideas into
an existing compiler, however, would require significant changes in the
type system of the compiler due to the use of some dedicated form of types
and typing rules in the proposals. This limitation motivates us to propose an
alternative light-weight Krivine typing mechanism that does not need to ex-
tend any existing type system significantly. This paper shows how GADTs
(Generalized algebraic data types) can be used for typing a ZINC machine
following the Krivine-style evaluation mechanism. This idea is new as far
as we know. Some existing typed compilers like GHC (Glasgow Haskell
compiler) already support GADTs; they can benefit from the Krivine-style
evaluation mechanism in the operational semantics with no particular ex-
tension in their type systems for the safety. We show the GHC type checker
allows to prove mechanically that ZINC instructions are well-typed, which
highlights the effectiveness of GADTSs.

key words: type system, ZINC machine, generalized algebraic data type,
functional language

1. Introduction

The Krivine abstract machine [1] can be regarded as a sys-
tem to transform a state of the form (E, S, M) consisting of
an environment E, a stack S, and a term M to be evalu-
ated [2]. The distinguishing feature of the Krivine machine
is its usage of a stack S, which maintains the application
context (or spine) of the term M being evaluated. For exam-
ple, for the term (Ax.M) M, --- M,, the machine causes
the following transition. (E,S,(Ax.M) M;---M,) ="
(E,Vy---V,-S, Ax.M) where each V; is the value denoted by
M;under E, and V; --- V,, - § is the stack obtained by push-
ing V,, ..., and V] in this order. As seen from this example,
the stack S in the state represents the arguments to the func-
tion denoted by the term Ax.M. The evaluation step for the
lambda abstraction can then be performed simply by pop-
ping the stack and binding the variable to the popped value
asthis. (E,Vy---V,-S, Ax.M) = (E{x: V},Vo---V,-S, M)

As observed by Leroy [3], this mechanism avoids un-
necessary closure construction in evaluating the nested ap-
plications such as (Axj.:--.Ax,.M) M, --- M,, and yields
potentially more efficient evaluation scheme for higher-
order functional languages. The ZINC machine exploits this

Manuscript received October 29, 2010.
Manuscript revised January 21, 2011.
"The authors are with the Department of Computer Science
and Engineering, Sogang University, Korea.
*Presently, with the Computer & Telecommunication Engi-
neering Division, Yonsei University, Wonju, Korea.
a) E-mail: khchoi @acm.org
DOI: 10.1587/transinf.E94.D.1190

mechanism for a strict functional language. This mechanism
is also closely related to abstract machines with “spine” for
a lazy functional language, where a spine denotes the evalu-
ation context represented by a stack.

We are interested in the design of a typed intermediate
language whose type system is capable of verifying a cer-
tain safety of an intermediate code. We do not assume any
particular compilation strategies used to produce the inter-
mediate code. The type systems presented in [2] and [4]
permit to verify the safety of the Krivine-style evaluation
mechanism. The type systems can guarantee an important
correctness property of the mechanism as follows. In each
state (E, S, M), the spine stack S always holds appropriate
arguments to the term M under E. The spine stack S should
be empty if M is an integer term while S can be non-empty
if M is a functional term.

However, an existing compiler would require some
substantial change in the type system to incorporate the pro-
posed capability because the studies [2], [4] all introduced
some dedicated form of types and typing rules. The type
system in [4] incorporates a set of type equivalence rules
between the special types and the rest. A lot of advanced
types not dealt in [4] but in an existing compiler would re-
quire defining new type equivalence rules. The type system
in [2] features an extra type environment to keep track of the
shape of spine stacks. This is absent from any existing typed
compilers. To integrate such a feature, one would need to
extend all typing judgments in an existing typed compiler.
These limitations motivate us to propose an alternative light-
weight Krivine typing mechanism that does not require any
significant extension in an existing type system.

GADTs (Generalized Algebraic Data Types [5]) are a
simple extension of data types. In a generalized algebraic
data type, each data constructor can have arbitrary parameter
types in their result type possibly different from those in the
data type itself. For example, a generalized algebraic data
type GList a can be declared as this.

e Nil :: Ya.GLista
e Cons :: Yab.a — GList b — GList (a — b)

Here, GList (Int — Bool — Int) does not denote a uniform
list of the function type as the usual List type any more.
It allows a heterogeneous list like Cons V| (Cons V, Nil)
where V| and V, are an integer and a boolean respectively.
Nil is a list of type List Int, and so Cons V, Nil becomes
a list of type List (Bool — Int). Note that lists of type
Int — Bool — Int cannot be longer than two while the list

Copyright © 2011 The Institute of Electronics, Information and Communication Engineers

CHOI and PARK: TYPING ZINC MACHINE WITH GENERALIZED ALGEBRAIC DATA TYPES

of type List Int is only Nil. These heterogeneous lists typed
with GList T can be used to resemble the possible configu-
ration of a spine stack allowed for a term of type T by having
the list elements indexed by the argument types in the spine
of the type T.

This paper shows that the notion of GADTSs can assure
of the correctness of the Krivine-style evaluation mechanism
in ZINC machine due to the reasons:

e A GADT allows to express a list of heterogeneous val-
ues whose types are associated with a prefix of the ar-
gument types in the spine of a function type.

e A GADT offers non-uniform polymorphism by making
usable only the data constructors with parameter types
unifiable, which will be explained in Sect. 4.

The use of GADTs for the Krivine-style evaluation
mechanism in a typed setting is new. This finding is im-
portant because the evaluation mechanism is well-known in
compilation of higher-order functions as has long been dis-
cussed in [3],[6]-[8]. If a type-based compiler supports
GADTs, our proposal can be a light-weight Krivine typ-
ing mechanism on it. Currently existing compilers such as
ATS[9] and GHC[10],[11] do already supported GADTs.
Therefore, their type checkers are able to verify automat-
ically some correctness property of the evaluation mecha-
nism with no particular extension to them.

Our methodology is to show that the type structure of
a lambda calculus of System-F extended with GADTs can
ensure the invariants associated with the spine stack under
the Krivine-style evaluation mechanism by embedding the
ZINC machine into the calculus. The machine language will
form a combinator-based target language within the calculus
where each machine instruction becomes a combinator, i.e.
a lambda term with no free variables.

Our contribution is summarized as follows.

e We prove the soundness of the ZINC machine by show-
ing that an embedding of the machine into System-F
extended with GADTs is correct statically and dynam-
ically.

e We verify mechanically that ZINC instructions are
well-typed by showing that our Haskell implementa-
tion for the embedding is successfully type-checked in
Glasgow Haskell compiler.

Section 2 reviews the previous works. Section 3 defines
a ZINC machine and its simple type system as a basis of
our study. After presenting a calculus of System-F extended
with GADTs, Sect. 4 shows how every ZINC instruction can
be simulated by a lambda term in the calculus statically and
dynamically. Section 5 discusses a few potential extensions
to this work. Section 6 concludes the paper. All the proofs
for the theorems presented in this paper are available in the
appendix.

2. Related Work

Typed assembly language [12] and the logical abstract ma-

1191

chine [13] are the most notable approaches for typed low-
level machines. However, they have implemented higher-
order functions only with dump stack. This is due to their
choice of source calculus: CPS language and A-normal form
language where both have no notion of the spine stack. As
a natural consequence, they cannot properly deal with the
Krivine-style evaluation mechanism in a typed setting.

This limitation motivated us to propose two Krivine
type systems allowing to make use of the Krivine-style eval-
uation mechanism also in a typed setting. First, Choi and
Han [4] designed a type system for a variant of CPS con-
version based on the Krivine-style evaluation mechanism.
They introduced two data types together with a set of dedi-
cated type equations, which could be seen as a special form
of generalized algebraic data type. Second, the type system
by Choi and Ohori [2] can directly express the shape of spine
stacks in typing judgments. The two structural typing rules
(Clo) and (Install) are able to capture where a closure is cre-
ated and where it is opened to execute the code inside. Their
type system can also provide a potential capability for opti-
mization such as avoiding unnecessary dynamic argument
checks, though this is not in the scope of this paper.

Xi[5] proposed the notion of GADTSs to show some
applications such as a representation of higher-order abstract
syntax (HOAS). Guillemette and Monnier [14] used this for
the verification of a type-preserving compiler.

Pottier and Gauthier [15] used GADTs to formulate a
polymorphic typed defunctionalization, a global program
transformation that turns a higher-order functional program
into a first-order one. The transformation assigns unique
tags to all functions in a program, and it employs an apply
function identifying each function by its tag to do an appro-
priate function application. They used GADTs for typing
the apply function, which requires typing some non-uniform
structure due to the collection of all the functions. The use
of GADTs for the purpose is similar to the idea of this pa-
per, but they did not consider typing Krivine-style evaluation
mechanism nor typing abstract machine instructions.

3. A Simply Typed ZINC Machine

This section defines a ZINC machine by an operational se-
mantics. After defining a simple type system for the ma-
chine instruction set, we show the type soundness of the
ZINC machine.

3.1 An Operational Semantics of ZINC Machine

The set of instructions (ranged over by /) in our ZINC ma-
chine is given by the following syntax.

1::=Return| Grab| Push| Access(i)| Reduce(C)| Int(i)| Add

Values (v) are either a constant ¢ or a closure cls(E, C).
The cons operator (-) is used for construction of a non-
empty sequence. The empty sequence is denoted by (0. En-
vironments, local stacks, and spine stacks are denoted by
E, L and S, all of which are a sequence of values. Dump

1192

(Efi : v}, L, Access(i)-C, S, D) — (E{i: v}, v-L, C, S, D)

(E, 0, Grab-C, v- S, D) —@-E, 0,C, S, D)

(E, 0,Grab - C,0,(Ey, Lo, Co,So) - D) — (Eop, v- Lo, Co, So, D)
where v = cls(E, Grab - C)

(E, 0, Grab - C, 0, 0) — cls(E,Grab - C)

(E,v-L, Push-C, S, D) —(E, L, C,v-S, D)

(E, cls(Ey,Cy) - L, Return, v-S, D) — (Eyp, 0, Co, v-S, D)

(E,U~ L, Return,(b,(Eo,Lo,Co,So) . D)—)(E(), v- L(), C(), S(), D)

(E, v- L, Return, 0, 0) —0

(E, L, Reduce(Cy)-C, S, D) —(E, 0, Co, 0, (E,L,C,S)- D)

(E, L, Int(n)- C, S, D) —(E,n-L, C, S, D)

(E, ny-ny-L, Add-C, S, D) —(E, m+m-L,C, S, D)

Fig.1 An operational semantics for ZINC machine.

stacks are denoted by D, which is a sequence of quadruples
(E,L,C,S). Codes are denoted by C which is a sequence of
machine instructions. E{i : v} indicates v as ith value in E.

A ZINC machine [2] is defined by a set of states and
state transition rules. A machine state is of the form
(E,L,C,S,D). Figure 1 describes an operational semantics
for the ZINC machine.

We explain how the ZINC machine evaluates higher-
order functions by presenting the simply typed lambda cal-
culus and its standard compilation into the machine instruc-
tions. The syntax of lambda terms in the de Bruijn notation
is as this.

M:=ilAM|MM|c|M+M

The compilation of a lambda term into a sequence of
ZINC machine instructions is defined as this.

[T = Access(i) - Return

[~] = Int(n) - Return

[A.M] = Grab - [M]]

[M; M,]| = Reduce [M,] - Push - [M]

[M; + M,]| = Reduce [[M;] -Reduce [[M;] -Add-Return

For example, [(Ax.4y.x) 1], using the named variable
notation for convenience, can be compiled into Int(1)-Push-
Grab - Grab - Access(1) - Return where Reduce [1] - Cis
replaced with Int(1) - C. When we run the compiled code,
Int(1) puts / on the local stack, and Push moves the inte-
ger to the spine stack. The first Grab will then find on the
spine stack the integer to pop into the environment. How-
ever, the second Grab will see the empty spine stack since
the execution started with it. At this moment, the instruction
will create a closure with the code Grab - Access(1) - Return
and the environment with the integer value in the /st entry.
After that, the instruction will try to go back to the topmost
saved context on the dump stack. Suppose M is the lambda
term stated above. In [(Az.z 2) M], the closure obtained
from running [M] becomes bound to the Oth entry of the
environment associated with z. [z 2] can be compiled into
Int(2) - Push - Access(0) - Return similarly. When we run
[[z]l, Access(0) will retrieve the closure onto the local stack.
After Return finds the integer value 2 on the spine stack, it
will unpack the closure to apply its code to the integer under

IEICE TRANS. INF. & SYST., VOL.E94-D, NO.6 JUNE 2011

- To>-C: 7
(Grab) Ir'os-Grab-C:7 -1

(Return) T'|7-I1>Return:

rieC:7->17

(Push) C|lr-TI>Push-C: 7
o e
(Access) I'ii = T}TI‘_IT;HACDCgs:s(Ti,) -C: 7
(Add) I intli ‘l;’;t ‘I?;AC(;C}TC T
(Reduce) ros-C:r Tlr-IIC : 7

I'|IT> Reduce(C)-C”" : 7

Fig.2 Typing rules for instructions.

its environment.
3.2 A Type System for the ZINC Machine

Types (ranged over by 7) are defined by either int or 7 — 7.
Two typing contexts, environment type and local stack type
(ranged over by I and I1), are defined as a sequence of types.

For notation we define A — 7 as an abbreviation of
T —>>717,>7wWhenA=71y----- T,. That is, we have
AN —>NMN—>T1=A-AM—>T1and7=0-> 1.

A typing judgment is of the form I'|II>C : A — 7.
The typing judgment can be read as a code C is executed
under an environment of type I' and a local stack of type II.
The execution takes arguments specified by A, and it returns
a value specified by 7. The topmost saved context on the
dump stack will take the return value to continue.

It is important to understand that the code type A — 7
in the typing judgment does not mean to specify the type of
a value. Rather, it intends to specify the shape of a spine
stack (by A) and an associated dump stack (by 7).

The set of typing rules is given in Fig. 2. By (Push), the
potential spine stack grows from one specified by 7’ to an-
other by 7 — 7’ with the underlying dump stack unchanged.
By (Grab), the spine stack shrinks in an opposite way. (Re-
turn) associates the shape of the return value with the shape
of the spine and dump stack by having the return value type
the same as the code type. For example, if the return value
is of type Int, then the code type lets the spine stack empty;
0 is the only A satisfying Int = A — Int. If the return value
type is 71 — T, then we can find the code type equivalent to
7| - A" — 7/, for some 7|, 7}, and A". (Reduce) enforces the
type of the value computed by the code to reduce to be the
same as the type of what the subsequent code expects. (Int),
(Add), and (Access) closely simulate the corresponding op-
erational semantics.

We prove the soundness theorem for this type system
with respect to the machine behavior. To do this, we define
typing relations on each of machine components as in Fig. 3.

Using these definitions, we can establish the following
theorem.

Theorem 1 (Soundness): If I'|II>C : A - 7, E : T,

EL:ILES:AED:7=1,and (E,L,C,S,D) —* v,
then | v : 7.

CHOI and PARK: TYPING ZINC MACHINE WITH GENERALIZED ALGEBRAIC DATA TYPES

Value Typing :

e En:int
e E cls(E,Grab-C) : 7 — 7’ if there is some I" such that = £ : T and
I'osGrab-C:7— 7.

Environment Typing : (Local stack typing |= L : Il and Spine stack typing
E S : A are similarly defined)

e E0:0

e Fv-E:v-TifEv:tandEE: T

Dump Stack Typing :
e EQ:7t=>rtforanyt
o E(E,L,C.S)D:t=1ifFE:T,EL:ILES :AT|rt-II>C:
A->t,andED: 7 =19

Fig.3 Typing rules for values, environments, local stacks, spine stacks,
and dump stacks.

The soundness theorem ensures that Return sees a clo-
sure on the local stack whenever it finds an argument on the
spine stack. Otherwise the machine will go wrong due to
the attempt to apply some integer to the argument.

4. Typing ZINC Machine Using Generalized Algebraic
Data Types

We introduce a calculus of System-F with GADTSs to rep-
resent ZINC instructions by lambda terms in the calculus.
This will give an explicit type to each instruction, contrary
to the previous type system in Fig.2 that only relates each
instruction with a simple type where the type of the instruc-
tion is implicit.

The notion of GADTS plays two important roles in typ-
ing the ZINC machine. First, it allows to give a type to the
term representation of a spine stack, which forms a list of
heterogeneous values, to assure that the spine stack is in an
appropriate state. This cannot be achieved by usual alge-
braic data types. Second, it allows the non-uniform poly-
morphism of Return instruction by making usable only the
data constructors with unifiable parameter types. Recall that
GList Int in Sect. 1 is only inhabited by Nil.

4.1 A Calculus of System-F with GADTs

Generalized algebraic data types are a simple exten-
sion of ML data types[5],[15]. Suppose T is a data
type constructor and c¢ is one of data constructors as-
sociated with 7. The type of ¢ must be of the form
c:Vay,. ..,(I[.(T'l,...,‘l';n) — T(ay,...,q)) under ML data
types. Generalized algebraic data types, however, allow
a type constructor 7 to be applied to a vector of arbi-
trary types 7i,...,7T, as ¢ : Yay,...,aq.(7],...,T,) =
T(ty,...,T,) wWhere some of «,...,a; might not even ap-
pear in T(t1y,...,T,). We will show some examples of gen-
eralized algebraic data types in the next section.

Under the generalized algebraic data types, each pat-
tern matching reveals extra static type information, or
guards, to act as a constraint within the scope of the
matched case. Suppose one matches a value of type

1193
(G-Var) C|I'{x:0}>x:0
ClT'bey:0p ClIper:oy > oy
(G-App) ClT>ejer:oy
ClT{x:01}>e:o
(G-Abs) CIToAx:0y).e: 0
(G-Int) C|I'>n:int
ClT'>e:Vao
(G-TApp) CIT>ed :olo’/a]
ClTT'bey:int ClI'>ep:int
(G-Add) ClTe +ey:int
. ClI've:o a¢ fr(C)U fr)
(G-TAbs) C|T>Aae:VYa.o
c: Val,...,al.(a’l,...,(r;n) — T(o-’l’,...,(r;’)
Cll'>ei:0l0
G-C ‘
(G-Con) 0=loi/ay,....o1/a]
CIT > (01, s 01, €15) 2 T(0 5 .s07)) 6
ClTre:o0’ Cl|I'valti:o’ - o
(G-Case) C|I'> caseeof {alty,....alt,} : o
c: Va/l,...,aq.(o"l’,...,o;’,’l) — T(o-’l,...,a';)
@i & f1o(C) U f1o(T) U U; fro(ory) U fro(or)
(G-Alt) I"=TU{x 0], xm o)
CAg =g A Aoy=oull'>e:o
CIT > (@), @, X1y Xiy) = € T(0], ..., 0) = O
ClTpe:0 Cro' =0
(G-TyEqQ) ClTbe:o
Fig.4 A calculus of System-F with GADTSs.
T(oy,...,0,) against a pattern c(@y,...,Q;, X|,...,Xy) of

type T(ty,...,T,). The matched case yields a set of equa-
tions 7; = o; for 1 < i < n. This is a (unification) con-
straint C, which is a conjunction of type equations of the
form 7 = 0. An assignment is a total mapping from type
variables to ground types. An assignment satisfies an equa-
tion if and only if it maps both of its members to the same
ground type; an assignment satisfies a conjunction of equa-
tions if and only if it satisfies all of its members. A con-
straint C entails a constraint C’ (which we write C I+ C’) if
and only if every assignment that satisfies C satisfies C’ [5],
[15].

The syntax of a calculus of System F extended with
GADTSs [5],[15] is given as:

o u=alintloc - o|Ya.o|T(oy,...,09)
e = x|Ad(x:0).elee|Aaeleo|n|e+e
| c(o1,...,0n,e1,...,en)|caseeof {alty,...,alt,}
alt = clay,...,@, X1,...,Xy) > €

We use the notation e[o,---,0,] to denote a multi-
ple type application e oy --- 0,. We regard a tuple type
(o1,---,0,) as a special data type.

Figure 4 defines a set of typing rules for the extended
System F where a typing judgment of the form C|[I'>e : o
is read as an expression e is of type o under the type en-
vironment I' when C has an assignment. Note that I" is a
mapping of variables to types.

4.2 A Typed Representation of ZINC Machine

The Representation of Machine Components: We repre-
sent values, spine stacks, and dump stacks by three gen-

1194

Value type : V(o)

e Con :int — V(int)
o Cls:Va,B, € (0codes €) = V(e —)

— Ocode = V0.€ > unit — SpineStk(a — f,6) — 6 — unit
Spine stack type : SpineStk(o, o)

o Arg:Va,p,0. (V(a), SpineStk(B, 6)) — SpineStk(a — B, 5)
e Nil : Va,p,6. SpineStk(a, DumpStk(a, 3, §))

Dump stack type : DumpStk(o,o”,0"")
o Ret:Va,pB, €,t,0. (Tcodes €, L, SpineStk(B, 5), 6) — DumpStk(a, 3, 5)
— Ocode = € = (V(a),t) = SpineStk(B,6) — & — unit
o Nil : Ya. DumpStk(a, unit, unit)

Fig.5 GADTs: for values, spine stacks, and dump stacks.

eralized algebraic data types: V(o), SpineStk(oi,05), and
DumpStk(o 1, 03,03) as shown in Fig. 5.

The value type V(o) specifies the term repre-
sentation for a value of type o. For example,
Con(1) is of type V(int). Suppose I. is of type
Vé.€ — unit — SpineStk(int — int,0) — 6 — unit. Then a
closure Cls(I.,()) with the empty environment is of type
V(int — int).

The declaration of Cls in the generalized algebraic data
type hides the type variable € from V(e —). GADTSs thus
express the existential type for closures, as described in [5],
[15].

Note that we can distinguish constants or closures of
type V(o) from each other by having an appropriate form of
the type parameter o, which is a feature of GADTs [5], [15].
A value of type V(int) must be a constant while a value of
type V(oo — o”) must be a closure. A value of type V()
can be either a constant or a closure, depending on a type
substitution for the type variable.

We represent environments and local stacks simply by
the terms of nested pairs ended with the unit value. For ex-
ample, an environment may look like (Vi, (V2, ())) for some
values V| and V,.

The spine stack type SpineStk(A — o, 0 qump) Speci-
fies the term representation for a spine stack that consists
of a sequence of arguments specified by A. For exam-
ple, SpineStk(int — int, o 4,p) can inhabit both Nil and
Arg(Con(1), Nil) where A is int - .

A GADT allows to enable only the part of its data con-
structors. For example, we can enforce the form of spine
stacks to be always Nil by assigning them a spine stack type
SpineStk(int, o). The type of values in the form of Arg(- - -)
cannot be unified with the spine stack type.

The spine stack type SpineStk(A — o, 0 gump) also
specifies the shape of dump stacks by o g,mp,. We intend the
spine stack type to specify a return value of type o that the
code in the topmost saved context on the dump stack will
take to continue execution.

The dump stack type DumpStk(o,A — o', 0 qump)
specifies the term representation for a dump stack,
Ret(es, ep, e, es,ep). Here, e; is a code of type

IEICE TRANS. INF. & SYST., VOL.E94-D, NO.6 JUNE 2011

Grab : YaNB.NeN6. (V6.(V a,€) — unit — SpineStk(B,6) — & — unit)
— € — unit — SpineStk(a — 3, 6) = & — unit
Grab = M.AE.AL.AS.AD. case S of
Arg(V,S")y > I (V,E)LS' D
Nil — case D of
Ret(Iy, Ex, L, S, D) = Iy Ex (Cls(Grab I, E), L) Sk Dy
Nil — Halt (Cls(Grab I, E))

Return : YaNeNuY6. € — (V a,t) — SpineStk(a, 5) — § — unit
Return = AE.AL.AS.AD. case L of (V,L") — case S of
Arg(V',S") = (case V of Cls(I.,E.) > I.E.()S D)
Nil — case D of
Ret(I, Ex, L, S, Di) = I Ex (V, Li) Sk Di
Nil —» Halt V

Push : YaNBNeNLY6. (Vo.€ — ¢ — SpineStk(a — ,0) — & — unit)
— € — (Va,t) — SpineStk(B,5) — & — unit
Push = Al.AE.AL.AS.AD. case L of (V,L') - I E L’ Arg(V,S) D

Reduce : YaNBNeNLY6.
(V6.€ — unit — SpineStk(a, DumpStk(a, B, 6))
— DumpStk(a, B, 6) — unit)
— (Vé.e » (Va,1) — SpineStk(B,6) — 6 — unit)
— € = 1 — SpineStk(B,5) — § — unit
Reduce = ALl AE.ALAS.AD. I E () Nil Ret(I, E, L, S, D)

Access(i) @ Yap.- -V, VB.NeNLYG.
(Yo.(ao, (a1, (- -, (@i, €)))) = (@i 1) — SpineStk(B,6) — & — unit)
- (o, (a1, (-, (a;,€)))) > ¢ — SpineStk(B,6) — & — unit
Access(i) = AL.AE.AL.AS.AD.
case E of (Vo,Ep) = --- case Ei_» of (Vi—1,Ei—1) =
case Ei_y of (Vi,E;) > I E(V;,L)S D

Int : int = VE.NeVL.V6.(Vo.€ — (V int, 1) — SpineStk(B,6) — 6 — unit)
— € = 1 — SpineStk(B,6) — 6 — unit
Int = An.AI.AE.AL.AS.AD. I E (Con(n),L) S D

Add : YBNeNLNO. (Vo.€ — (V int, 1) — SpineStk(B,5) — & — unit)
— € — (Vint,(V int, 1)) — SpineStk(B,6) — 6 — unit
Add = AI.AE.AL.AS .AD.
case L of (Vy, Lo) — case Lo of (V1,L1) — case Vy of Con(ng) —
case Vi of Con(ny) — I E (Con(ng +ny),L) S D

Halt : Ya.V a — unit
Halt = AV. ()

Fig.6 Untyped lambda terms and their types for ZINC instructions.

€ = (V(0),1) = SpineStk(A — 0, T gump) = Tdump

that takes a return value of type V(o) under an environment
e of type € and a local stack e; of type . The code con-
tinues to run consuming as many argument values from the
spine stack eg as the length of A, and it produces another
value of type V(o”’). This value will be passed to the next
saved context on the smaller dump stack ep of type o gimp.
The Representation of ZINC Instructions: We repre-
sent ZINC instructions by lambda terms, which is shown
in Fig. 6". We regard each ZINC instruction as a function
of an environment, a local stack, a spine stack, and a dump
stack. We obtained these lambda terms by combining the as-
sociated state transition rules in Fig. 1. For example, Grab

"For simplicity, Fig. 6 shows untyped lambda terms and their
types for ZINC instructions. We use f : o to give a type to a term.
The typed lambda terms are available in Fig. A- 1 of the Appendix.

CHOI and PARK: TYPING ZINC MACHINE WITH GENERALIZED ALGEBRAIC DATA TYPES

has three state transition rules in the operational semantics.
All the rules share the same form of environment and local
stack, but each of them poses a different form for the spine
stack and the dump stack. We, therefore, introduce one case
analysis for the spine stack and the other for the dump stack,
which leads to the lambda term Grab in Fig. 6.

Return can be made up similarly. For each of the other
ZINC instructions, it is straightforward to define a lambda
term by directly encoding the relevant state transition rule.

Recall that the typing rule for each ZINC instruction /
in Fig. 2 looks like:

M rmwecC:v
rasI1-C:t
which can be read as a transformation of a machine state by
(T, I1, 7) into another by (I, IT", 7).

Suppose e is a lambda term obtained from the state

transition rules for / in Fig. 1. Then the type of e will be

V6. (V&'. o — o — SpineStk(t’,0") — & — unit) —
or — oy — SpineStk(t,6) — 6 — unit

where o, o, o1, and oy are the types of lambda terms
for environments of type I" and I and local stacks of type I1
and IT’, respectively.

The terms Push and Grab manipulate a spine stack
to make it grow and shrink, respectively. Push places a
value V of type V(@) on top of the spine stack S of type
SpineStk(f3, 6), resulting in another spine stack Arg(V,S) of
type SpineStk(a — S,).

Grab performs the reverse by analyzing the spine stack
S of type SpineStk(a — S,6) to find either Arg(V,S’) or
Nil. In case the spine stack is Nil (or Nil(ay,B;,61) with
the complete type annotation that can be found in Fig. A- 1)
giving rise to the type constraints {¢ — S = @1, 6 =
DumpStk(ay,81,01)} for some type variables a;, 81, and ¢;.
Then we do a case analysis on the dump stack D of type J to
restore the topmost saved context, which could not be done
without the constraint on 6.

Return is more complicated. The type of the instruction
may be written as

Vo.e = (V a,t) — SpineStk(a,5) — 6 — unit

The value type and the spine stack type have the same pa-
rameter type a. By this, the notion of GADTs enforces
the invariant of the non-uniform behavior of the instruction.
When « is substituted with int, only the case alternative with
Nil is allowed. When « is substituted with a function type,
both case alternatives are allowed.

When the return value is an integer, the instruction is
supposed to pass it back to the topmost saved context. In
this case, the type variable @ in V @ becomes substituted
with int. This implies that the spine stack type becomes
SpineStk(int,), which statically disallows to use the case
alternative with Arg(- - -) in Return due to the parameter type
not unifiable with int.

When the return value is a closure, both case alterna-
tives are allowed for use. When the spine stack S specified
by SpineStk(a, d) is Arg(V',S’) (or Arg(ay,B1,061,V’,S")),

1195

this yields the type constraints {& = a; — S, 6 = 61}. The
return value V on the local stack is declared to be of type
V(a@). Under the type constraints, V is of type V(a; — B),
and is a closure denoted by Cls(I., E.) for some term vari-
ables I, and E,. Then we can safely apply the code I, of the
closure to the argument V’, as in “case V of Cls(I., E.) —
I. E. () S D.” Note that the V in the case expression can
never be of the form Con(---), which will lead the ma-
chine to get stuck, because every case analysis on S against
Arg(V’,S") yields the type constraint to make « be unifiable
with a function type.

The term (Reduce e; ;) is intended to reduce e; pro-
ducing a value, with which we then continue to reduce
ej,. For the reduction of e;, we set up a local stack and
a spine stack to be empty, saving the current context with
ej, on the dump stack, as this: (Reduce ej e;,) eg er es ep
—" e; eg () Nil Ret(ey,, eg, er, es,ep) where Nil is of type
SpineStk(a, DumpStk(a, B8, 6)), and Ret(e;,, eg, er, es,ep) is
of type DumpStk(a, 3, 9) for some types a, 5, and 6. The
spine and dump stacks (es and ep) in the saved context are
of type SpineStk((3, 6) and ¢, respectively.

The definitions of Access(i), Int, and Add are straight-
forward. Note that we assume to have a separate definition
of Access(i) for each i. Halt is an auxiliary term to end the
reduction in the calculus, as the ZINC machine stops when
the spine and dump stacks are both empty.

Theorem 2 (Well-Typed Terms): All the lambda terms in
Fig. A- 1 are well-typed in the extended System F.

In fact, we have implemented all the GADT declara-
tions and the lambda terms in Figs. 5 and 6 using Haskell to
ensure the correctness of the above theorem. We will dis-
cuss this later.

Using the definitions of Fig.A-1, we can build a
lambda term for a given ZINC code. The lambda term will
be well-typed if the ZINC code is so, which will be shown
in the next section.

4.3 A Typed Compilation of the ZINC Instructions

We first define type correspondence relations for values, en-
vironments, and local stacks. A value type correspondence
is denoted by o ~ V(o). An environment type correspon-
dence is either @ ~> unit or 7- T ~» (0,0”) if T ~ o and
I' ~ o’. A local stack type correspondence is similarly de-
fined.

We write a compilation judgment as I'|[II>C : 7~ ¢
where C is compiled to e under an environment type I" and
a local stack type II by the algorithm given in Fig.7. The
compilation algorithm preserves typing as follows.

Theorem 3 (Typed Compilation of the ZINC Instructions):
Suppose we have I' ~ o, and [1 ~ ;. KT |[II>C: 7~ e
then@|Q > e : V6.0, = 01 — SpineStk(t,5) — 6 — unit.

The theorem says that one can interpret a ZINC instruc-
tion as a lambda term whose arguments are the terms for the

1196
I'vso, 7 T0>C:7 ~e
(C-Grab) 45 Grab ¢ 1 5 7 ~ AoGrab [t 7. 0w, 0] ¢
'~ o, I~ oy
Ios-C:t~e ITr-M>C 7~ €
(C-Reduce) TYS =1,7,00,01,0
T'| 1> Reduce(C) - C" : 7/ ~ Ab.Reduce [TYS] e e
'so, M~op THHeC:t—>17 ~e
(C-Push) T'|7-TI>Push-C: 1 ~ Ab.Push [t, T/, 0, 07, 6] €
I'~o, I~ o0y
(C-Return) I'|7-I1>Return : 7 ~ Ab.Return [1, 0, 07, 6]
T~ 00 ... Ti~oo; IV~ o, I~ oy
M- O>C:7 ~e
(C-Access) F=7y-1-I" TYS =00,....,00, 7,0, 01,0
I'{i = 7}| 1> Access(i) - C : 7/ ~> Ad.Access()[TYS] e
(C-Int) I's>o, M~op Tlint-II>C:1t~e
M T e Int(n) - C : 7~ AdInd(n) (1,00, 07,0] €
(C-Add) IT'~vo, I~op Tlint-TIsC:it~e

Tlint-int -TI>Add - C : 7~ AS.Add [1,0,,07,0] e

Fig.7 Typed compilation of ZINC code.

0|0 > Int(1) - Push - Grab - Grab - Access(1) - Return : Int — Int ~
A6y .Int 1 [Int — Int, unit, unit, 61
(A62.Push [Int, Int — Int, unit, unit, 5,
(A63.Grab [Int, Int — Int, unit, 3]
(A64.Grab [Int, Int, (V(Int), unit), 54)
(Abs.Access(1) [V(Int), V(Int), Int, unit, unit, 55
(Adg.Return [Int, (V(Int), (V(Int), unit)), unit, 6))))))

Fig.8 A compilation example for the ZINC code [[(1x.2y.x) 1]].

four machine components. Note that the dump stack is poly-
morphically abstracted. This naturally reflects the fact that
any saved context inside the dump stack does not affect the
current computation of the ZINC machine.

Figure 8 shows a typed compilation example for the
ZINC code discussed in Sect. 3.

4.4 Correctness of Compilation

We first define the correspondence between the machine
components and the lambda term representations in the ex-
tended System-F calculus as in Fig. 9.

Under the correspondence relations, we now present
the semantic correctness theorem as the following.

Theorem 4 (Semantic Correctness): Suppose
I'NMdsC:A->1t~e

EE:T~eg:og

EL:Il~ep oy

T,0p ES : A~ eg : SpineStk(A — t,0p)
ED:t=> 19y~ ep:op

*

If (E,L,C,S,D) —" v then e[op] eg er es ep —p
Halt[t](e,) such that E v : T~ ¢, : V(7).

The theorem establishes the type soundness of the
ZINC type system with respect to the operational seman-
tics obtained by combining the compilation to the extended
System-F followed by S reducing the compiled term.

IEICE TRANS. INF. & SYST., VOL.E94-D, NO.6 JUNE 2011

Value correspondence

e = n:int~> Con(n) : V(int)
o Ecls(E,C): 17— 1 ~ Cls[tr,7,0g] (eg,ec) : V(r = 7')
— ifthere issome 'suchthat = E : T~ eg : opand |0 > C :

T 1T~ ec

Environment correspondence : (Local stack correspondence is similarly
defined.)

e EQ:0~ (): unit

o Fv-E:1-T'~ (e eg): (0y,0F)

—ifFvit~e iopyandEE: T~ ep:og
Spine stack correspondence :

e ,op E 0 : 0 ~ Nilr,7,0)
DumpSti(t, 7", o)

e o v-S 71 -A~> Arg(t1,A = 1,0, ¢y, es) : SpineStk(t) - A —
7,0)

. SpineStk(t,op) where op =

—ifFv:T ~ ¢ : A~ ey

SpineStk(A — 1, 0)

V(r1) and 0 E S

Dump stack correspondence :
e E0: 7= 7~ Nil(t) : DumpStk(t, unit, unit)
e = (E,L,C,S) - D : 1 = 1 ~ Ret(t;,A —
T2,0E, 01,0, ¢g, er, ec[o], es, ep) : DumpStk(t1, A — 12,0)
—ifEE T~ e :0p and E L : Il ~ ¢, : o and
7 -MI>C:A > 1 ~e and 15,0 ES 1 A~ e
SpineStk(A — 12,0) and ED: 1y = 19~ ep : 0.

Fig.9 Correspondence relations.

5. Discussion

We have implemented all the GADTSs and lambda terms in
Figs.5 and 6 using Haskell’. The GHC type checker can
mechanically verify that the lambda terms are well-typed
to assure ourselves of Theorem 2. We could proceed fur-
ther to verify the other theorems automatically by following
an approach of a type-preserving compiler making use of
GADTs as dependent types to capture the invariant of pro-
grams [14]. We could adopt their typed abstract syntax tree
using GADTs, from which we could implement our compi-
lation into terms for ZINC instructions in Haskell.

A compilation from higher-order lambda terms to the
restricted form of lambda terms in System-F extended with
GADTs can be regarded as an alternative compilation based
on the Krivine-style evaluation mechanism. ATS [9] and
GHC [10] have already supported GADTs in their typed in-
termediate languages. They could adopt this compilation
method to get the benefit of the Krivine-style evaluation
mechanism, but with no change in their type systems.

The proposed Krivine typing mechanism with GADTs
provides no optimization in avoiding unnecessary dynamic
argument checks, which is a unique feature of [2]. The
notion of GADTSs could allow to specialize, say, the
type of Grab to make unnecessary even some runtime

"The Haskell code is available as a supplementary material to
this paper.

CHOI and PARK: TYPING ZINC MACHINE WITH GENERALIZED ALGEBRAIC DATA TYPES

case analysis on the spine stack. ~We can specify a
spine stack with an integer like Arg(V, Nil) precisely by
SpineStk(int — int, DumpStk(int, 3, 9)) for some types 8 and
6. The first parameter type int of the dump stack type is
obtained from removing one argument type in the spine of
the function type int — int. By such an appropriate special-
ization, we could prove that the case analysis on the corre-
sponding spine stack is not necessary. We would also need
to enhance our compilation method as in [2] to incorporate
such a specialization.

We believe the notion of GADTs is applicable to all
variants of Krivine-style evaluation mechanisms in [3], [6]—
[8]. They all maintain the application context like a spine
stack, and they all pose non-uniform polymorphic behav-
ior as in Return. The notion of GADTs could express the
two common features as for the ZINC machine shown pre-
viously, though each of the variants may declare GADTs
differently due to their own representations.

6. Conclusion

We showed the soundness of the ZINC machine by prov-
ing that an embedding of the machine into a calculus of
System-F extended with GADTs is correct statically and dy-
namically. The notion of GADTs can offer a light-weight
type-based Krivine-style evaluation mechanism since it re-
quires no change in the existing type systems. The use of
GADTs for the evaluation mechanism in a typed setting is
new. The result contrasts with the previous proposals that
require some significant extension in existing type systems.

We also implemented all the lambda terms for ZINC
instructions in the embedding using Haskell. The GHC
type checker can verify mechanically that the lambda terms
are all well-typed, which highlights the effectiveness of
GADTs.

Acknowledgments

This work was supported by the second stage of the Brain
Korea 21 Project in 2010.

References

[1] P. Cregut, “An abstract machine for the normalization of A-terms,”
Proc. ACM Conference on LISP and Functional Programming,
pp.333-340, 1990.

[2] K. Choi and A. Ohori, “A type theory for Krivine-style evalua-
tion and compilation,” 2nd Asian Symposium on Programming Lan-
guages and System, pp.213-228, 2004.

[3] X. Leroy, “The ZINC experiment: An economical implementation
of the ML language,” Technical Report 117, INRIA, 1992.

[4] K. Choi and T. Han, “A type system for the push-enter model,” Inf.
Process. Lett., vol.87, pp.205-211, 2003.

[5] H. Xi, C. Chen, and G. Chen, “Guarded recursive datatype construc-
tors,” Proc. ACM Symposium on Principles of Programming Lan-
guages, pp.224-235, 2003.

[6] R. Douence and P. Fradet, “A systematic study of functional lan-
guage implementations,” ACM Trans. Programming Languages and
Systems, vol.20, no.2, pp.344-387, March 1998.

1197

[7] S.P.Jones, “Implementing lazy functional languages on stock hard-
ware: The spineless tagless G-machine,” J. Functional Program-
ming, vol.2, pp.127-202, 1992.

[8] M. Biernacka and O. Danvy, “A concrete framework for environ-
ment machines,” ACM Trans. Computational Logic, vol.9, no.1, p.6,
2007.

[9] H. Xi, “The ATS language,” http://www.ats-lang.org/, 2009.

[10] S.P.Jones, “The Glasgow Haskell compiler,”
http://www.haskell.org/ghc/, 2004.

[11] M. Sulzmann, M. Chakravarty, and S.P. Jones, “System-F with type
equality coercions,” Proc. ACM SIGPLAN International Workshop
on Types in Language Design and Implementation, pp.53-66, 2007.

[12] G. Morrisett, D. Walker, K. Crary, and N. Glew, “From System F to
typed assembly language,” Proc. ACM Symposium on Principles of
Programming Languages, 1998.

[13] A. Ohori, “The logical abstract machine: A Curry-Howard isomor-
phism for machine code,” Proc. International Symposium on Func-
tional and Logic Programming, 1999.

[14] LJ. Guillemette and S. Monnier, “A type-preserving compiler in
Haskell,” Proc. 13th ACM SIGPLAN International Conference on
Functional Programming, pp.75-86, 2008.

[15] F. Pottier and N. Gauthier, “Polymorphic typed defunctionaliza-
tion and concretization,” Higher-Order and Symbolic Computation,
vol.19, pp.125-162, March 2006.

Appendix: Proofs

Theorem 1 (Soundness): IfI'|II>C : A - 7, E : T,
EL:ILES:AED:7= 19 and (E,L,C,S,D) | v,
then E v : 1.

Proof 1: The proof is by induction on the length of the ex-
ecution steps.

C = Return: By the rule (Return), I'| 7" - IT" > Return :
7" where I[1 = 7/ - II', C = Return, and A — 7 = 7’. By local
stack typing, L=v" - L', v : v,and = L' : IT".

1) S = v4y - S’. By spine stack typing, = vay : Targ and
ES":A. Since A - 17 =14y > A — 7,0 is a closure
cls(E',C")ysuchthat F E' : T and I |0 > C" : 740y —» A" —
7. We have (E, L,C,S,D) = (E,cls(E’,C")-L’, Return, v, -
S’,D) — (E',0,C’,v44*S’, D) by the operational semantics.
Hence, the theorem is true by induction hypothesis.

ii)) § = 0 and D = (Ey, Ly, Co, So) - D’. By spine stack
typing, A = 0, which implies T = 7" dueto A — 7 = 7’. By
dump stack typing, = Eq : o, E Lo : g, E So : Ao, |7+
I[Iy>Cy: Ay » 7’,and E D’ : 7" = 7 for some 7”/. We
have (E,L,C,S,D) = (E,v" - L’,Return, 0, (Ey, Loy, Co,So) -
D) — (Ey, V" - Ly, Cyp, S, D’) by the operational semantics.
Since t =7/, v - Ly : 7 - 1. Hence, the theorem is true
by induction hypothesis.

iii) § = 0 and D = 0. By spine stack typing, A —
7T=0 —> 1v=1=1". By dump stack typing, 7 = 79. We
have (E,L,C,S,D) = (E,v" - L’,Return,0,0) — v’ by the
operational semantics. Since | v" : 7/, v : Tg.

C = Grab-C’: By the instruction typing, we have IT = 0
and A - 7 = 11 = 7. By local stack typing, L is also
empty. By the rule (Grab), 7, - T'|0 > C’ : 15.

1) § = vary - S’. By spine stack typing, F vary @ Targ
and F S’ : A" due to | vgrg - S" ¢ Turg - A’ Since A —
T =Tyg AN = T =174y > AN — 7, we have 74y = T

1198

and A" —» v =715. (E,L,C,S,D) = (E,0,Grab - C’, vy -
§’,D) — (Vary-E,0,C’,S’, D) by the operational semantics.
By environment typing, F vuy - E : Tay - I. Hence, the
theorem is true by induction hypothesis.

i) S = 0 and D = (Ey, Ly, Co,So) - D’. Due to the
instruction typing, A — T = 7, — T, which implies
T =1 — 7. Wehave E cIs(E,Grab-C") : 71 » 1
due to the environment typing and the instruction typing.
(E, L,C,S, D) = (E, @, Grab - C,, @, (E(), L(), Co, S()) . D/) e
(E,cls(E,Grab - C’) - Ly, Cy,So, D’) by the operational se-
mantics. By dump stack typing, E E¢ : Ty, E Ly : Iy,
ESo:Ag,T|7-Tlg>Co:Ag = 7",and E Dy : 77 = 70.
Since E cls(E,Grab - C’) - Ly : 7 - Iy, the theorem is true by
induction hypothesis.

iii)) S =0and D = 0.

(E,L,C,S,D) = (E,0,Grab-C’",0,0) — cls(E,Grab -
C) by the operational semantics. By the instruction typing,
I'Ml>Grab-C'" : 71 > 7. DuetoA=0and A - 7 =
T, = T2, T = 71 — 7. By dump stack typing, 7 = 7y.
Since E cls(E,Grab) - C : 71 — T1,, we can conclude E
cls(E,Grab) - C : 9.

C = Access(i) - C’': By (Access), ' =T"{i =7;}, ["{i =
T}t - II>C" : A = 1. By environment typing, E(i) = v;
such that = v; : 7;. By local stack typing, | v; - L : 7; -
I. (E,L,Access(i)-C,S,D) = (E{i = v;},L,Access(i) -
C,S,D) — (E,v; - L,C,S, D) by the operational semantics.
Hence, the theorem holds by induction hypothesis.

C = Push - C’: By (Push), IT = 7/ - IT" and T'|IT" >
C’ : 7 - A — 7. By local stack typing, = v' : 7" and
= L’ : IT'. By spine stack typing, Fv" - S : 7’ - A. We have
7 >A->1t=7-A>1. (E,v-L,Push-C",S,D) >
(E,L',C’,v' - S, D) by the operational semantics. Hence, the
theorem holds by induction hypothesis.

C = Reduce(C)) - C;: By (Reduce), I'|0 > C; : 71 and
r|T1 -1 > C2 A>T (E,L, Reduce(Cl) . Cz,S,D) -
(E,0,Cy,0,(E,L,C,,S) - D) by the operational semantics.
By dump stack typing, = (E,L,C»,S) - D : 7 = 71¢. Since
71 =0 — 71 and [0 : O for the empty spine stack, the
theorem holds due to induction hypothesis.

The cases with Int(n) and Add can be similarly proved.

Theorem 2 (Well-Typed Terms): All the lambda terms in
Fig. A- 1 are well-typed in the extended System F.

Proof 2: This proof is to derive an appropriate typing judg-
ment for each term under the empty type constraint and the
empty typing environment. The only interesting part is pat-
tern matches that each imposes a new set of type constraints
on the way the typing is derived.

Case Grab. It is straightforward to derive 0|y >
case S of{Arg(---) — ---, Nil(---) — ---} : unit for some
I'g such that I'o(S') = SpineStk(a — B,6) and I'o(D) = 4.

i) With Arg(ay,B1,01,V,S’) — ---, the typing yields a
set of type equations {a; = @, = 3,61 = ¢}. This enables
us to assign V(@) and SpineStk(B,6) to V and S’, respec-
tively. Hence, the corresponding match expression can be
proved to be typeable.

IEICE TRANS. INF. & SYST., VOL.E94-D, NO.6 JUNE 2011

Grab = Aa.AB.Ae.A6.
Al :V6.(V(@), €) = unit — SpineStk(3,5) — & — unit).
A(E : €). AL : unit). AS : SpineStk(a — B,9)). AD :). case S of
Arg(ai,p1,61,V,S") = I[6]1 (V,E)LS' D
Nil(ay,pB1,01) — case D of
Ret(ay, B2, €,t2,02, Ix, Ex, L, Sk, Dk)
— Iy Ex (Cls[a, B, €l(A6.Grabla,B,€,6] I,E), Ly) S Dy
Nil(ap) — Haltla — B] (Clsla, B, €l(AS.Grabla, B, €,6] I, E))
Return = Aa.Ae. At.AS. A(E : €). AL: (V(a),r)).
A(S : SpineStk(a, 6)). AD :6).case Lof (V,L') — caseS of
Arg(ai,1,61,V',8") = (case V of Cls(aa,p2, €, 1c, Ec)
= I[61E.O)S D)
Nil(ay,B1,01) — case D of
Ret(a3,B3, €,3,03, Ik, Ex, L, S i, D) = I Ex (V, L) Sy Dy
Nil(a3) — Haltla] V
Push = Aa.AB.Ae.AL.A6.
Al :V6.€ = 1 — SpineStk(a — B,5) — 6 — unit).
AE :€). AL:(V(a),v). AS : SpineStk(B, 9)).
AD : 8). case Lof (V,L") — I[6) E L' Argla,p,6)(V,S) D
Reduce = Aa.AB.Ae.At.\S.
A(l : Y6.€ — unit — SpineStk(a, DumpStk(a, 3, 0))
— DumpStk(a, 8, 0) — unit).
Al : Yo.e = (V(a),t) — SpineStk(B,6) — & — unit).
AE :€). AL:1). AS : SpineStk(B, 9)).
A(D : 9). I[8] E () Nil(a,3,9) Ret(a, B, €,1,6, It[6], E, L, S, D)
Access(i) = Aag. - - - Aaj. AB.Ae.At.AS.
Al 2 Yo.(ap, (- -+, (@i, €)) = @; %t — SpineStk(3,0) — 6 — unit).
AE : (g, (-, (aj,€)). AL). AS : SpineStk(B, 9)).
AD :9). case E of(Vo, Ep) = --- case Ei_1 of (Vi, E})
— I[61 E(V;,L)S D
Int = A(n : int).AB.Ae.At.\O.
Al :V6.€ = (V(int),1) — SpineStk(B,6) — & — unit).
AE :€). AL:0v). AS : SpineStk(B,0)). AD :6).
I[6] E (Con(n),L) S D
Add = AB.Ne. AL A6.
A(I 1 VYé.€ — (V(int),1) — SpineStk(B,5) — & — unit).
A(E : €). AL : (V(int),(V(int),1))). AS : SpineStk(B,9)). AD :).
case L of (Vy, Ly) — case Lo of (Vy,Ly) — case Vg of Con(ng) —
case Vi of Con(ny) — I[6] E (Con(ng + ny),L) S D
Halt = Aa.A(V : V(a)).()

Fig.A-1 Typed lambda terms for ZINC instructions.

i) With Nil(ay,B1,61) — ---, the typing yields {a; =
a — B, DumpStk(ay,B1,01) = 6}. This type equation leads
the subsequent case expression to type safely decompose D.

ii-1) With Ret(ay, 82, €, t2, 02, Iy, Ex, Ly, Ly, S, Dy) —
-+ -, the typing yields {ay = @1,8, = B1,02 = 61}. This en-
ables us to have equations V(a;) = V(a;) = V(e —). By
value typing, Clola, B, €]l(A6.Grabla, B, €,0] 1, E) has type
V(e —). Hence, the corresponding match expression can
be proved to be typeable.

ii-2) With Nil(a;) — - -, the corresponding match ex-
pression can be shown to be typeable whatever the typing
on the pattern yields.

Case Return. One can derive @ |Tg>case S of Arg(--)
— «+-, Nil(--+) —> --- : unit for some I'y such that I'y(S) =
SpineStk(a, 6) and I'o(D) = 6.

i) With Arg(ay,B1,61,V’,S’) — ---, the typing yields
a set of type equations {a; — 1 = @, d; = ¢}. This forces us
to assign V a closure type V(a; — 1), and so V cannot be
any constants. Hence, the subsequent inner case expression
has only one alternative for closure values. The rest of the
typing is straightforward.

CHOI and PARK: TYPING ZINC MACHINE WITH GENERALIZED ALGEBRAIC DATA TYPES

i) With Nil(ay,B81,61) — ---, the typing yields {a; =
a, DumpStk(ay,B1,01) = 6}. The rest of the typing is very
similar to the case of Grab. The term can be proved to be
typeable.

Case Push. The interesting part of the typing is for a
spine stack S extended with V, Argla, 8, 5]1(V,S), which is
of type SpineStk(a — 3, 9).

Case Reduce. The interesting part of the typing is
for a dump stack D extended with another continuation,
Ret(a, B, €,1,0, It [0], E, L, S, D), which is of type D(a, S, 9).

Case Access(i), Int, and Add. These cases can be triv-
ially proved to be true.

Theorem 3 (Typed Compilation of the ZINC Instructions):
Suppose we have I' ~» o, and Il ~ o). T [II>C : 7~ ¢
then@|0 > e : V6.0, = 07 — SpineStk(t,6) — 6 — unit.

Proof 3: The proof is by induction on the height of type
derivation on C. Base case. Case Return. By (C-Return),
I = 71" and II" ~ o). Since Return has type
VYaVeNiVo.e — (V(a),t) — SpineStk(a,0) — 6 —
unit, one can conclude that Ad.Return[t, o, 0';, o] has type
Y60, = (V(1),07) — SpineStk(r,0) — 6 — unit. By
o = V(1) - 0, the theorem is true.

Inductive cases. Case Grab - C’. By assumption, there
exist 7; and 7, such that 7y — 7, = 7. We have I1 = 0,
which corresponds to o = unit. By induction, C’ is com-
piled to an expression e which has type Vo.(V(7),0,) —
0 — SpineStk(ty,0) — 6 — unit. The expression of in-
terest, AS.Grab[ty, T2, 0,,0] e, is of type Yo.0, — unit —
SpineStk(ty, — 712,6) — 6 — unit, by (G-Abs) and (G-
TAbs). Therefore, the theorem holds.

Case Reduce(C) - C,. By assumption, we have I'| 0 >
Ci:tg~ e and |79 II>Cy : T~ e;. By induction,
ey has type VYo.0, — unit — SpineStk(ty,0) — 6 — unit,
and e, has type Vo.0, — V(1y) - 0y — SpineStk(t,6) —
o0 — unit. For some type variables «, 3, and ¢’, the instanti-
ation of § with DumpStk(a,3,6") in the type of e; results
in V6.0, — unit — SpineStk(ty, DumpStk(a,3,0")) —
DumpStk(a,B,6’) — unit. The expression of interest,
Aé.ReducelTy, T,0.,07,0] e e, has type Yo.0, — o7 —
SpineStk(t,6) — 6 — unit by (G-Abs) and (G-TAbs).

Case Push - C’. By assumption, there exist 79 and Iy
such that IT = 7 - [lp. By assumption, Ilp ~» o7. By in-
duction, C’ is compiled to ¢’ which has type ¥d.0, — o] —
SpineStk(ty — 1,8) — 6 — unit. The expression of interest,
AOS.Push[ty, T, 0, 0';, 0] €', has type Vo.0, — (V(1p), 0';) -
SpineStk(t,9) — 6 — unit by (G-Abs) and (G-TAbs).

Case Access(i), Int, and Add. These cases can be sim-

ilarly proved.
Theorem 4 (Semantic Correctness): Suppose I'|II > C :
AN> 1~ e,EE T ~ e o0, EL I~
er 1 0L, T,op E S : A~ eg : SpineStk(A — 1,0p),
ED:7= 1~ ep:op If(ELC,S,D) —" vthen
elopleg e es ep —*>/3 Halt[t](e,) suchthat F v : 7~ ¢, :
V(7).

Proof 4: The proof is by induction on the length of ex-

1199

ecution steps. Case C = Grab-C’ and § = v - S".
By the assumptions, t,op E v -S" : 7 - A - 17 ~
Arg(T1,T2,0p, ey,es) : SpineStk(A — 1,0 p) where 71 =
T, =N -1, A=17-N,es = Arg(11,72,0p, ey, €s).
By (C-Grab), e = A6.Grablt,72,0E,5]e’ where 7/ - T'| 0 >
C N - 1~ ¢,and I = 0. By the local
stack correspondence, L = @, and ¢, = () due to IT =
0. (E,0,Grab -C’,v'-S',D) - (V- E,0,C",S’,D) by
the operational semantics. (e [op] €') eg eL es ep =
Grab[t,, 1,0k, 0ple’egeresep —>; e loplley,ep)eres ep
by applying S-reductions. Now one can apply induction
hypothesis because = v - E : 7 - T ~ (ey,eg) and
T,0p E S’ AN > 1~ eg : SpineSthk(N — T,0p) by
the environment correspondence and the spine stack corre-
spondence. Hence, theorem holds.

Case C =Grab-C’,S =0,and D = (Ey, Loy, Co,So) -
D’. By (C-Grab), T'|0 > Grab - C’ A > 7 ~
AS6.Grab [11,72,0E,6] € where ' ~ og, I = 0,
T —> T3 = A > 1, A = 1A, and 7, =
Ay — 1 for some ¢ and A;. By the spine stack
correspondence, T,op E 0 0 ~ Nil(t,13,07%)
SpineStk(t,op) where op = DumpStk(t,73,07). By
the dump stack correspondence, E (Ey, Ly, Co,So) - D :
T = T9 ~ ep DumpStk(t,73,07,) where ep =
Ret(1, 73,0, 01y, 0, €Ey» €1y, ecylopl, es,, ep). This im-
plies the following five correspondences on the subcom-
ponents of the dump stack. = Ey : Iy ~ eg, : 0,
E Ly : Iy ~ ey : opy, Tolt- Il > Cp 1 73 ~ e,
4,0 FE So 1 Ay ~ eg, : SpineStk(Ay — 714,07,
E D :14= 109~ e} : 0. By the operational semantics,
(E,0,Grab-C",0,(Ey, Ly, Co,So) - D) — (Ey, cls(E, Grab -
C') - Ly, Co, S0, D). Grab [11,72,0,0p] € eg ep es ep
where e¢; = () and eg = Nil(t, 73,0 p/). This term reduces to
ec, lop] eg, (Clolt1,72,0%] (e, er), er,) es, e},. By induc-
tion hypothesis, the theorem holds.

Case C = Grab-C’, S = 0, and D = 0. By the
dump stack correspondence, = 79 = 79 ~» Nil(tg) : op
where op = DumpStk(ty, 7o, unit). By the spine stack
correspondence, 7,0p E 0 ®0 ~ Nil(ty,72,0D)
SpineStk(0 — 1,0p). By (C-Grab), I'|0 > Grab - C’ :
0 - 1 ~ Ab6.Grab [11,72,0E,0] ¢ for some 11, 77,
and ¢ where 77 —» 7, = A — 1. By the opera-
tional semantics, (E,Q,Grab - C’,0,0) — cls(E,Grab -
C"). (A8.Grab [11,72,0E,0] €') [op] eg er Nil(ty,12,0p)
Nil(tg) — Halt[t; — 73] (Clo[ty, 12, 0](AS.Grab[Ty, T2,
0.,0] €, eg)). Since the result value of the ZINC machine
corresponds to the result value in the represented term by
the value correspondence, the theorem holds.

Case C = Return and § = v - §’. By (C-Return),
I'lr,-II">Return : A - 7 ~ e where I1 = 7, - IT,
7, = A — tand e = Ab.Return [1,, 0, o, 6]. By the
spine stack correspondence, T,op EF v - S 1 T - A ~
Arg(t',AN’ — T1,0p,ey,es)) : SpineStk(t' - A’ — T1,0p)
where A = 7’ - A’. By the local stack correspondence,
EL:Il~ e :0,where L=v,-L and e = (e, e). Due
tot, =A - 1t=17 > (A" > 1), the local stack correspon-
dence implies v, is a closure such that | Clo(Ey, Cy) : 7" —

1200

(A = 1)~ Cls[t', AN — 1,0g,1(eg,, ec,) : V(@' = (A —
7)). Moreover, the local stack correspondence implies =
Ey:To~ eg :0p andIH|0>Co: 7 = (A" = 1) ~ e,
(E,L,C,S,D) = (E,Clo(Ey, Cyp) - L',Return,v’ - §’, D) —
(Ep,0,Co,v" - S’,D). By the assumed correspondences,
Return[t’ — (A" > 71),0,01,0p] ek ep es ep reduces to
ec,lopl ek, () es ep because e, is a pair, eg is a spine stack
with at least an argument, and e,, is a closure. Because of the
conditions we got from the local stack correspondence and
the assumed conditions on S and D, one can apply induction
hypothesis. Hence the theorem holds.

Case C = Return, S =0, and D = (Ey, Ly, Cy,So) - D’.
By the assumed conditions, I'|7 - I[I" > Return : A —
T ~ Ad.Return[A — 1,0, 01,0, FE E : T ~ eg : 0,
E Vet L' 2 Trer I~ (€rerser) - (Orer, o), T,0p ED 1 0~
es : SpineStk(0 — t,0p), A =0, es = Nil(t,Ag — T2, 0p),
= (EO,LO,CO,S())'D, T = Tg ™~ € Jo, €9 =

Ret(t,Ay — 1712,0E,0L,0D,€x,, €L, ec, o], esy,ep),
and op = DumpStk(t,Ay — T2,0p). By the dump
stack correspondence, £ Ey : Iy ~ eg, : 0g, E Lo :

H() ~er, OLy» F0|T'H0 I>C() A() — T2 ™ ecy,
T,0p E So 1 Ag ~ es, : SpineStk(Ay — 12,0p),
and = D" : 7p = 19 ~ ep : op. By the operational

semantics, (E, v, - L', Return, 0, (Ey, Ly, Cy,So) - D') —
(Eo, Vrer * Lo, Co, S0, D).

Correspondingly, (Ad.Return[0 — 1,0k, 0,60 p]
eg (€rer, err) Nil(t,Ag — 12,0) Ret(t,Ay = 12,0E,,01,,
O, eE,s €Ly ec,lop], es,y, ep) reduces to ec, [opr] ek, (€rer
eLo) €s, €pr-. Since l: Uret * LO * Tret * 1_[O ~ (eret’eLo) :
(0ret, 01,) by the local stack correspondence, induction hy-
pothesis can be applied. The theorem holds.

Case C = Return, § = 0, and D = 0. By spine stack
typing, A = 0. By the assumed conditions, I'|7" - I >
Return : A - 7 ~ Ab.Return[t’,0p,0.,0],FE E : T ~
€g g, F Uper " L' 2 Tre - I~ (€ers €17) & (0per, 011) Where
Oy = V() and 1, = 7/, 1,0p E 0 : 0 ~ Nil(t, 7, unit) :
SpineStk(A — T1,0p), op = DumpStk(t,T,unit), £ 0 :
T = T ~> Nil(t) : DumpStk(t, T, unit) where T = 79. By
the operational semantics, (E, v, - L', Return,0,0) — v,,,.
(AS.Return|[t’, 0,01, 8)opl er (ere,er) Nil(t, T, unit)
Nil(t) reduces to Halt[1T'] e,.;. By the value correspondence,
E Uyer © T~ €11 : 0res. Therefore, the theorem holds.

Case C = Access(i) - C’. By the assumed corre-
spondence of the environment, = v; : 7, ~ ¢ : 0.
With the assumed correspondence of the local stack, | L :
IT ~ e : o, one can derive E v; - L; : 7, - II; ~»
(ei,er) : (oy,0r). (Efi : v}, L,Access(i) - C’,S,D) —
(E{i : v},v; - L,C',8,D). (Adb.Accessilog,---,01,A —
T,0E,01,0] ec’)[op] eg er es ep reduces to ec[op] ek
(ei, er) es ep. Itis easy to verify the conditions necessary for
applying induction hypothesis. Hence the theorem holds.

Case C = Push - C’. By the assumed corre-
spondence of the local stack, E v - L’ v I ~
(ey,er) : (oy,op). With the assumed correspondence
of the spine stack, we have 7,o0p F v - S : 7 -
A ~ Arg(t',A - T,0p,ey,es) : SpineStk(t' - A —
T,0p), (E,v' - L',Push - C’",S§,D) — (E,L’,C’,v' - S, D).

IEICE TRANS. INF. & SYST., VOL.E94-D, NO.6 JUNE 2011

(AS.Push[t’,A — t,0g,01,0] ec))[opl eg (ey,er) es ep
reduces to ec/[opl eg €] Arg(t’,A — 1,00p, ey, e5) ep.

Case C = Reduce(Cy) - C;. By the assumed condi-
tion for the compilation, I'|II > Reduce(Cy) - C; : A —
T ~ e where e = Ad.Reduce[t’,A — 1,0g,0,0] e ey,
I'os>Cy : ¥ ~ ey, and T'|7 - TI>Cy : A > 7~
e;. By the assumed conditions for the correspondences,
E E : T ~ e og, E L II ~ e : op,
T,0p E S A ~ eg SpineStk(A — t,0p), and
ED: 1= 19~ ep: op. By the operational semantics,
(E, L,Reduce(Cy) - C1,S,D) — (E,0,Cy,0,(E,L,Cy,S) -
D). By the local stack correspondence, 0 :
® ~ () : unit. By the spine stack correspondence,
7', DumpStk(t’,A = 7,0p) E 0 : 0 ~ Nil(7',A - 1,0p) :
SpineStk(t’, DumpStk(t’, A — 7,0p)). By the dump stack
correspondence, = (E,L,C,S)-D : v = 19~ Ret(7',A —
T,0E,0L,0D,€E,€C,€S,€p) DumpStk(t',A — T,07p).
(Ab.Reduce[t’,A — 1,0,01,6] ey e))[op] er er es ep
reduces to eplop] eg () Nil(t',A — t,0p) Ret(t,A —
T,08,0L,0p,e1[0pl, eg, er, es, ep). By applying induction
hypothesis to the next state and the reduced term, the theo-
rem can be proved to be true.

Kwanghoon Choi is an Assistant Professor
of Computer & Telecommunication Engineer-
ing Division at Yonsei University, Wonju. He re-
ceived the B.S., the M.S., and the Ph.D. degrees
in Computer Science from Korea Advanced In-
stitute of Science and Technology (KAIST) in
1994, 1996, and 2003, respectively. His major
research areas are type systems, programming
languages, and compilers. Dr. Choi is a member
of ACM SIGPLAN.

Seog Park is a Professor of Computer
Science at Sogang University. He received the
B.S. degree in Computer Science from Seoul
National University in 1978, the M.S. and the
Ph.D. degrees in Computer Science from Korea
Advanced Institute of Science and Technol-
ogy (KAIST) in 1980 and 1983, respectively.
Since 1983, he has been working in the De-
partment of Computer Science and Engineering,
Sogang University. His major research areas
are database security, digital library, multimedia
database systems, role-based access control, Web database, and data stream
management system. Dr. Park is a member of the IEEE Computer Society,
ACM and the Korean Institute of Information Scientists and Engineers.

