
1210
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011

PAPER

Probabilistic Analysis on the Optimal Combination of Trial Division
and Probabilistic Primality Tests for Safe Prime Generation∗

Heejin PARK†, Member and Dong Kyue KIM††a), Nonmember

SUMMARY A safe prime p is a prime such that (p − 1)/2 is also a
prime. A primality test or a safe primality test is normally a combination
of trial division and a probabilistic primality test. Since the number of
small odd primes used in the trial division affects the performance of the
combination, researchers have studied how to obtain the optimal number of
small odd primes to be used in the trial division and the expected running
time of the combination for primality tests. However, in the case of safe
primality tests, the analysis of the combination is more difficult, and thus no
such results have been given. In this paper, we present the first probabilistic
analysis on the expected running time and the optimal number of small odd
primes to be used in the trial division for optimizing the tests. Experimental
results show that our probabilistic analysis estimates the behavior of the
safe primality tests very well.
key words: safe prime, safe prime generation, trial division, miller-rabin
test, cryptography, information security

1. Introduction

A safe prime p is a prime such that (p − 1)/2 is also a
prime. Generating large primes is important in cryptogra-
phy: Cryptographic algorithms such as RSA [1] cryptosys-
tem and ElGamal [2] cryptosystem and signature schemes
such as DSS [3] require generating large (512-bit or 1024-
bit) primes. Safe primes are also important in cryptogra-
phy and have been studied extensively. The traditional DH
key agreement protocol [4] uses safe primes to protect itself
from the subgroup attacks. Recently, many cryptosystems
and signature schemes require safe primes to guarantee their
securities: The secure coalition-resistant group signature
suggested by Ateniese et al.’s [5] and Cramer and Shoup’s
signature scheme [6] require safe primes. Gennaro et al.’s
hash-and-sign signature [7] and Gennaro et al.’s undeniable
signature [8] also require safe primes. Besides, Shoup’s
threshold signature [9], Camenisch and Lysyanskaya’s cre-
dential system [10], and Fujisaki and Okamoto’s zero-

Manuscript received April 7, 2010.
Manuscript revised January 27, 2011.
†The author is with the Faculty of Department of Computer

Science and Engineering, Hanyang University, Seoul 133–791,
South Korea.
††The author is with the Faculty of Department of Electronic

Engineering, Hanyang University, Seoul 133–791, South Korea.
∗This work was supported by the research fund of Hanyang

University (HY-2005-S), the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MEST)
(2010-0025668), and Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Min-
istry of Education, Science and Technology (2009-0090441) and
(2010-0013441).

a) E-mail: dqkim@hanyang.ac.kr (corresponding author)
DOI: 10.1587/transinf.E94.D.1210

knowledge protocol [11] require safe primes. Sharing and
verifying safe primes also have been studied: Algesheimer
et al. [12] and One and Kubiatowicz [13] studied gener-
ation of shared safe prime (products). Camenisch and
Michels [14] presented a zero-knowledge proof that a num-
ber is the product of two safe primes. Ibrahim [15] sug-
gested a verifiable threshold sharing of a safe prime. In addi-
tion, distributed computation of the RSA function [16]–[18]
relies heavily on distributed primality tests of safe primes.
Thus, safe primes have been used extensively and are im-
portant in cryptography.

Generating an n-bit prime is an iterative application of
odd random number generation and primality test. Odd ran-
dom numbers are mostly generated by random search or in-
cremental search [19]. The random search is the traditional
and basic method for prime generation. In each iteration,
it generates an odd random number r and test its primality.
Thus, it generates a prime with a uniform probability over
the entire given interval. The incremental search sacrifices
uniformity slightly for speedup. It generates an odd random
number r only once, and test whether r+ 2(i− 1) is prime or
not in the ith, (i ≥ 1) iteration. In addition, the incremental
search has many variants which are optimized for various
situations. Furthermore, both random search and any incre-
mental search are much faster than the primality test.

Since the random number generation is much faster
than the primality test, most of the running time of the
prime generation is consumed by the primality test. There
are several deterministic primality tests such as trial divi-
sion [20], Pocklington’s test [21], Maurer’s algorithm [22]
and AKS test [23] and probabilistic primality tests such
as Solovay-Strassen test [24], Fermat test [20], and Miller-
Rabin test [25], [26]. Generally, several primality tests are
combined to speed up the primality test and the most widely
used combination is the combination of the trial division
and a probabilistic primality test such as Fermat test and
Miller-Rabin test. The speed of the combination is affected
by k, i.e., the number of primes used in the trial division.
Maurer [22] analyzed the combination and presented formu-
las to estimate the expected running time of the combina-
tion and kopt, the optimal number of small odd primes to
be used in the trial division for optimizing the combination
when odd random numbers are generated by random search.
Later, for a variant of incremental search, Brandt et al. [27]
studied optimization and expected running time of the com-
bination. In the case of safe prime generation, the analysis
is far more difficult so no analysis has been given even for

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

PARK and KIM: PROBABILISTIC ANALYSIS OF SAFE PRIME GENERATION
1211

the random search, not to mention the incremental search.
In this paper, we present the first probabilistic analysis

on the expected running time and kopt for the safe primality
test based on random search. The results are convenient to
use in practice because the expected running time is given
as a function of divn, pptn, and k where divn is the time re-
quired for dividing an n-bit number by a word-sized prime,
pptn is the time required for performing a probabilistic pri-
mality test on an n-bit integer, and k is the number of small
primes used in the trial division. Thus, once divn and pptn

are measured, one can easily estimate the expected running
time and kopt.

This paper is organized as follows. We show how to
compute the expected running time in Sect. 2 and kopt in
Sect. 3. In Sect. 4, we present some experimental results
and compare them with the expectation by our analysis. In
Sect. 5, we conclude.

2. Expected Running Time

We first introduce the safe primality test based on random
search [28], [29]. Let r denote a random odd integer and
pi’s (1 ≤ i ≤ k) are small odd primes.

1. Trial division on r and (r − 1)/2: Check if r � 0, 1
(mod pi) for each prime p1 < p2 < · · · < pk. Note that
checking if r � 1 (mod pi) is the same as checking if
(r − 1)/2 � 0 (mod pi).

2. Probabilistic primality test on r.
3. Probabilistic primality test on (r − 1)/2.

For the safe primality test above, we present a proba-
bilistic analysis on the expected running time (denoted by
S n(k)) on an odd n-bit integer r when k smallest odd primes
are used in the trial division.

Theorem 1. S n(k) ≈
k∑

i=1

i−1∏
j=1

(
1 − 2

p j

)
· divn

+

⎛⎜⎜⎜⎜⎜⎜⎝
k∏

i=1

(
1 − 2

pi

)
+

2
n ln 2

·
k∏

i=1

(
1 − 1

pi − 1

)⎞⎟⎟⎟⎟⎟⎟⎠ · pptn.

where divn is the time required to divide an n-bit integer by
a word-sized integer and pptn is the time required to per-
form the probabilistic primality test on an n-bit integer.

Proof. We denote by Xi the event of dividing an n-bit inte-
ger by pi for 1 ≤ i ≤ k in the trial division, by Y the event
of performing the probabilistic primality test on r, and by Y ′
the event of performing the probabilistic primality test on
(r − 1)/2. Let Pr{Xi}, Pr{Y}, and Pr{Y ′} denote the proba-
bilities of Xi, Y , and Y ′, respectively. We denote by divn(i)
the time required to divide an n-bit integer by pi, by pptn

(pptn−1) the time required to perform the probabilistic pri-
mality test on an n-bit ((n − 1)-bit) integer. Then, S n(k) can
be represented as follows.

S n(k) =
k∑

i=1

(Pr{Xi} · divn(i))

+ Pr{Y} · pptn + Pr{Y ′} · pptn−1. (1)

We show how to compute Pr{Xi}, Pr{Y}, and Pr{Y ′}. We
first consider the probability Pr{Xi} that we divide an n-bit
integer r by pi in the trial division. We divide r by pi if and
only if r � 0, 1 (mod p j) for all 1 ≤ j ≤ i − 1. Hence, the
probability Pr{Xi} is

Pr{Xi} =
i−1∏
j=1

(
1 − 2

p j

)
. (2)

The probability Pr{Y} that we perform the probabilistic
primality test on r is the probability that r � 0, 1 (mod pj)
for all 1 ≤ j ≤ k. Hence, the probability Pr{Y} is

Pr{Y} =
k∏

i=1

(
1 − 2

pi

)
. (3)

Consider the probability Pr{Y ′} that we perform the
probabilistic primality test on (r − 1)/2. Let qn denote the
probability that an odd n-bit integer r is a prime. According
to the prime number theorem [20],

qn ≈ 1
2n−2

(
2n

n ln 2
− 2n−1

(n − 1) ln 2

)
≈ 2

n ln 2
. (4)

We perform the probabilistic primality test on (r − 1)/2 if
and only if r is a prime and (r − 1)/2 is not divisible by any
primes up to pk. (We assume that the error probability of the
primality test is equal to 0.) We consider the probability that
(r − 1)/2 is not divisible by any primes up to pk when r is a
prime. It should be noted that r is a prime already implies
(r − 1)/2 � −1 · 2−1 mod pi because r � 0 mod pi. Hence
the probability that (r − 1)/2 � 0 mod pi when r is a prime
is 1 − 1/(pi − 1) and the probability Pr{Y ′} is

Pr{Y ′} ≈ 2
n ln 2

·
k∏

i=1

(
1 − 1

pi − 1

)
. (5)

Hence, by replacing Pr{Xi}, Pr{Y}, and Pr{Y ′} in Eq. (1) by
Eqs. (2) - (5), we get the following approximation.

S n(k) ≈
k∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝
i−1∏
j=1

(
1 − 2

p j

)
· divn(i)

⎞⎟⎟⎟⎟⎟⎟⎠

+

k∏
i=1

(
1 − 2

pi

)
· pptn

+
2

n ln 2
·

k∏
i=1

(
1 − 1

pi − 1

)
· pptn−1

We can simplify S n(k) further in real situation. Since
n is quite large (512, 1024 or 2048), pptn ≈ pptn−1 and
thus pptn−1 can be replaced by pptn. In addition, divn(i) ≈
divn(j) for 1 ≤ i, j ≤ k because pi and p j are normally
stored in a word of a machine and thus both divn(i) and

1212
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011

divn(j) can be replaced by divn, the time required to divide
an n-bit integer by a word-sized integer. Hence, S n(k) can be
rewritten as in the claim of this theorem, which completes
the proof. �

3. Finding the Optimal Number of Primes Used in the
Trial Division

We compute the optimal value kopt minimizing S n(k), i.e.,
the optimal number of primes used in the trial division to
make the safe primality test fastest.

Theorem 2. The expected running time S n(k) is minimized
at kopt that satisfies

2
pkopt

·
⎛⎜⎜⎜⎜⎜⎜⎝1 + 1

n ln 2
·

kopt∏
i=1

pi

pi − 1

⎞⎟⎟⎟⎟⎟⎟⎠ = divn

pptn
.

Proof. We first compute ΔS n(k) = S n(k) − S n(k − 1), then
show ΔS n(k) is negative when k < kopt, zero at kopt and
positive when k > kopt, which means S n(k) is minimized at
kopt.

ΔS n(k) ≈
k∑

i=1

i−1∏
j=1

(
1 − 2

p j

)
divn

+

⎛⎜⎜⎜⎜⎜⎜⎝
k∏

i=1

(
1 − 2

pi

)
+

2
n ln 2

k∏
i=1

(
1 − 1

pi − 1

)⎞⎟⎟⎟⎟⎟⎟⎠ pptn

−
⎛⎜⎜⎜⎜⎜⎜⎝

k−1∑
i=1

i−1∏
j=1

(
1 − 2

p j

)
divn +

⎛⎜⎜⎜⎜⎜⎜⎝
k−1∏
i=1

(
1 − 2

pi

)

+
2

n ln 2

k−1∏
i=1

(
1 − 1

pi − 1

)⎞⎟⎟⎟⎟⎟⎟⎠ pptn

⎞⎟⎟⎟⎟⎟⎟⎠

=

k−1∏
j=1

(
1 − 2

p j

)
divn −

⎛⎜⎜⎜⎜⎜⎜⎝
k−1∏
i=1

(
1 − 2

pi

)
2
pk

+
2

n ln 2

k−1∏
i=1

(
1 − 1

pi − 1

) (
1

pk − 1

)⎞⎟⎟⎟⎟⎟⎟⎠ pptn

=

k−1∏
i=1

(
1 − 2

pi

) ⎛⎜⎜⎜⎜⎜⎜⎝divn −
⎛⎜⎜⎜⎜⎜⎜⎝ 2

pk

+
2

n ln 2

∏k−1
i=1 (1 − 1

pi−1)∏k−1
i=1 (1 − 2

pi
)
· 1

pk − 1

⎞⎟⎟⎟⎟⎟⎟⎠ pptn

⎞⎟⎟⎟⎟⎟⎟⎠

=

k−1∏
i=1

(
1 − 2

pi

) ⎛⎜⎜⎜⎜⎜⎜⎝divn

− 2
pk

⎛⎜⎜⎜⎜⎜⎜⎝1 + 1
n ln 2

k∏
i=1

pi

pi − 1

⎞⎟⎟⎟⎟⎟⎟⎠ pptn

⎞⎟⎟⎟⎟⎟⎟⎠ (6)

By definition, ΔS n(k) = 0 at kopt. It remains to show
ΔS n(k) is negative when k < kopt and positive when k > kopt.

Let α(k) denote
1
pk

⎛⎜⎜⎜⎜⎜⎜⎝1 + 1
n ln 2

·
k∏

i=1

pi

pi − 1

⎞⎟⎟⎟⎟⎟⎟⎠. Then, ΔS n(k)

in Eq. (6) can be represented as follows.

ΔS n(k) =
k−1∏
i=1

(
1 − 2

pi

)
· (divn − 2α(k)pptn) (7)

Since pptn >> divn, divn − 2α(k)pptn is negative
when k is sufficiently small. We show α(k) decreases as
k grows bigger, which implies divn − 2α(k)pptn increases
and thus ΔS n(k) is negative when k < kopt and positive when
k > kopt. We can show α(k) decreases by showing α(k)/α(k−
1) < 1 because it is positive.

α(k)
α(k − 1)

=

1
pk

⎛⎜⎜⎜⎜⎜⎜⎝1 + 1
n ln 2

·
k∏

i=1

pi

pi − 1

⎞⎟⎟⎟⎟⎟⎟⎠
1

pk−1

⎛⎜⎜⎜⎜⎜⎜⎝1 + 1
n ln 2

·
k−1∏
i=1

pi

pi − 1

⎞⎟⎟⎟⎟⎟⎟⎠

=
pk−1

pk
·

1 + A · pk

pk − 1
1 + A

where A =
1

n ln 2
·

k−1∏
i=1

pi

pi − 1
.

(8)

Since pk/(pk − 1) > 1 and A > 0,

1 + A · pk

pk−1

1 + A
<

pk

pk − 1

This inequality can be shown easily by subtracting the
left-hand side from the right-hand side. Using this inequal-
ity, we get the following inequality.

α(k)
α(k − 1)

<
pk−1

pk
· pk

pk − 1
=

pk−1

pk − 1
.

Since both pk and pk−1 are odd primes, pk > pk−1 + 1
and pk−1

pk−1 < 1 and α(k)/α(k − 1) < 1. Now, we showed α(k)
decreases, which means ΔS n(k) is negative when k < kopt

and positive when k > kopt.
The last one we would show is there exists kopt satis-

fying ΔS n(kopt) = 0 in every case. We already showed that
α(k) decreases, however, this does not imply kopt always ex-
ists. Consider that limk→∞ α(k) = C for some C > 0. If
C > divn/(2 pptn), divn − 2α(k)pptn (thus ΔS n(k)) is neg-
ative for all k’s and thus kopt satisfying ΔS n(kopt) = 0 does
not exist. Therefore, we will show limk→∞ α(k) = 0 which
means limk→∞ ΔS n(k) > 0 and there always exists kopt satis-
fying ΔS n(kopt) = 0.

Recall that

α(k) =
1
pk

⎛⎜⎜⎜⎜⎜⎜⎝1 + 1
n ln 2

·
k∏

i=1

pi

pi − 1

⎞⎟⎟⎟⎟⎟⎟⎠.

We first show that
∏k

i=1
pi

pi−1 = O(ln pk−1) as follows.

PARK and KIM: PROBABILISTIC ANALYSIS OF SAFE PRIME GENERATION
1213

k∏
i=1

pi

pi − 1
=

k∏
i=1

(
1 +

1
pi − 1

)

=

(
1 +

1
3 − 1

) k∏
i=2

(
1 +

1
pi − 1

)

Since pi − 1 > pi−1, 1
pi−1 <

1
pi−1

and 1 + 1
pi−1 < 1 + 1

pi−1
and

thus
(
1 +

1
3 − 1

) k∏
i=2

(
1 +

1
pi − 1

)
< 2

k−1∏
i=1

(
1 +

1
pi

)

Since 1 + 1/pi ≤ exp(1/pi),

2
k−1∏
i=1

(
1 +

1
pi

)
≤ 2

k−1∏
i=1

exp(1/pi) = 2 exp

⎛⎜⎜⎜⎜⎜⎜⎝
k−1∑
i=1

1/pi

⎞⎟⎟⎟⎟⎟⎟⎠ .

Since
∑k−1

i=1 1/pi < ln ln pk−1+B+1/ ln2 pk−1 for prime-
reciprocal constant B (≈ 0.261) by the Theorem 8.8.5 in
[30],

∑k−1
i=1 1/pi = O(ln ln pk−1) and thus,

2 exp

⎛⎜⎜⎜⎜⎜⎜⎝
k−1∑
i=1

1/pi

⎞⎟⎟⎟⎟⎟⎟⎠ = 2 exp(O(ln ln pk−1)) = O(ln pk−1).

Hence, we showed
∏k−1

i=1
pi

pi−1 = O(ln pk−1). Using this,
we can show limk→∞ α(k) = 0 in the following way.

lim
k→∞
α(k) = lim

k→∞
1
pk

⎛⎜⎜⎜⎜⎜⎜⎝1 + 1
n ln 2

k∏
i=1

pi

pi − 1

⎞⎟⎟⎟⎟⎟⎟⎠
= lim

k→∞
1
pk

(
1 +

1
n ln 2

O(ln pk−1)

)
= 0

�

We showed how to compute the optimal value kopt min-
imizing S n(k) in Theorem 2. Now, we introduce a simple
and useful approximation rule to compute kopt in practical
situation. Most cryptographic algorithms require very large
safe primes e.g., 1024 or 2048-bit safe primes are required
to guarantee the securities of the cryptographic algorithms.
Thus we can assume that n ≥ 1,024 in practice. In addition,
it is not common to store more than 100,000 smallest odd
primes for trial division. Note that the 100,000th smallest
odd prime p100,000 is 1,299,721, which is even bigger than a
million. Our experimental results in the next section show
kopt’s for a PC are far less than 100,000. Thus, we focus
on finding kopt when n ≥ 1,024 and kopt ≤ 100,000. The
following theorem presents a simple approximation rule to
compute kopt in this situation. Although this rule is much
simpler than the accurate formula in Theorem 2, it still esti-
mates pkopt quite well.

Theorem 3. pkopt ≈ 2 · pptn/divn when n ≥ 1,024 and
kopt ≤ 100,000 (i.e., pkopt ≤ 1,299,721).

Proof. We show that the expression ‘1 + 1
n ln 2 ·

∏kopt

i=1
pi

pi−1 ’
in Theorem 2 is close to 1 on condition that n ≥ 1,024 and

kopt ≤ 100,000. Since each pi

pi−1 is bigger than 1,
∏kopt

i=1
pi

pi−1

increases as kopt grows bigger and since
∏100,000

i=1
pi

pi−1 <

12.54,
∏kopt

i=1
pi

pi−1 is at most 12.54. From the fact
∏kopt

i=1
pi

pi−1 is
at most 12.54 and that n ≥ 1,024, one can easily derive that
0 < 1

n ln 2 ·
∏kopt

i=1
pi

pi−1 < 0.018 and thus 1+ 1
n ln 2 ·

∏kopt

i=1
pi

pi−1 ≈ 1.

(Note that 1
n ln 2 ·

∏kopt

i=1
pi

pi−1 decreases, as n increases: When

n = 2,048, 1
n ln 2 ·

∏kopt

i=1
pi

pi−1 < 0.009.) Hence, we can replace

the expression ‘1+ 1
n ln 2 ·

∏kopt

i=1
pi

pi−1 ’ in Theorem 2 by 1, and
we get pkopt ≈ 2 · pptn/divn. �

We can practically compute an approximate pkopt when
n ≥ 1024 in the following way. We first compute pkopt by
Theorem 3. If it is bigger than 1,299,791, it is abandoned.
Otherwise (if the computed pkopt is 1,299,791 or less), we
check if it is a real approximation. (Note that Theorem 3
does not preclude the rare possibility that the computed pkopt

is 1,299,791 or less even though the real pkopt is bigger than
1,299,791.) Thus, we check if the computed pkopt satisfies
the equation in Theorem 2 approximately. If so, it is a real
approximation. Otherwise, it it abandoned. Note that calcu-
lating both sides of the equation in Theorem 2 is not difficult,
once pkopt is given.

It should be noted Theorem 3 gracefully degrades when
n < 1024. For example, when n = 512, 0 < 1

n ln 2 ·∏kopt

i=1
pi

pi−1 < 0.036, which implies the approximation is still
useful even though it is a little less accurate.

4. Experimental Results

We measured the running time of the safe primality test, in
which Miller-Rabin test is used for probabilistic primality
test, with various number of primes being used in the trial
division and compared them with the expected running time
for each case by Theorem 1 (Fig. 1). We did experiments
on generating 1024-bit and 2048-bit primes by implement-
ing and running a C program on a PC with an intel 2.4 Ghz
Core2Duo 6600 CPU and 2 GB main memory.

In the graphs, X-axis means the number of smallest odd
primes used in the trial division and Y-axis means the safe
prime generation time in seconds. Solid lines are experi-
mental results, which are average measured running times
of 1,000 safe primality tests for each case. Dashed lines
are expected running times computed by Theorem 1 from
div1,024 (= 734 ns) and ppt1,024 (= 7,875 μs) for 1024 bits
and div2,048 (= 1,328 ns) and ppt2,048 (= 56,062 μs) for
2048 bits. In this figure, the expected running times are very
close to the measured running times.

We also computed kopt and compared it with the mea-
sured data. For 1,024 bits, the kopt computed from div1,024

and ppt1,024 by Theorem 2 is 2,436 where p2,436 = 21,727.
This computed optimal value corresponds to the experi-
mental results because the measured running time is fastest
around 2,436 primes in Fig. 1 (a). For 2,048 bits, the
computed kopt is 8,280 and the measured running time is
also fastest around 8,280 primes where p8,280 = 85,037

1214
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011

(a) 1024 bits

(b) 2048 bits

Fig. 1 Experimental Results on safe primality tests.

Table 1 Comparison of accurate and approximate pkopt ’s.

bits accurate pkopt approximate pkopt diff

1024 p2,436 = 21,727 p2,406 = 21,467 1.20%
2048 p8,280 = 85,037 p8,228 = 84,431 0.71%

(Fig. 1 (b)). Hence, the experimental results show Theo-
rem 1 and 2 estimate the running times and kopt’s very well.

We also show the approximate rule in Theorem 3 esti-
mates pkopt quite well enough to use in practice.

In Table 1, the accurate pkopt is computed by Theorem 2
and the approximate pkopt is computed by Theorem 3. The
difference between them, which is computed by ‘(accurate
pkopt − approximate pkopt)× 100/accurate pkopt ’, is very small
(about 1%) and thus one can use the approximation rule in
most cases except the case that the accurate kopt is really
necessary, which is rare.

5. Concluding Remark

We presented probabilistic analysis to compute the expected
running time and kopt, the optimal number of primes used in
the trial division for the safe primality test based on random
search. In addition, we suggested a simple and useful ap-
proximation rule for computing kopt. The experimental re-
sults showed that our analysis estimates the behavior of the
safe primality test very well.

In the preliminary version of this paper [31], we also
presented an analysis of another safe primality test used in
OpenSSL [32] which is not included in this paper. That safe
primality test is similar to the one analyzed in this paper
except that it does two trial divisions, each of which is on
r and (r − 1)/2, respectively. Obviously, it is inferior to the
one analyzed in this paper and, in addition, its analysis is
very similar to the analysis given in this paper. Thus, we did
not include the analysis of the inferior test in this paper.

Our future work is to analyze the expected running
time and kopt of incremental search for safe prime genera-
tion based on the analysis on random search, which is harder
to analyze.

References

[1] R.L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM,
vol.21, no.2, pp.120–126, 1978.

[2] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE Trans. Inf. Theory, vol.31, no.4,
pp.469–472, 1985.

[3] National Institute for Standards and Technology, “Digital Signature
Standard (DSS),” Federal Register, vol.56, p.169, 1991.

[4] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Trans. Inf. Theory, vol.22, no.6, pp.644–654, 1976.

[5] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik, “A practi-
cal and provably secure coalition-resistant group signature scheme,”
CRYPTO’00, LNCS 1880, pp.255–270, 2000.

[6] R. Cramer and V. Shoup, “Signature schemes based on the strong
RSA assumption,” Proc. 6th ACM CCS, pp.46–52, 1999.

[7] R. Gennaro, S. Halevi, and T. Rabin, “Secure hash-and-sign sig-
nature without the random oracle,” EUROCRYPT’99, LNCS 1592,
pp.123–139, 1999.

[8] R. Gennaro, H. Krawczyk, and T. Rabin, “RSA-based Undeniable
signature,” CRYPTO’97, LNCS 1294, pp.132–149, 1997.

[9] V. Shoup, “Practical threshold signatures,” EUROCRYPT’00,
LNCS 1087, pp.207–220, 2000.

[10] J. Camenisch and A. Lysyanskaya, “Efficient non-transferable
anonymous multi-show credential system with optional anonymity
revocation,” EUROCRYPT’01, LNCS 2045, pp.93–118, 2001.

[11] E. Fujisaki and T. Okamoto, “Statistical zero knowledge protocols
to prove modular polynomial relations,” CRYPTO’97, LNCS 1294,
pp.16–30, 1997.

[12] J. Algesheimer, J. Camenisch, and V. Shoup, “Efficient computation
modulo a shared secret with application to the generation of shared
safe-prime products,” CRYPTO’02, LNCS 2442, pp.417–432, 2002.

[13] E. Ong and J. Kubiatowicz, “Optimizing robustness while generat-
ing shared secret safe primes,” PKC’05, LNCS 3386, pp.120–137,
2005.

[14] J. Camenisch and M. Michels, “Proving in zero-knowledge that a
number is the product of two safe primes,” CRYPTO’99, LNCS
1592, pp.107–122, 1999.

[15] M.H. Ibrahim, “Verifiable threshold sharing of a large secret safe-
prime,” ITCC’05, pp.608–613, 2005.

[16] M.H. Ibrahim, “Eliminating quadratic slowdown in two-prime RSA
function sharing,” Int. J. Netw. Secur., vol.7, no.1, pp.107–114,
2008.

[17] M.H. Ibrahim, “Efficient dealer-less threshold sharing of standard
RSA,” Int. J. Netw. Secur., vol.8, no.1, pp.134–145, 2009.

[18] M.H. Ibrahim, I.A. Ali, I.I. Ibrahim, and A.H. El-Sawy, “Fast fully
distributed and threshold RSA function sharing,” Proc. Informa-
tion Systems: New Generation Conference (ISNG 2004), pp.11–15,
2004.

PARK and KIM: PROBABILISTIC ANALYSIS OF SAFE PRIME GENERATION
1215

[19] A.J. Menezes, P.C. Oorschot, and S.A. Vanstone, Handbook of Ap-
plied Cryptography, CRC Press, 1997.

[20] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed., MIT Press, 2001.

[21] H.C. Pocklington, “The determination of the prime or composite na-
ture of large numbers by Fermat’s theorem,” Proc. Cambridge Philo-
sophical Society, vol.18, pp.29–30, 1914.

[22] U.M. Maurer, “Fast generation of prime numbers and secure public-
key cryptographic parameters,” J. Cryptology, vol.8, no.3, pp.123–
155, 1995.

[23] M. Agrawal, N. Kayal, and N. Saxena, “PRIMES is in P,” Annals of
Mathematics, vol.160, no.2, pp.781–793, 2004.

[24] R. Solovay and V. Strassen, “A fast Monte-Carlo test for primality,”
SIAM J. Comput., vol.6, pp.84–85, 1977.

[25] G.L. Miller, “Riemann’s hypothesis and tests for primality,” J. Com-
put. Syst. Sci., vol.13, no.3f, pp.300–317, 1976.

[26] M.O. Rabin, “Probabilistic algorithm for primality testing,” J. Num-
ber Theory, vol.12, pp.128–138, 1980.

[27] J. Brandt, I. Damgard, and P. Landrock, “Speeding up prime number
generation,” ASIACRIPT’91, LNCS 739, pp.440–449, 1991.

[28] H. Park, “An efficient implementation of safe prime generation,” In-
ternational Conference on Ubiquitous Computing, pp.241–243, Oct.
2003.

[29] M.J. Wiener, “Safe prime generation with a combined sieve,”
http://eprint.iacr.org/2003/186.ps.gz

[30] E. Bach and J. Shallit, Algorithmic Number Theory, vol.1, 2nd print-
ing, MIT Press, 1997.

[31] H. Park, S.K. Park, K. Kwon, and D.K. Kim, “Probabilistic analyses
on finding optimal combinations of primality tests in real applica-
tions,” ISPEC’05, LNCS 3439, pp.74–84, 2005.

[32] OpenSSL, http://www.openssl.org

Heejin Park received the B.S., M.S. and
Ph.D. degrees in Computer Engineering from
Seoul National University in 1994, 1996, and
2001, respectively. From 2001 to 2002, he
worked as a post-doctoral researcher for the De-
partment of Computer Engineering at Seoul Na-
tional University. From 2003 to 2003, he was a
research professor at Ewha Womens University.
He is currently an associate professor in the De-
partment of Computer Science and Engineering
at Hanyang University, Korea. His research in-

terests are in the areas of cryptography, information security, and computer
algorithm.

Dong Kyue Kim received the B.S., M.S.
and Ph.D. degrees in Computer Engineering
from Seoul National University in 1992, 1994,
and 1999, respectively. From 1999 to 2005,
he was an assistant professor in the Division
of Computer Science and Engineering at Pusan
National University. He is currently an asso-
ciate professor in the Division of Electronics
and Computer Engineering at Hanyang Univer-
sity, Korea. His research interests are in the
areas of embedded security systems, crypto-

coprocessors, and information security.

