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PAPER

Unsupervised Feature Selection and Category Classification
for a Vision-Based Mobile Robot

Masahiro TSUKADA†a), Yuya UTSUMI†, Nonmembers, Hirokazu MADOKORO†,
and Kazuhito SATO†, Members

SUMMARY This paper presents an unsupervised learning-based
method for selection of feature points and object category classification
without previous setting of the number of categories. Our method consists
of the following procedures: 1) detection of feature points and descrip-
tion of features using a Scale-Invariant Feature Transform (SIFT), 2) se-
lection of target feature points using One Class-Support Vector Machines
(OC-SVMs), 3) generation of visual words of all SIFT descriptors and his-
tograms in each image of selected feature points using Self-Organizing
Maps (SOMs), 4) formation of labels using Adaptive Resonance Theory-2
(ART-2), and 5) creation and classification of categories on a category map
of Counter Propagation Networks (CPNs) for visualizing spatial relations
between categories. Classification results of static images using a Caltech-
256 object category dataset and dynamic images using time-series images
obtained using a robot according to movements respectively demonstrate
that our method can visualize spatial relations of categories while maintain-
ing time-series characteristics. Moreover, we emphasize the effectiveness
of our method for category classification of appearance changes of objects.
key words: ART-2, CPN, SOM, SIFT, OC-SVMs, unsupervised category
classification, robot vision

1. Introduction

Because of the advanced progress of computer technologies
and machine learning algorithms, generic object recogni-
tion has been studied actively in the field of computer vi-
sion [1]. Generic object recognition is defined as a capa-
bility by which a computer can recognize objects or scenes
to their general names in real images with no restrictions,
i.e., recognition of category names from objects or scenes
in images. In the study of robotics, one method to real-
ize a robot having learning functions to adapt flexibly in
various environments is to obtain brain-like memory: so-
called world image maps [2]. For creating world image
maps, robots must classify objects and scenes in time-series
images into categories and memorize them as Long-Term
Memory (LTM). Additionally, in real environments for a
robot, the number of categories is mostly unknown. More-
over, the categories are not known uniformly. Therefore, a
robot must classify while generating additional categories.

This paper presents unsupervised feature selection and
category classification for application to a vision-based mo-
bile robot. Our method has the following four capabili-
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ties. First, our method can localize target feature points us-
ing One Class-Support Vector Machines (OC-SVMs) [14]
without previous setting of boundary information. Second,
our method can generate labels as a candidate of categories
for input images while maintaining stability and plasticity
together. Third, automatic labeling of category maps can
be realized using labels created using Adaptive Resonance
Theory-2 (ART-2) [18] as teaching signals for Counter Prop-
agation Networks (CPNs) [19]. Fourth, our method can
present the diversity of appearance changes for visualizing
spatial relations of each category on a two-dimensional map
of CPNs. Through category classification experiments, we
evaluate our method using the Caltech-256 object category
dataset, which is the de facto standard benchmark dataset
for comparing the performance of algorithms in generic ob-
ject recognition, and time-series images taken by a camera
on a mobile robot.

This paper presents the following. First, we describe
related work in Sect. 2. Next, we explain detailed specifica-
tions of our image representation method, our category clas-
sification method, and the whole architecture of our method
in Sects. 3, 4, and 5, respectively. Subsequently, we present
experimental results in Sects. 6 and 7. Finally, we respec-
tively present related discussion and salient conclusions in
Sects. 8 and 9.

2. Related Work

The problem of Simultaneous Localization and Mapping
(SLAM) has attracted immense attention in mobile robotics
studies [3]. The objective of SLAM is to build a map and up-
date it while simultaneously estimating locations for a robot.
Cummins et al. proposed Fast Appearance Based Mapping
(FAB-MAP) [4] as a probabilistic approach to recognizing
places based on their appearance. The objective of FAB-
MAP is similar to SLAM: to build a map of routes using
appearance changes of scene images obtained using a cam-
era on a mobile robot. Our objective is to classify images
obtained using a camera on a mobile robot in categories for
recognizing objects.

Learning-based category classification methods are
roughly divisible into supervised category classification
methods and unsupervised category classification methods.
Supervised category classification methods require training
datasets including teaching signals extracted from ground-
truth labels. However, unsupervised category classification
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methods require no teaching signals with which categories
are automatically extracted to a problem of unknown classi-
fication categories for classifying images into respective cat-
egories. Recently, studies of unsupervised category classifi-
cation methods have been active. The subject has attracted
attention because it might provide technologies to classify
visual information flexibly in various environments.

In recent studies of category classification, various
methods have been proposed to combine the process of de-
tecting regions or positions of an object as a target of clas-
sification and recognition. Barnard et al. proposed a word–
image translation model as a method based on regions [5].
They automatically annotated segmentation images using
images that assigned some keywords previously. Lampert
et al. proposed an Efficient Subwindow Search (ESS) that
can quickly detect a position of an object using branch and
bound methods and integration images [6]. Using ESS, they
realized first partial generic object detection to calculate pre-
viously output values of Support Vector Machines (SVMs)
in each feature point and to localize a search range gradu-
ally. Moreover, Suzuki et al. proposed a local feature selec-
tion method used in Bag-of-Features (BoF) with SVMs [7].
This method classifies local features into background fea-
tures and target features used for BoF.

However, these methods require previously acquired
training samples with teaching signals. Therefore, these
methods are inapplicable to a real environment for which
a target region and a background region can not be decided
uniformly.

As unsupervised category classification methods, Sivic
et al. proposed an unsupervised category classification
method using probabilistic Latent Semantic Analysis
(pLSA) and Latent Dirichlet Allocation (LDA), which are
generative models from the statistical text literature [8].
They modeled an image containing instances of several cat-
egories as a mixture of topics and attempted to discover
topics as object categories from numerous images. Zhu
et al. introduced Probabilistic Grammar Markov Models
(PGMMs) of generative models that combined Probabilis-
tic Context-Free Grammars (PCFGs) and Markov Random
Fields (MRFs) [9]. They used this method to create an ob-
ject category model for object detection and unsupervised
category classification. Moreover, they proposed Probabilis-
tic Object Models (POMs) that improved their method and
enabled classification, segmentation, and recognition of ob-
jects [10]. Todorovic et al. proposed an unsupervised iden-
tification method using optical, geometric, and topologi-
cal characteristics of multi-scale regions consisting of two-
dimensional objects [11]. They represented each image as a
tree structure by division of multi-scale images. Moreover,
Nakamura et al. proposed an unsupervised category clas-
sification method using multimodal information of vision,
hearing, and touch [12]. They achieved category classifica-
tion of objects that resemble human senses using embodied
interactions of a robot.

However, these methods include the restriction of prior
settings of the number of classification categories. There-

fore, these methods are applied only slightly to classifica-
tion problems in a real environment for which the number
of categories is unknown.

3. Image Representation

In fact, BoF, which represents features for histograms of vi-
sual words with local features as typical patterns extracted
from numerous images, is widely used to emphasize the ef-
fectiveness in image representation methods of generic ob-
ject recognition. In BoF of our method depicted in Fig. 1,
we applied OC-SVMs for selecting SIFT feature points as
target regions in an image. Furthermore, we applied Self-
Organizing Maps (SOMs) [16] for creating visual words and
histograms in each image from selected features.

Our target is SIFT feature points on an object for recog-
nition. Therefore, target regions and target feature points re-
spectively mean object regions and feature points on an ob-
ject. The OC-SVMs are unsupervised-learning-based binary
classifiers that enable density estimation without estimating
a density function. Therefore, OC-SVMs can apply to real-
world images without boundary information. Detailed algo-
rithms of SIFT, OC-SVMs, and SOMs are the following.

3.1 Description of Features Using SIFT

Generally, SIFT is used as a descriptive method of local fea-
tures in generic object recognition. The SIFT [13] process-
ing consists of two steps: detection of feature points and
description of features. The procedures are the following.
Difference of Gaussians (DoG) image D(u, v, σ) as

D(u, v, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ I(u, v)

= L(u, v, kσ) − L(u, v, σ). (1)

Here, G(x, y, σ) is the convolution of a variable-scale Gaus-
sian, I(u, v) is an input image, and L(u, v, σ) is a smoothing
image. This pixel is detected as a candidate for a keypoint
if an attentional pixel of DoG images is an extreme value
compared with its 26-neighbor pixel.

Unnecessary keypoints are eliminated with the thresh-
old as

Tr(H)2

Det(H)
<

(γth + 1)2

γth
. (2)

Here, Tr(H) is a sum of cross elements of Hessian matrix
and Det(H) is a determinant. The value of DoG determines

Fig. 1 Procedures of our image representation method based on BoF.
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elimination of keypoints. Keypoints are eliminated if the
absolute value of DoG on a position of subpixel is less than
the threshold.

D(x̂) = D +
1
2
∂D
∂x

T

x̂. (3)

Here, D is DoG function; x̂ is a position of a subpixel.
An orientation histogram is formed from the gradient

magnitude m(x, y) in local regions and gradient orientation
θ(u, v) as

hθ′ =
∑

x

∑
y

w(x, y) · δ[θ′, θ(x, y)], (4)

w(x, y) = G(x, y, σ) · m(x, y). (5)

The 128-dimensional features are extracted from the
histogram of eight detections of 4 × 4 subregions. The 128
descriptors are detected at each keypoint.

3.2 Selected Feature Points Using OC-SVMs

As described earlier, the OC-SVMs are unsupervised learn-
ing classifiers that estimate the dense region without esti-
mation of the density function [14]. The OC-SVMs set a
hyperplane that separates data points near the original point
and the other data points using the characteristic by which
the outlier data points are mapped near the original point
on a feature space with a kernel function. The discriminant
function f (·) is calculated to divide input feature vectors xi

into two parts. The position of the hyperplane is changed
according to parameter ν, which controls outliers of input
data with change, and which has range of 0–1.

f (x) = sgn(ω�Φ(x) − ρ). (6)

Here, ω and ρ (ρ ∈ R) represent a coefficient and a margin.
Therein, zi represents results of xi to the high-dimension fea-
ture space.

Φ : xi �→ zi (7)

The restriction is set to the following.

ω�zi ≥ ρ − ζi, ζi ≥ 0, 0 < ν ≤ 1 (8)

Here, ζ represents relaxation variable vectors. The opti-
mization problem is solved with the following restriction

1
2
‖ω‖2 + 1

νl

l∑
i=1

ζi − ρ

→ min ω, ζ, and ρ (9)

Parameter ν of OC-SVMs is a high limit of unselected data
and lower limit of support vectors if the solution of the op-
timization problem (9) fulfills ρ � 0.

3.3 Creating Visual Words Using SOMs

For our method, we apply SOMs, not k-means, which
is generally used in BoF, for creating visual words. In

the learning step, SOMs update weights while maintaining
topological structures of input data. Actually, SOMs create
neighborhood regions around the burst unit, which demands
a response of the input data. Therefore, SOMs can classify
various data whose distribution resembles the training data.
In addition, Terashima et al. reported that SOMs are superior
to k-means as an unsupervised classification method that is
useful to minimize misrecognition [15]. The SOM learning
algorithm is the following.

1) ui
n,m(t) are weights from an input layer unit i (i =

1, . . . , I) to a Kohonen layer unit (n,m) (n =

1, . . . ,N,m = 1, . . . ,M) at time t. The weights are ini-
tialized randomly. The training data xi(t) show input
layer units i at time t. The Euclidean distance dn,m sep-
arating xi(t) and ui

n,m(t) is calculated as

dn,m =

√√√ I∑
i=1

(xi(t) − ui
n,m(t))2. (10)

2) The unit for which dn,m is smallest is defined as the
winner unit c as

c = argmin(dn,m). (11)

3) Here, Nc(t) is a neighborhood region around the winner
unit c. In addition, ui

n,m(t) of Nc(t) is updated using
Kohonen’s learning algorithm, as

ui
n,m(t + 1) = ui

n,m(t)

+ α(t)(xi(t) − ui
n,m(t)). (12)

In that equation, α(t) is the learning rate coefficients
that decrease with the progress of learning. The learning
of SOMs repeats up to the learning iteration that was set
previously.

In this method, we used all SIFT features for creating
visual words at the learning step of SOMs. We used SIFT
features selected by OC-SVMs for generating histograms
based on visual words. Based on our preliminary experi-
ment, we set the learning iteration to 100,000 times. Ad-
ditionally, we set the number of units of the Kohonen layer
to 100 units. We created visual words to extract weights
between Kohonen layer units and input layer units.

4. Unsupervised Category Classification

Figure 2 depicts the architecture of our unsupervised cate-
gory classification method that combined incremental learn-
ing of ART-2 and self-mapping characteristics of CPNs.
Actually, ART-2 is a theoretical model of unsupervised
neural networks of incremental learning that forms cate-
gories adaptively while maintaining stability and plasticity
together. Features of time-series images from the mobile
robot change with time. Using ART-2, our method enables
an unsupervised category classification that requires no set-
ting of the number of categories.

A type of supervised neural network, CPN, actual-
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Fig. 2 Architecture of our unsupervised category classification method.

izes mapping and labeling together. Such networks com-
prise three layers: an input layer, a Kohonen layer, and a
Grossberg layer. In addition, CPNs learn topological rela-
tions of input data for mapping weights between units of the
input-Kohonen layers. The resultant category classifications
are represented as a category map on the Kohonen layer. Our
method can reduce these labels using the Winner-Takes-All
competition of CPNs. In addition, our method can visualize
relations between categories on the category map of CPNs.
Detailed algorithms of ART-2 and CPNs are the following.

4.1 Generating of Labels Using ART-2

In ART of various types [17], we use ART-2, into which it is
possible to input continuous values [18]. The learning algo-
rithm of ART-2 is the following.

1) Top-down weights Zji, bottom-up weights Zi j, and out-
puts pi, qi, and ui on the F1 of sublayers are initialized
as

Zji(0) = 0, Zi j(0) =
1

(1 − d)
√

M
, (13)

pi(0) = qi(0) = ui(0) = vi(0)

= wi(0) = xi(0) = 0.0. (14)

2) Input data Ii are presented to the F1; the sublayers are
propagated as

wi(t) = Ii(t) + aui(t − 1), (15)

xi(t) =
wi(t)

e + ‖w‖ , (16)

vi(t) = f (xi(t)) + b f (qi(t − 1)), (17)

ui(t) =
vi(t)

e + ‖v‖ , (18)

pi(t) =

{
ui(t) (inactive)
ui(t) + dZJi(t) (active),

(19)

qi(t) =
pi(t)

e + ‖p‖ , (20)

f (x) =

{
0 if 0 ≤ x < θ
x if x ≥ θ. (21)

3) Search for the maximum active unit T j as

TJ(t) = max

⎛⎜⎜⎜⎜⎜⎜⎝∑
j

pi(t)Zi j(t)

⎞⎟⎟⎟⎟⎟⎟⎠ . (22)

4) Top-down weights Zji and bottom-up weights Zi j are
updated as

d
dt

ZJi(t) = d[pi(t) − ZJi(t)], (23)

d
dt

ZiJ(t) = d[pi(t) − ZiJ(t)]. (24)

5) The vigilance threshold ρ is used to judge whether in-
put data correctly belong to a category.

ρ

e + ‖r‖ > 1, ri(t) =
ui(t) + cpi(t)

e + ‖u‖ + ‖cp‖ . (25)

When (25) is true, the active units reset and return (15)
to search again. Repeat (14) and (16) until the rate of change
of F1 is sufficiently small if (25) is not true. In addition, a
and b are coefficients of feedback loops from u to w and
from q to v. Here, c is a propagation coefficient from p to r,
and d is a learning rate coefficient. Furthermore, cd/(1−d) ≤
1 is the constraint between them, and θ is a parameter to
control a noise detection level in v.

4.2 Creating Category Maps Using CPNs

The CPNs [19] perform pattern mapping, i.e. CPNs map one
pattern into another pattern in all sets of patterns. When a
pattern is presented, learned networks classify patterns into
specific categories using weights. Our method can automate
labeling with generation of labels as teaching signals to the
units of the Grossberg layer on CPNs. The CPN learning
algorithm is the following.

1) ui
n,m(t) are weights from an input layer unit i (i =

1, . . . , I) to a Kohonen layer unit (n,m) (n =

1, . . . ,N,m = 1, . . . ,M) at time t. Therein, v j
n,m(t) are

weights from a Grossberg layer unit j to a Kohonen
layer unit (n,m) at time t. These weights are initialized
randomly. The training data xi(t) show input layer units
i at time t. The Euclidean distance dn,m separating xi(t)
and ui

n,m(t) is calculated as

dn,m =

√√√ I∑
i=1

(xi(t) − ui
n,m(t))2. (26)

2) The unit for which dn,m is smallest is defined as the
winner unit c as

c = argmin(dn,m). (27)

3) Here, Nc(t) is a neighborhood region around the winner
unit c. In addition, ui

n,m(t) of Nc(t) is updated using
Kohonen’s learning algorithm, as

ui
n,m(t + 1) = ui

n,m(t)

+ α(t)(xi(t) − ui
n,m(t)). (28)
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4) In addition, v j
n,m(t) of Nc(t) is updated using

Grossberg’s outstar learning algorithm, as

v j
n,m(t + 1) = v j

n,m(t)

+ β(t)(t j(t) − v j
n,m(t)). (29)

In that equation, t j(t) is the teaching signal to be supplied
to the Grossberg layer. Furthermore, α(t) and β(t) are the
learning rate coefficients that decrease with the progress of
learning. The learning of CPNs repeats up to the learning
iteration that was set previously.

5. Whole Architecture of Our Method

In generic object recognition, it is a challenging task to de-
velop a unified model to address all steps from feature rep-
resentation to creation of classifiers. The aim of our study is
the realization of category classification for generic object
recognition to apply theories with different characteristics
for each step. Figure 3 depicts the network architecture of
our method. The procedures are the following.

1. Extracting feature points and calculating descriptors
using SIFT

2. Selecting SIFT features using OC-SVMs
3. Creating visual words of all SIFT descriptors and

calculating histograms of selected SIFT descriptors
matched with visual words using SOM

4. Generating labels using ART-2
5. Creating a category map using CPNs

Procedures 1. through 3., which correspond to preprocess-
ing, are based on the representation of BoF. We apply OC-
SVMs to select SIFT feature points for localizing target re-
gions in an image. For producing visual words, we use

Fig. 3 Whole architecture of our method.

SOMs, which can learn neighborhood regions while updat-
ing the cluster structure, although k-means must decide data
of the center of a cluster. Actually, SOMs can represent
visual words that minimize misclassification [15]. Further-
more, the combination of ART-2 and CPNs enables unsu-
pervised category classification that labels a large quantity
of images in each category automatically. Table 1 shows
parameters of OC-SVMs, ART-2, and CPNs with each ex-
periment.

6. Experimental Results Obtained Using the Caltech-
256 Dataset

This section presents experimental results of image classifi-
cation using Caltech-256 to compare the performance of al-
gorithms in generic object recognition. The target of this ex-
periment is category classification of static images because
Caltech-256 has no temporal factors in each category. We
use the highest 20 categories with the number of images in
256 categories. The results of selection of SIFT features
and recognition rates for classification of 5, 10, and 20 cate-
gories are the following.

6.1 Selection of Feature Points and Generation of Labels

Figure 4 depicts results of selected feature points using OC-
SVMs on five sample images of Caltech-256. Figure 4 (a)
shows that our method can select feature points of target
objects in images of the Leopards and Face categories. In

Table 1 Setting values of parameters used in experiments.

Parameters Setting values
OC-SVMs ν 0.5

ART-2 θ 0.1
ρ 0.920
α(t) 0.5

CPNs β(t) 0.5
learning iteration 10,000

Fig. 4 Results of selected SIFT feature on two sample images in different
category and three sample images in the same category of Caltech-256.
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Fig. 5 Results of formed labels using ART-2 at five categories.

Fig. 6 Result of category mapping using CPNs of five categories.

addition, Fig. 4 (b) shows that our method can select feature
points around the wings that characterize airplanes for vari-
ous images of the Airplane category.

Figure 5 depicts labels generated by ART-2. The ver-
tical and horizontal axes respectively represent labels and
images. The independent labels in each category without
confusion are generated among different categories. More-
over, for the Airplane, Motorbike, and Face categories one
label is generated; for the Car-side and Leopards categories
several labels are generated. These results demonstrate that
OC-SVMs can select SIFT features of target objects and
show that ART-2 can generate independent labels to images
for which backgrounds and appearances of objects differ in
each category.

6.2 Category Classification

Figure 6 depicts a category map generated by CPNs for clas-
sifications of five categories: Airplane, Car-side, Motorbike,
Face, and Leopards. We show images that mapped each unit

Fig. 7 Results of formed labels using ART-2 at 10 and 20 categories.

and mapping regions in each category on the category map.
Figure 6 depicts that CPNs created categories for mapping
to neighborhood units on the category map in each image
with labels generated by ART-2. The Car-side and Leopards
categories contain several labels. The Car-side category is
mapped to neighborhood units. On the other hand, the Leop-
ards category is divided into two regions.

Figure 7 depicts labels by ART-2 on 20-category clas-
sification. The bold line shows the number of images in
10 categories. The circles and squares portray images for
which ART-2 confused labels on 10 and 20 categories, re-
spectively. In the 10-category classification, ART-2 gener-
ated independent labels in all categories, although three im-
ages of two labels are confused. In the 20-category classi-
fication, independent labels of 19 categories are generated,
except for the Zebra category that is confused of all images,
although 16 images of five labels are confused. Confusion of
labels occurs often in images of Ketch, Hibiscus, and Guitar-
pick categories. Although confused labels are restrained un-
til 10-category classification, numerous confused labels are
apparent in the 20-category classification.

Figure 8 depicts a category map generated by CPNs on
20-category classification. The names of categories and the
number of images are shown on the category map. For all
images in each category, 11 categories are mapped to neigh-
borhood units. The CPNs created categories for mapping
neighborhood units on the category map in images of each
category by which ART-2 generated several labels. In addi-
tion, categories without their names are mapped images of
different categories. Here, for quantitative evaluation of the
classification performance of our method, we use the fol-
lowing recognition rate.

(RecognitionRate) =
(CorrectData)

(AllData)
× 100. (30)

Figure 9 portrays recognition rates in 5, 10, and 20 cate-
gories without OC-SVMs and with OC-SVMs for training
and testing datasets. The recognition rates without OC-
SVMs were, respectively, 84%, 70%, and 64% for training
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Fig. 8 Result of a category map of 20 categories.

Fig. 9 Recognition rates of training and testing datasets used in
Caltech-256.

datasets and 76%, 30%, and 38% for testing datasets in 5,
10, and 20 categories. In our method, the recognition rates
were, respectively, 96%, 94%, and 81% for training datasets
and 76%, 42%, and 45% for testing datasets in 5, 10, and 20
categories. These results address the effectiveness to select
SIFT feature points using OC-SVMs.

The unsupervised category classification method pro-
posed by Chen et al. [10] showed respective performances
of 76.9% for training and 67.4% for testing of 26-category
classification for the Caltech dataset. The accuracy of our
method is apparently inferior to that of the existing method.
Nevertheless, our method can classify objects without pre-
vious setting of the number of categories. Therefore, our
method is effective for application to problems that are
known as challenging tasks of classification of categories
whose ranges and types are unclear.

7. Experimental Results Obtained Using a Mobile
Robot

In this section, we applied our method to category classi-
fication experiments using time-series images taken by a

Fig. 10 Robot used for experiments (NetTansor; Bandai Co. Ltd.).

Fig. 11 Four objects and the robot route used for our experiment.

camera with movements of a robot. In this experiment, we
evaluated our method for category classification of dynamic
images because the target is time-series images according
to the change of appearances. We built an original exper-
imental environment to take images of datasets. This sec-
tion presents the experimental environment and results of
our method as the following.

7.1 Experimental Environment

Figure 10 portrays a home robot (NetTansor; Bandai Co.
Ltd.) used in this experiment. The robot is 190 mm high,
160 mm long, and 160 mm wide. The camera specifications
are the following: imaging device, 1/4 inch CMOS; image
format, JPEG; resolution, 320 × 240 pixels; and frame rate,
15 fps. The moving environment is 1,150 × 1,150 mm.

Figure 11 shows the assignment of objects in the envi-
ronment and the roughly determined goals of routes for the
robot. We assumed the environment for moving of this robot
as a desk. In consideration of the robot height, we used of-
fice supplies with characteristic shapes. Target objects were
a hole punch (Object A), a plastic bottle of glue (Object B),
a book (Object C), and a cellophane tape holder (Object D)
shown in Fig. 11. For this experiment, we created datasets
consisting of time-series images as shown in the behavior of
Fig. 11. Datasets comprise RUN1 and RUN2 for which the
robot runs twice around in the environment.

7.2 Selection of Feature Points and Generation of Labels

Figure 12 depicts results of selected feature points using
OC-SVMs on four samples of time-series images taken by
the robot. Our method can select feature points near objects
against various appearance changes. In images of Object D,
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Fig. 12 Results of selected SIFT feature points of time-series images.

feature points of whole and a part of Object D are, respec-
tively, selected distant from the object and near the object.
In addition, feature points are selected not only of the object,
but also around the object.

7.3 Category Classification

Figure 13 depicts labels generated by ART-2 on the exper-
iment using time-series images of RUN1. The vertical and
horizontal axes respectively represent labels of ART-2 and
frames in images. The top parts portray ranges including
objects and parts of the robot turned 90 deg as time-series
images. In this result, 27 labels are generated from time-
series images of 220 frames. In addition, the labels are more
numerous than the target objects because labels are assigned
to each image taken by the robot turned 90 deg from the four
corners in the environment. Objects A, B, C, and D respec-
tively generated 3, 2, 6, and 8 labels.

Figure 14 depicts a category map generated by CPNs.
On the category map, we show mapping regions of images
in each object. Each object classified with different labels
with ART-2 is mapped to neighborhood units on the cate-
gory map of CPNs shown in Fig. 14. In addition, images
of turning of labels 3 and 4 are mapped around border units

Fig. 13 Results of labels created using ART-2 from time-series images.

Fig. 14 Mapping result of images on the category map of CPNs used in
labels generated by ART-2.

Table 2 Recognition rates of learning and testing datasets of time-series
images.

Testing Datasets
RUN1 RUN2 Mean

Training RUN1 98.1% 96.2%
Datasets RUN2 97.2% 98.8% 96.7%

between categories.
Table 2 portrays recognition rates for training and test-

ing calculated using Eq. (30). This experiment evaluated
recognition rates for all combinations of datasets of RUN1
and RUN2 for learning and testing. Underlined values are
the recognition rates for training.

In [20], the recall rate of SIFT is less than 50% when
objects are occluded more than 30%. We annotated images
including defective objects of more than 30% as being of the
category of backgrounds and other objects. Table 2 shows
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that recognition rates for training and testing datasets are
more than 90%. Moreover, the mean recognition for testing
datasets is 96.7%. In contrast, images of turning include
misrecognitions and confused labels in each object.

7.4 Computational Costs

The robot we used for this experiment has a wireless LAN
system that enables it to communicate with a PC as an ex-
ternal computation environment. Therefore, we conducted
calculations for learning and testing on a PC. Computational
costs of our method are as follows.

• SOMs: 7 min per 1,000 frames
• SIFT and OC-SVMs: 11 min per 1,000 frames
• Training for ART-2 and CPNs: 45 s per 1,000 frames
• Testing for CPNs: 0.15 s per frame

Some important parameters of our computational environ-
ment are Core 2 Duo 2.2 GHz CPU (Intel Corp.); 1.7 G bytes
memory,; Vine Linux 4.2 OS,; and the Eclipse 3.4 develop-
ment tool with OpenCV 1.0. The mean calculation cost for
SIFT and OC-SVMs is 0.66 s per frame, although it depends
on the number of feature points. The mean calculation cost
for CPN testing is 0.15 s per frame, which enables calcula-
tion in real-time for the 30 fps input image.

8. Discussion

Experimental results of Caltech-256 and time-series images
of the robot show that OC-SVMs select feature points not
only of the whole object, but also of the background and
surrounding regions, and of partial objects. These results
signify that OC-SVMs can select a region to concentrate
specific information in an image, i.e. features that charac-
terize an image, not feature points to be classified into the
object and background.

Humans, when classifying objects, devote attention to a
region that gathers information for characterizing an object,
not the whole object. We consider that selection of SIFT fea-
tures using OC-SVMs can describe features effectively for
category classification to represent features and can thereby
improve classification accuracy.

In the static category classification using Caltech-256,
the accuracy of our method reached 81% for training and
50% for testing of 20-category classification. In this exper-
iment, we observed 10 categories for which multiple labels
are generated on ART-2. The images of Caltech-256 have
no time-series factors, although ART-2 learns time-series
changes of input data positively. Therefore, we inferred that
ART-2 maintains no continuity of labels. For the relation
of labels generated by ART-2 and a category map on CPNs,
categories that maintained continued and non-continued la-
bels are mapped respectively to neighborhood and separated
units on the category map of CPNs.

In the dynamic category classification using time-series
images of the robot, the accuracy shows high performance

of better than 90% for training and testing datasets. This re-
sult means that our method can classify time-series images
into categories used for characteristics of ART-2. Category
classification for generic object recognition is necessary to
classify categories for assigning one label to one category.
However, category classification for robot vision is neces-
sary to classify categories for assigning labels positively to
changes in appearance with sensing in an environment. We
consider that ART-2 can learn changes in appearance posi-
tively for generation of labels. Nevertheless, the number of
labels of ART-2 is greater because the appearance changes
in the environment increase along with the behavior of turn-
ing 90 deg.

The CPNs created categories in each object whose ap-
pearance differs from that of neighboring units. In addi-
tion, with the topological mapping characteristic based on
the neighborhood learning of CPNs, images that character-
ized each object and images for which the robot is turning
are mapped respectively near the center in each category and
near borders between categories. This result means that our
method can represent the diversity of categories on category
classification.

9. Conclusion

This paper presented an unsupervised method of SIFT fea-
ture points selection using OC-SVMs and category classi-
fication combined with incremental learning of ART-2 and
self-mapping characteristic of CPNs. Our method enables
feature representation that contributes to improved accu-
racy of classification for selecting feature points to concen-
trate characterized information of an image. Moreover, our
method can visualize spatial relations of labels and integrate
redundant and similar labels generated by ART-2 as a cate-
gory map using self-mapping characteristics and neighbor-
hood learning of CPNs. Therefore, our method can repre-
sent diverse categories.

Future studies must be conducted to develop methods
to extract boundaries among clusters automatically and to
determine a suitable number of categories from category
maps of CPNs. Additionally, we will examine approaches
that include generation of robot behavior for classification
and recognition of objects.
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