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Efficient Beam Pruning for Speech Recognition with a Reward
Considering the Potential to Reach Various Words on a Lexical Tree

Tsuneo KATO†a), Kengo FUJITA†, and Nobuyuki NISHIZAWA†, Members

SUMMARY This paper presents efficient frame-synchronous beam
pruning for HMM-based automatic speech recognition. In the conventional
beam pruning, a few hypotheses that have greater potential to reach various
words on a lexical tree are likely to be pruned out by a number of hypothe-
ses that have limited potential, since all hypotheses are treated equally with-
out considering this potential. To make the beam pruning less restrictive for
hypotheses with greater potential and vice versa, the proposed method adds
to the likelihood of each hypothesis a tentative reward as a monotonically
increasing function of the number of reachable words from the HMM state
where the hypothesis stays in a lexical tree. The reward is designed not to
collapse the ASR probabilistic framework. The proposed method reduced
84% of the processing time for a grammar-based 10k-word short sentence
recognition task. For a language-model-based dictation task, it also resulted
in an additional 23% reduction in processing time from the beam pruning
with the language model look-ahead technique.
key words: pruning, frame synchronous beam search, lexical tree

1. Introduction

Automatic speech recognition (ASR) engines always de-
mand fast search algorithms. Server-based ASR engines for
internet search or dictation need the fast search to expand
their domain and vocabulary with larger language models
and more accurate acoustic models. Embedded ASR en-
gines for command and control (C&C) or local search on
mobile devices need the fast search as well to get the recog-
nition result as soon as possible with efficient use of limited
CPU power and memory. Standard HMM-based ASR en-
gines enhance their search efficiency in two ways. Firstly,
the search space is hierarchically structured in a word-level
network which represents the acceptable sentences, and an
HMM-state-level network which represents the words com-
posing the sentences as a lexical tree [1]. Secondly, the hy-
potheses used to search for the best path on the lexical tree
are effectively reduced by frame-by-frame pruning without
deteriorating word accuracy. The basic pruning techniques
are beam width pruning [2] and histogram pruning [3]. The
idea of these pruning techniques is to retain the most promis-
ing hypotheses for further searches and exclude the rest with
reference to their likelihoods. These techniques basically
function well by setting proper thresholds. However, the
required number of hypotheses to bring out the best word
accuracy is still excessive as the vocabulary size increases.

Various methods have been proposed to shorten the
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processing time. Two-pass search algorithms which rescore
the lattice output of the first pass are effective ways to in-
troduce a detailed N-gram language model [4], [5]. The lan-
guage model look-ahead technique [6]–[8] significantly re-
duces the number of hypotheses required for the maximal
word accuracy by incorporating a language model as early
as possible into search on the lexical tree. Furthermore, step-
wise addition of the linguistic probabilities along the HMM
state sequence [9], [10] enhanced the efficiency. However,
these powerful techniques are not applicable in grammar-
based tasks because they do not use linguistic probabilities.

Efficiency of the beam pruning has also been improved.
Word-end pruning, which sets another beam width pruning
for hypotheses at the terminal states of words, is effective in
suppressing an explosive increase in hypotheses caused by
transitions from a word end to various words [8]. The ef-
ficiency of the beam pruning was enhanced by introducing
a posterior probability-based confidence measure [11]. Re-
cently, a machine-learning-based optimization framework
combining multiple criteria with more detailed features has
been proposed [12]. However, the geometric property of
the lexical tree has not been sufficiently exploited in beam
search. Equal-depth pruning [13], which partitions the lexi-
cal tree into multiple sections based on depth levels and ex-
ecutes a beam width search at each section, is a method that
focuses on the geometric property of the lexical tree. How-
ever, the performance is supposed to be unstable when the
number of hypotheses is severely reduced, because the ba-
sis, i.e. the top likelihood in each section for every frame is
chosen from a limited number of hypotheses in the section.

We propose improved beam pruning which takes the
geometric property of the lexical tree into consideration.
The property is that a hypothesis staying at a state close to
the root of a lexical tree has greater potential to produce
various word hypotheses than one close to a leaf, and that
pruning of a hypothesis close to the root generally has a
greater adverse impact on the accuracy of the resultant rec-
ognized word sequence than that of a hypothesis close to a
leaf. The proposed method thus makes the hypotheses close
to the root less likely to be pruned out by easing the prun-
ing condition for the hypotheses close to the root. Unlike
the language model look-ahead, the proposed method is ap-
plicable to the grammar-based tasks. The proposed method
is applicable in combination with the language model look-
ahead and/or the word end pruning as well.

The remainder of this paper is organized as follows.
An analysis on the distribution of the number of reachable
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words on a lexical tree, and the proposed method are de-
scribed in Sect. 2. Experiments on the processing time (real
time factor: RTF) and accuracy (word error rate: WER)
in three recognition tasks are reported in Sect. 3. The rela-
tion between the proposed method and conventional pruning
methods are discussed in Sect. 4. Conclusions are given in
Sect. 5.

2. Beam Pruning with a Reward Considering the Po-
tential to Reach Various Words on a Lexical Tree

2.1 Distribution of HMM States in Terms of the Number
of Reachable Words on a Lexical Tree

The lexical tree is formed by merging the common partial
HMM state sequences from the beginning of words between
word entries in the lexicon. An example of the lexical tree
is shown in Fig. 1. The potential to produce various word
hypotheses depends on the HMM states in the lexical tree.
A hypothesis at a state close to the root has great potential,
whereas a hypothesis at a state close to a leaf has limited
potential. This potential is quantifiable by the number of
reachable words. As easily seen from Fig. 1, a lexical tree
comprises a small number of states with great potential, and
a vast number of those with limited potential.

We composed a lexical tree for the 10k-word railway
station name task in Sect. 3, and investigated the distribu-
tion of HMM states in terms of the number of reachable
words. Figure 2 shows the histogram. The vertical axis
is on a logarithmic scale. Figure 3 shows the pie chart of
the same distribution. The HMM states reaching a single
word, two words, three and four occupy 71%, 19%, 3.2%
and 1.8%, respectively. The number of HMM states de-
creases rapidly from those of a single reachable word to
those of more reachable words. On the other hand, a few
HMM states close to the root have hundreds or thousands
reachable words. An HMM state next to the root has the
maximal number of 1,738 reachable words in this case.

Naturally, the hypotheses on the lexical tree comprise

Fig. 1 Example of a lexical tree.
The numbers represent #reachable words from the HMM states.

a small number of those with a great number of reachable
words, and a vast number of those with a few reachable
words. As mentioned above, a pruned hypothesis with more
reachable words impinges more than a pruned one with
fewer reachable words on the word accuracy of the resul-
tant word sequence. Therefore, we ease the pruning condi-
tion for the few hypotheses with a great number of reachable
words, and tighten it for the vast hypotheses with few reach-
able words.

2.2 Beam Pruning with a Reward as a Function of the
Number of Reachable Words on a Lexical Tree

As a hypothesis advances on a path from root to leaf, the
number of reachable words decreases monotonically, and is
narrowed down to one after the hypothesis passes the last
branching state in the lexical tree. Leveraging this property,
a reward as a monotonically increasing function of the num-
ber of reachable words is tentatively added to the likelihood
of the hypothesis for pruning. In addition, the value of the
monotonically increasing function is set to be zero when the
number of the reachable words is one ( f (1) = 0). Conse-
quently, as a hypothesis advances on the path, the reward
starting from a positive value is renewed to a smaller value
whenever the hypothesis passes a branching state, and then
ends up at zero after the hypothesis passes the last branching
state. The reward eases the pruning for the hypotheses closer
to the root, while tightening it for the hypotheses closer to
the leaves. Furthermore, this does not collapse the ASR
probabilistic framework because the reward is always zero

Fig. 2 Histogram of the HMM states in terms of the number of
reachable words for the lexical tree of the railway station name task.

Fig. 3 Pie chart of the HMM states in terms of the number of
reachable words for the lexical tree of the railway station name task.
W denotes #reachable words.
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at the leaf HMM states unless homonyms or other words
with that word as their prefix exist in the lexicon. Note,
however, that the probabilistic framework is still preserved
by discarding the reward in adding the word hypothesis into
a lattice when homonyms or other words with that word as
their prefix exist.

In a case of grammar-based recognition without lin-
guistic probabilities, the score S (h) for pruning of a hypoth-
esis h is given by

S (h) = La(h) + R(W(h)) (1)

where La(h), W(h) and R(W) denote the accumulated acous-
tic likelihood, the number of reachable words of the hypoth-
esis h in the lexical tree and the reward as a function of the
number of reachable words, respectively. Strictly speak-
ing, the reachable words depend on the grammatical con-
text. However, W(h) was precomputed approximately by
just counting the number of reachable words on a lexical
tree without considering the grammatical context here for
the sake of simplicity.

In a case of recognition based on a probabilistic lan-
guage model, the score S (h) is given by

S (h) = La(h) + wlm{Ll + Lla(h)} + R(W(h)) (2)

where the additional parameters Ll, Lla(h) and wlm denote
the accumulated linguistic likelihood from the word at the
beginning to the previous word, the likelihood of language
model look-ahead for the hypothesis h and the language
model weight, respectively.

Considering the “long-tailed” distribution of the HMM
states shown in Fig. 2, we assume two types of monotoni-
cally increasing functions which fulfill R(1) = 0, here. One
is A) a logarithmic function as:

R(W) = alog

[
log(W − blog) − log(1 − blog)

]
(3)

where alog and blog are constants to be optimized under the
conditions alog > 0 and 0 < blog < 1.

The other is B) an asymptotic exponential function
converging on a value aexp as:

R(W) = aexp

[
1 − exp

{
− (W − 1)

bexp

}]
(4)

where aexp and bexp are constants to be optimized under the
conditions aexp > 0 and bexp > 0. Outlines of the functions
are shown in Fig. 4.

The pruning employed in this paper is standard beam
width and histogram pruning. For beam width pruning, the
maximum of S (h) among all hypotheses is selected as the
basis S max every frame.

S max = max
h∈H

S (h) (5)

where H denotes the set of hypotheses at the frame. Then,
all the hypotheses are determined to be retained or discarded
according to whether the score S (h) falls within beam width
fGB from the basis S max or not. Hypotheses which fulfill the

Fig. 4 Two monotonically increasing functions for the reward:
A logarithmic function and an asymptotic exponential function.
The constant values are optimized for a grammar-based task as follows:
alog = 4.0, blog = 0.1, aexp = 20.0 and bexp = 7.0.

following inequation are retained.

S (h) ≥ S max − fGB (6)

The histogram pruning is to limit the number of retained
hypotheses under a predefined number Nmax. To dispense
with computationally expensive hypotheses sorting by their
likelihoods, all the hypotheses are classified into ranges of a
histogram once, and the hypotheses from the upper ranges
are retained until the total number of retained hypotheses ex-
ceeds Nmax. The beam width pruning and histogram pruning
are used in combination.

Note that an excessive reward runs the risk of pruning
out the correct hypothesis at a HMM state close to a leaf.
However, the magnitude of the reward is controllable by the
constants of functions.

2.3 Combination with Word End Pruning

The proposed method is to be evaluated in comparison to
word end pruning (WEP) [8], and in combination with WEP.
To suppress an explosive increase in hypotheses caused by
cross-word transitions from word ends to various succes-
sive words, WEP applies another beam width pruning for
hypotheses at the terminal states of words. (Note that the
terminal states are indicated as filled circles in Fig. 1). The
maximal likelihood among the hypotheses at the terminal
states is found as:

S max leaves = max
h∈Hleaves

S (h) (7)

where Hleaves denotes the set of hypotheses at the terminal
states. Then, only the hypotheses which fulfill the following
inequation are retained.

S (h) ≥ S max leaves − fWEP (8)

Here, the beam width fWEP is set tighter than the global
beam width fGB.
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3. Experiments

3.1 Evaluation Tasks, Test Sets and Experimental Setup

The proposed method was evaluated by three recognition
tasks: an isolated word recognition task, a grammar-based
short sentence task without linguistic probabilities, and a
dictation task based on a probabilistic language model. The
isolated word recognition task is of 10k-word railway sta-
tion names in Japanese. The short sentence task is of a for-
mulaic train connection inquiry. The grammar accepts the
pattern, “From 〈a departure station〉 to 〈an arrival station〉”
in Japanese. The dictation task is a general mail dictation in
Japanese on a 30k-word trigram language model.

Test sets of the tasks were collected using a recorder on
cellphones in various noise environments. The noise envi-
ronments were 30 places where people often use cellphones,
including railway terminal stations, suburban railway sta-
tions, station square, offices, roadsides and shopping malls.
The test set of the isolated word recognition task was 957
utterances made by 50 male and 50 female speakers. The
test set of the train connection task was 500 utterances of
the same speakers. The test set of the mail dictation task
was 389 utterances of typical sentences from business mails.
This test set was collected in a silent environment.

Two reward functions A) and B) were first compared
with the basic beam width and histogram pruning without
word end pruning (WEP). Then, the proposed functions
were evaluated in combination with WEP.

The experimental conditions were as follows. A total
of 38 dimensional acoustic features composed of the stan-
dard acoustic features of ETSI ES201108 [14] with CMS
and their first and second derivatives excluding power were
extracted from speech sampled at 8.0 kHz. Acoustic mod-
els were speaker-independent tied-state triphone models. In
the isolated word recognition and the short sentence tasks,
context-free grammars (CFGs) without linguistic probabil-
ities on word entries were used with a one-pass frame-
synchronous beam search. In the mail dictation task, a
trigram language model was used with a one-pass frame-
synchronous beam search.

The constants alog, blog, aexp and bexp of the proposed
functions were optimized with a development set of the
same size as the test set to minimize WER under a tight
pruning condition. The pruning condition set the beam
width fGB at 140, and the maximal number of retained hy-
potheses Nmax at 500. The processing time was measured on
a PC with an Intel Pentium 4 3.0 GHz processor.

Sensitivity of the efficiency to these constants was eval-
uated as follows. Because RTF is nearly linear to the thresh-
old Nmax for histogram pruning, WER with respect to the
change of a and b was evaluated at several RTF values con-
trolled by Nmax. Specifically, the beam width fGB was fixed
at 140, Nmax is a variable to set RTF at a target value, ei-
ther of a or b is another variable and the other is fixed at a
constant.

Equal-depth pruning [13] partitions the lexical tree
based on depth levels into multiple sections where the beam
width pruning is executed separately. Equal-depth pruning
has a parameter which specifies the degree of partitioning.
We define this parameter “unit depth” with which the lexical
tree is partitioned into sections. The performance is tuned
by setting the proper unit depth. Though the original equal-
depth pruning partitions the lexical tree finely with a small
unit depth, we conducted our investigation with fine parti-
tioning with a small unit depth through to rough partitioning
such as bisection or trisection. The optimal value of the unit
depth was obtained from RTF-WER curves with the beam
width as a parameter for the development set.

3.2 Result of an Isolated Word Recognition Task

Figure 5 shows the averaged real time factor (RTF) and word
error rates (WER) for the isolated word recognition task of
the 10k-word railway station names. Five lines represent
the basic pruning i.e. the beam width and histogram prun-
ing without a reward, the beam width and histogram prun-
ing with WEP, A) beam width and histogram pruning with
the reward given by a logarithmic function, B) beam width
and histogram pruning with the reward given by an asymp-
totic exponential function and the equal-depth pruning. The
parameter of each line is the strength of the pruning. To
be exact, the threshold Nmax for the histogram pruning was
shifted with the beam width fGB fixed at 140. The looser the
pruning, the lower the WER value, but the longer the RTF.

The proposed method A) reached WER below 18% at
RTF 0.18, while the basic pruning reached the same WER
at RTF around 0.2. The proposed method A) was not worse
than the basic pruning. The proposed method B) was as ef-
fective as the method A). Because cross-word transitions
do not cause an explosive increase in hypotheses in isolated
word recognition tasks, the fact that the WEP had no effect
is a reasonable outcome. The results of the proposed meth-
ods in combination with WEP were identical to those with-
out WEP, though they are not shown here. The optimized
values of the constants were alog = 4.0, blog = 0.1 for the
method A), aexp = 20.0 and bexp = 7.0 for the method B).
The reward functions with the optimized constant values are

Fig. 5 RTF and WER for the isolated word recognition task.
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shown in Fig. 4.
The equal-depth pruning was worse than the others

even after the unit depth was optimized. The optimal value
of the unit depth was 20, which means partitioning into 6
sections.

3.3 Results of a Grammar-Based Short Sentence Task

Figure 6 shows the RTF and WER for the grammar-based
task of the formulaic train connection inquiries. The WER
was calculated based on 1,000 departure and arrival station
names in 500 utterances. Five lines represent the same as
shown in Fig. 5. While the WER of the basic pruning grad-
ually approached the minimal value, those of the proposed
methods A) and B) fell below the minimal value of the ba-
sic pruning 20.7% at RTF 0.27, which meant approximately
an 84% reduction from the minimal value at RTF 1.68. The
threshold of histogram pruning Nmax required for WER of
20.7% was actually reduced from 6,500 to 1,000, which was
an 84% reduction as well. The proposed methods A) and B)
reached a 1.0% lower minimal WER than the basic prun-
ing. The optimized values of the constants were the same
as in the case of the isolated word recognition as alog = 4.0,
blog = 0.1 for the method A), aexp = 20.0 and bexp = 7.0
for the method B). WEP gave no improvement because the
explosive increase in hypotheses was limited by the strong
constraints of the grammar in this case.

Equal-depth pruning was also worse than the others
for this task. The best performance of equal-depth prun-
ing was achieved by bisection of the lexical tree, which cor-
responds to a unit depth of 60. The reason of the inferior
performance is considered to be as follows. Equal-depth
pruning has an effect of dispersing the hypotheses widely
across the lexical tree. Originally, the basic beam width and
histogram pruning naturally suppresses hypotheses close to
the leaves for speech segments of former half of words in
the isolated word recognition and the grammar-based short
sentence tasks. However, equal-depth pruning makes more
hypotheses in deep sections to be retained for these speech
segments. This unnecessary retention of hypotheses deteri-
orates the search efficiency and RTF.

The sensitivity of WER to the two constants aexp and

Fig. 6 RTF and WER for the grammar-based recognition task.

bexp of Eq. (4) for the method B) is shown in Fig. 7. Panel
A) shows the sensitivity to aexp at several RTFs 0.15, 0.25,
0.40 and 0.50 with bexp fixed at 7.0, while Panel B) shows
the sensitivity to bexp at the same RTFs with aexp fixed at
20.0. The beam width fGB was fixed at 140, and the thresh-
old Nmax for the histogram pruning was tuned to set RTF at
a target value. The basic pruning corresponds to aexp = 0 in
Panel A). Introduction of a small reward with a small aexp

value gave a significant WER reduction, but generally, WER
changed slowly to the change of aexp. The WER gradually
decreased as aexp increased at RTF 0.15, while the minimal
WER did not change at RTF 0.40 in Panel A). The WER
was insensitive to bexp in Panel B).

3.4 Results of a Language-Model-Based Dictation Task

Figure 8 shows the RTF and WER for the 30k-word mail
dictation task. In this dictation task, the basic pruning in-
cludes the language model look-ahead technique [6]–[8].
This technique actually reduces the processing time to less
than 1/10 from that without the look-ahead technique. All
the other lines also include the look-ahead technique as their
baseline.

While the basic pruning reached a WER of 20.0% with
RTF 0.90, the proposed method B) reached the WER value
with RTF 0.55, which was a 39% reduction. The proposed
method A) reached the WER of 20.0% with RTF around

A) WER sensitivity to aexp at RTFs of 0.15, 0.25, 0.40 and 0.50.
bexp was set at 7.0.

B) WER sensitivity to bexp at RTFs of 0.15, 0.25, 0.40 and 0.50.
aexp was set at 20.0.

Fig. 7 WER sensitivity to parameters aexp and bexp at several RTFs for
the method B) in the grammar-based recognition task.
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Fig. 8 RTF and WER of respective pruning techniques
for the 30k-word language-model-based dictation task.

0.8. The optimized values of the constants were alog = 4.3,
blog = 0.9 for the method A), aexp = 46.0 and bexp = 0.4
for the method B). WEP reached the WER of 20.0% with
RTF 0.61, which was a little less effective than the proposed
method B). The optimal threshold fWEP was 80.0.

The equal-depth pruning was not worse than the base-
line, but made no improvement over the basic pruning. The
optimal value of the unit depth was 3 for this task. In this
dictation task with less linguistic constraints than the iso-
lated word recognition task or the grammar-based short sen-
tence task, the hypotheses are basically distributed widely
across the lexical tree in the basic pruning. Therefore, equal-
depth pruning, which has an effect of dispersing hypotheses,
did not change the search efficiency.

The sensitivity of WER to aexp and bexp for the method
B) is shown in Fig. 9. Panel A) shows the sensitivity to aexp

at several RTFs 0.5, 0.6 and 0.8 with bexp fixed at 0.4, while
Panel B) shows the sensitivity to bexp at the same RTFs with
aexp fixed at 46.0. Generally, WER changed slowly with
the change of aexp. The WER gradually decreased as the
reward increased, reached the minimal value at aexp = 50
and increased slowly again in Panel A). The minimal WER
at RTF 0.8 was less sensitive to the change of aexp. The
WER was insensitive to bexp in Panel B).

In Fig. 10, the proposed methods A) and B) were eval-
uated in combination with WEP. The RTF to achieve WER
of 20% was reduced from 0.55 to 0.46 in case of the method
B). Compared with the basic pruning with language model
look-ahead and WEP, the proposed method B) achieved an
additional 23% reduction.

Though the proposed methods improved the efficiency
compared to the basic pruning with the language model
look-ahead, the effect was weaker than that of the grammar-
based short sentence recognition task. We consider this to
be due to the similarity of the effects given on the likelihood
of hypotheses by the language model look-ahead technique
and the proposed reward. The look-ahead value also de-
creases monotonically as a hypothesis advances on a path
from the root in the lexical tree, because the look-ahead
value uses the maximal value of the linguistic likelihood
among the reachable words. Moreover, stepwise renewal
of the reward along HMM state sequence like the previous

A) WER sensitivity to aexp at RTFs of 0.5, 0.6, and 0.8.
bexp was set at 0.4.

B) WER sensitivity to bexp at RTFs of 0.5, 0.6, and 0.8.
aexp was set at 46.0.

Fig. 9 WER sensitivity to parameters aexp and bexp at several RTFs for
the method B) in the 30k-word language-model-based dictation task.

Fig. 10 RTF and WER of the proposed method in combination with
word end pruning (WEP) for the language-model-based dictation task.

studies [9], [10] may further improve the efficiency.

4. Discussion

The proposed method is viewed as an extension of WEP.
While WEP applies tighter beam width pruning to the hy-
potheses at the terminal states in the lexical tree, the pro-
posed method gradually tighten the beam width as the hy-
potheses approach the terminal states. Thus, the proposed
method retains hypotheses more efficiently than WEP. Note
that the beam width gap between the root and leaves, which
corresponds aexp in case of the exponential function, was
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different from the gap between the global beam width and
the beam width for WEP.

Viewed from another perspective, the monotonically
decreasing reward along the path on a lexical tree can be
interpreted as a heuristic gain of the likelihood on the path
from the current HMM state to a leaf state in the lexical tree.

Comparing the two types of the reward functions, the
exponential function performed better than the logarith-
mic function. In terms of the stability in optimization
of the constants, the non-asymptotic logarithmic function
may produce a prominent reward for a hypothesis having
a significantly-great number of reachable words close to the
root, and this prominent reward has a decisive effect upon
determination of S max and fGB. The asymptotic exponen-
tial function is preferable in that the optimized constants
are more stable to the maximal number of reachable words
i.e. the vocabulary size. Regarding the optimized values,
the constants of the two grammar-based tasks, the isolated
word recognition and the short sentence task, were coinci-
dent. The optimized values of the constants between the
grammar based tasks without linguistic probabilities and the
language-model-based dictation task were much different.
The greatest factor is considered to be the language model
look-ahead.

5. Conclusions

To make the frame-synchronous beam search more efficient
and reduce the processing time, we introduced a tentative
reward considering the potential to reach various words on
a lexical tree into the beam width and histogram pruning.
Two types of the reward given by an asymptotic exponen-
tial function and a logarithmic function greatly reduced the
number of hypotheses required to maintain the maximal
word accuracy in grammar-based tasks. The reward given
by the exponential function resulted in an 84% reduction in
processing time for a grammar-based short sentence recog-
nition task without losing accuracy. For a language-model-
based dictation task, it showed an additional 23% reduc-
tion in processing time from the pruning with the language
model look-ahead technique.
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