
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011
1289

PAPER

A “Group Marching Cube” (GMC) Algorithm for Speeding up the
Marching Cube Algorithm

Lih-Shyang CHEN†a), Nonmember, Young-Jinn LAY†, Member, Je-Bin HUANG†, Yan-De CHEN†,
Ku-Yaw CHANG††, and Shao-Jer CHEN†††, Nonmembers

SUMMARY Although the Marching Cube (MC) algorithm is very pop-
ular for displaying images of voxel-based objects, its slow surface extrac-
tion process is usually considered to be one of its major disadvantages. It
was pointed out that for the original MC algorithm, we can limit vertex cal-
culations to once per vertex to speed up the surface extraction process, how-
ever, it did not mention how this process could be done efficiently. Neither
was the reuse of these MC vertices looked into seriously in the literature.
In this paper, we propose a “Group Marching Cube” (GMC) algorithm, to
reduce the time needed for the vertex identification process, which is part of
the surface extraction process. Since most of the triangle-vertices of an iso-
surface are shared by many MC triangles, the vertex identification process
can avoid the duplication of the vertices in the vertex array of the resul-
tant triangle data. The MC algorithm is usually done through a hash table
mechanism proposed in the literature and used by many software systems.
Our proposed GMC algorithm considers a group of voxels simultaneously
for the application of the MC algorithm to explore interesting features of
the original MC algorithm that have not been discussed in the literature.
Based on our experiments, for an object with more than 1 million vertices,
the GMC algorithm is 3 to more than 10 times faster than the algorithm
using a hash table. Another significant advantage of GMC is its compati-
bility with other algorithms that accelerate the MC algorithm. Together, the
overall performance of the original MC algorithm is promoted even further.
key words: marching cube algorithm, iso-surface detection, surface ren-
dering, speed-up, interactive applications

1. Introduction

1.1 Voxel-Based Object Representation

Volume visualization is a method of extracting meaningful
information from volumetric datasets through the use of in-
teractive graphics and imaging, and is concerned with the
representation, manipulation, and rendering techniques of
volumetric datasets [1], [2]. These techniques consider the
object space as a whole, divide it up into regular or cubic
voxels, and label each voxel in the space according to ob-
ject occupancy. This type of object representation is usu-
ally referred to as voxel-based object representation. Cur-
rently, there are many practical applications of voxel-based

Manuscript received October 22, 2010.
Manuscript revised February 17, 2011.
†The authors are with the Department of Electrical Engineer-

ing, National Cheng Kung University, No. 1, University Rd.,
Tainan 701, Taiwan.
††The author is with the Department of Computer Science and

Information Engineering, Da-Yeh University, Changhua County,
Taiwan.
†††The author is with the Buddhist Tzu Chi General Hospital,

Chiayi County, Taiwan.
a) E-mail: chens@mail.ncku.edu.tw

DOI: 10.1587/transinf.E94.D.1289

object representation. For instance, in medical image ap-
plications, many researchers have used voxel-based object
representation to stack together a series of cross-sectional
2D medical images, such as magnetic resonance imaging
(MRI), Computed tomography (CT) [4], and the like, to pro-
vide computer-generated 3D images of the 3D structures to
be explored.

1.2 Needs for the GMC Algorithm

The MC algorithm [3] is one of the most popular methods
for displaying a voxel-based object. However, its slow sur-
face extraction process is usually considered one of its ma-
jor disadvantages. The algorithm was proposed in 1987 and
most of the papers regarding were published prior to 2000.
Since then, there are not many contributions to the MC al-
gorithm seen in the literature. However, the advent of novel
image acquisition techniques which has lead to very large
voxel datasets has made the need for MC speed-up tech-
niques grow dramatically and therefore interest in related
subject has increased dramatically.

In order to efficiently store and render the graphics
primitives (e.g. triangles) modern graphics libraries, such
as OpenGL (Open Graphics Library) or Direct3D, provide
facilities called vertex arrays and index arrays to store the
triangle data in their implementation. The vertex arrays al-
low triangle vertices and their attributes, such as vertex po-
sitions, colors, or normals, to be specified in arrays while
the index arrays allow its integer indices to index the ver-
tices in the vertex array to form triangles as shown in Fig. 1.
The five triangle vertices are represented in the vertex array
as [v1, v2, v3, v4, v5], whereas the four triangles are rep-
resented in the index array as [1 2 5, 2 3 5, 1 5 4, 4 5 3].
In this case, the data of each vertex can be shared by many
triangles. As a result, the vertex and index array can save
a considerable amount of memory space and computation
time. We will further discuss this in Sect. 2.3 of this paper.

There are many different aspects to improve the com-
putation time of the MC algorithm, such as (1) avoiding
traversal of the inactive cubes [5]–[7] and (2) speeding up
the vertex-identification process, since most of the triangle-
vertices of an iso-surface are shared by several triangles [8].
The vertex-identification process is needed to avoid the du-
plication of the vertices in the vertex array of the resul-
tant triangle data. It was pointed out that for the original
MC algorithm, we can limit vertex calculations to once per

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



1290
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011

Fig. 1 Five vertices and four triangles.

Fig. 2 (a) The manipulation contour drawn by the user on the screen.
(b) After the portion within the manipulation contour is removed, the resul-
tant image shows the internal structure of the object. (c) and (d) The object
is rotated to another viewpoint.

vertex to speed up the surface extraction process and in the
meantime, the reuse of these MC vertices is easy to under-
stand. However, how this process could be done efficiently
was not mentioned and was not looked into seriously in the
literature.

In some applications, the algorithms avoiding traversal
of the inactive cubes may not be applicable. For instance,
when an object is manipulated interactively by the users and
the surfaces of the object need to be re-computed for each
manipulation, such as cutting the object by a contour with
a specified depth as shown in Fig. 2, there are no “inactive
cubes” in the application contexts.

Therefore, in this paper, we do not consider the first
aspect at all since it has been fully investigated in the litera-
ture previously and may not be applicable in some cases.
Instead, we focus on the second aspect by proposing the
“Group MC” algorithm, or GMC for short. The GMC con-
siders a cube and its neighboring cubes as a whole instead of
considering an individual voxel alone; it takes advantage of
the spatial coherence of 3D objects; and it explores many in-
teresting features of the original MC algorithm that were not

considered in the past. Based on the GMC, we invent a very
important concept of “new-voxel vertex” that improves the
efficiency of the MC algorithm. In other words, although
the strategies of vertex reuse have already been used in MC
implementations, the value of this paper’s contribution lies
in its description of a straightforward algorithm which is
detailed enough to allow its reimplementation and usage.
Therefore, we believe that the GMC has not only theoret-
ical, but also practical value.

1.3 The Organization of This Paper

The rest of the paper is organized as follow. In Sect. 2,
we discuss the relevant background materials including the
problems with a hash table searching algorithm and the tim-
ing comparisons of different MC algorithms which justified
the need of the GMC algorithm. In particular, based on
our discussions with many people in the community, most
think that all the research topics of the MC algorithm have
been done more than a decade ago already and there is no
need to further study it. Therefore, we also show the ex-
periment results in this section (instead of at the end of the
paper as most of the paper do) to explain the effectiveness of
the GMC algorithm and to motivate the study in this paper.
In Sect. 3, we introduce the important concept of the “new-
voxel vertex” and how to use it to efficiently do the vertex
identification process. In Sect. 4, we discuss the additional
memory needed by the GMC algorithm. There are many ex-
isting acceleration MC algorithms proposed in the literature.
Most of those algorithms can be incorporated with our GMC
algorithm. In other words, the GMC algorithm is comple-
mentary to those algorithms rather than in competition with
them. We also discuss how to combine the GMC algorithm
with other existing MC acceleration algorithms. In Sect. 5,
we present our conclusions.

2. Relevant Background Materials

2.1 The Slow Surface Extraction Process of the MC
Algorithm

For the sake of argument, we will simply use “cube” to refer
to the “cube” in the context of the MC algorithm. The MC
triangle configurations within each cube consider only the
8 voxels at the 8 corners of the cube and nothing else. This
concept makes the MC algorithm extremely simple to un-
derstand and therefore easy to implement. However, it does
not attempt to take advantage of the spatial coherence of ob-
jects in 3D space. As a result, the slow surface extraction is
usually considered as one of the major disadvantages of the
MC algorithm.

The implementation of the MC algorithm consists of
three steps: (1) compute the case type of each cube, (2) com-
pute the vertices of each cube based on its case type, assign
the vertex indices, and output the data of each vertex to the
vertex array, and (3) compute the indices of the triangles of



CHEN et al.: A “GROUP MARCHING CUBE” (GMC) ALGORITHM
1291

each cube based on its case type and output them to the trian-
gle index array. The vertex and index array can be more effi-
ciently reused, stored, and rendered by OpenGL or Direct3D
functions. In general, the first and second steps take up most
of the execution time of the MC algorithm. The third step
just simply outputs the results of the second step.

In the second step, we need a vertex identification pro-
cess to check whether a vertex has been generated before or
not. If it has, its index can be re-used for the current triangle.
If it has not, it has to be generated and assigned a new index.
In general, it may take a lot of time to search through the ex-
isting vertex array to find the answer. This search process is
an important factor that invariably slows the MC algorithm
and will be shown in Sect. 2.3.

2.2 The Problems with a Hash Table

The search process can be improved by a hash table with
reasonable performance in some cases. However, the hash
table has its own problems. For instance, it is difficult to es-
timate how large the hash table size should be in the context
of the MC algorithm since the number of vertices of the ob-
jects we are interested is usually unpredictable. If the hash
table is too full, the performance of the hash table may dete-
riorate to linear (i.e., O(N) instead of a constant time where
N is the number of entries of the hash table) for each search
due to unavoidable collisions. If the hash table is too empty,
a lot of memory is wasted. It is also computationally expen-
sive to expand the hash table if we find the table is too full
at run time. Once the hash table is established, the expan-
sion at run time involves modification of the hash function,
creation of a larger table, and rehashing all items in the old
table into the new one. Furthermore, although each search
without a collision takes a constant time that is much shorter
than a brute force search, the constant time is certainly not
a very short one since it involves the computation of the hash
function and various overheads.

2.3 The Effects of Hash Table on the Overall Performance
of the MC Algorithm

In order to investigate how much the hash table affects the
overall performance of the MC algorithm, we performed the
following experiments. We discuss the timing results of var-
ious cases here instead of discuss them right before the con-
clusion section of the paper as most papers do. In particular,
based on our experience of discussions with many people in
the community, most people think that all the research topics
of the MC algorithm have been done more than a decade ago
already and there is no need to further study it. The exper-
iment results shown here can also explain “why not simply
just use the hash table to solve the problem” as most people
suggested. The results also motivate further study in this pa-
per. The well-known publicly available VTK (Visualization
Took Kit) program [5] is used in the experiments. The VTK
does not use an algorithm to avoid the traversal of inactive
cubes and it uses a hash table to support the search process.

Table 1 The timing performance of different cases measured in seconds.
(For an object with more than 1 million vertices, the GMC algorithm is 3
to more than 10 times faster.)

This may be due to the fact that VTK tries to deal with more
general cases instead of the regular grid problems we discuss
here. The programs were developed by experts in the visu-
alization field and the codes are reasonably efficient. Since
VTK was developed originally for general-purpose usages,
we modified its codes to speed up about 10% of the orig-
inal performance specifically for this study by eliminating
some general cases. We have tested more than 50 different
objects for the algorithms described here and obtained sim-
ilar results consistently. We give only some examples and
their timings here to show how the algorithms perform in
Table 1. Although the experiment results may be different
from machine to machine depending on the hardware con-
figurations, such as memory size, cache size, CPU speed,
bus bandwidth, and so on, this table gives readers a rough
idea of the computation time for different situations.

All the experiments use the modified VTK program
codes. Case 1 is the execution time of the MC algorithm
for a threshold value high enough so that the case types
of all the cubes are 0s based on the case type definition of
the MC algorithm. In other words, no MC vertex is gener-
ated. The time measured is similar to that of traversing all
the cubes only. This is the best case in terms of execution
time since no vertex is generated. Case 2 is the execution
time to generate some MC triangles with a hash table algo-
rithm for the search process. Case 3 is the same as case 2
except that it does not use the search process (without the
hash table mechanism). Instead, a table look-up proposed
in this paper, i.e., the GMC algorithm, is used for the ver-
tex identification. The computer system used for the exper-
iments had an Intel Pentium 4 Processor 631+ CPU with



1292
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011

3.0 GHz clock, 2 MB cache memory, 2 GB main memory,
and a Microsoft Windows XP operating system. Case 4 and
Case 5 are the same as Case 2 and Case 3 respectively except
that the machine had an Intel Pentium Dual-Core Processor
T3200 CPU with 2.0 GHz clock, 1 MB cache memory, 4 GB
main memory. The program is a single-thread process. In
other words, only one core was used.

In case 1, since the program simply goes through all
the 3D cubes to compute the case types, the measured times
are almost linearly proportional to the sizes of the corre-
sponding 3D spaces in question, as we expected. However,
in cases 2 and 3, since the situations are more complicated,
the measured times are just more or less proportional to the
numbers of generated MC vertices and the sizes of the cor-
responding 3D spaces.

Please note that the execution times in Table 1 are not
linearly proportional to the numbers of vertices since the
marching cube types of the cubes in the 3D scene are dif-
ferent from object to object and different types need dif-
ferent amounts of processing time. When the number of
vertices is small, case 2 and case 3, and case 4 and case 5
are almost the same since the hash table algorithm performs
very well. However, as the number of vertices increases,
cases 3 and 5 required much less time to execute the MC
algorithm. The hash table seems to take up a significant
amount of time when the number of vertices is particularly
large. This is in fact what we originally expected due to the
problems described above. When the hash table is nearly
full, the hash table algorithm becomes an O(N) algorithm or
needs a computationally expensive re-hash function instead
of a constant-time algorithm. As seen in the cases 2 and 4 on
Table 1, the larger the memory is, the better the hash table
algorithm performs.

Itoh et al. [8] proposed a propagation-based algorithm,
called a cell-edge centered propagation algorithm, which
does not use a vertex search algorithm for the vertex-
identification process in the MC triangle generation. The
algorithm visits all cells sharing an iso-surface cell-edge
at the same time, and the vertex that lies on the cell-edge
is registered onto all the triangles inside the visited cells.
The vertex is no longer required in this process, and there-
fore the vertex search algorithm is not necessary in the al-
gorithm. Their experimental tests showed that the method
was about 20 percent faster than the conventional propaga-
tion implementation. However, the algorithm still needs to
decide whether a given cell has been inserted in an FIFO
(First In First Out buffer) and whether the triangles in a cell
have been constructed or not. These operations described
in the pseudo-code of their implementation still need some
search processes although the number of search processes
may be reduced. The search processes may be implemented
by hash tables. We believe that this is why only 20 per-
cent speed-up was gained. Based on our experiments, if the
search processes were completely eliminated, there would
be more speed obtained.

One can also avoid the search process by simply du-
plicating the vertices in the vertex array. In this case, the

program may produce about 6 times more MC vertices on
average based on our experiments with the MC algorithm.
In other words, the benefit we gain from the vertex identi-
fication process is to reduce the number of vertices to 1/6
of the number of vertices if we simply duplicate the ver-
tices. The number of vertices will affect the time for CPU to
compute the normal and other various feature values (such
as texture coordinates and colors), the space for storing the
data of vertices, the time to send the vertices from CPU to
GPU for rendering, the time for rendering, e.g., a higher hit
ratio for the vertex cache in GPU when the transformed ver-
tices are reused, and so on. The costs for the search process
and vertex duplication may vary from object to object de-
pending on the size and complexity of the object in question.
Furthermore, as the CPU and GPU technologies continue to
progress, it may be hard to argue whether the search process
is justifiable. In any case, it is always favorable if the search
process can be eliminated and the duplication of the vertices
can be avoided. In particular, scientific research should not
be limited to the current technology. It is always both prac-
tically and theoretically interesting to eliminate the search
process while avoiding the vertex duplication.

In this paper, we propose the concept of the “new-voxel
vertex” to completely eliminate the search process and avoid
the duplication of vertices so that we can efficiently generate
MC triangles. The details are described in Sect. 3.3.

2.4 Discussion of the Timing Performance of the MC
Algorithms

In Table 1, when the number of vertices is small, more than
65% of the time is spent on the traversal of all the cubes to
compute the case types of the cubes alone if we compare
case 1 (the time mostly for the case type computation) and
case 2 (the total time for the MC algorithm). In other words,
it is not surprising that those algorithms that avoid the traver-
sal of the inactive cubes can achieve 10 or even 100 times of
improvement in performance if the number of active cubes
(or the number of vertices) is small. Those algorithms do
make a significant contribution in this case. However, if the
number of the vertices is very large, the time spent for gen-
erating the vertices becomes a dominant performance factor
in the whole MC algorithm as shown in Table 1. In this case,
GMC is much faster than the original one.

Furthermore, in many interactive visualization appli-
cations where the objects of interest may be inside another
object or blocked by other objects in the 3D space, or in the
case when users may want to visualize the internal struc-
ture of objects of interest, some manipulations, such as cut-
away operations, may be needed to reveal the objects of in-
terest as shown in Fig. 2 that we have implemented in this
study. In other words, the definition of the objects of inter-
est can not be done by a simple threshold operation. Vari-
ous automatic or semi-automatic volume manipulation op-
erations are needed in order to reveal the objects of interest
for visualization purposes. In this case, since the initial ob-
jects in the 3D space have been defined, the manipulation



CHEN et al.: A “GROUP MARCHING CUBE” (GMC) ALGORITHM
1293

Table 2 The timing performance of object surface detections and object
manipulations measured in seconds.

operations are usually done on a volume-representation data
structure [4], [9]–[12] rather than a surface-representation
data structure alone, such as MC triangles, that does not con-
tain the internal structure of the objects. In this case, a “new
object” (the resultant object) is generated after the manipula-
tion. If the MC algorithm is used to detect the surfaces of the
“new object”, the traversal of all the cubes in the 3D space
is not needed since the cubes of the object have been deter-
mined. In this case, those algorithms, such as interval-based
algorithms, may not be very helpful in speeding up the MC
algorithm. In this type of user interactions, near real-time
performance is critical to the usability of a visualization sys-
tem. In our experiments, the manipulation time (the time for
the program to remove unwanted parts from the 3D scene)
can be ignored as shown in Table 2 based on the current
software technology. The MC triangle generation for the
display of the new object becomes the bottleneck of the op-
erations. In many other visualization applications [13], [14],
the size of the original data set and the objects of interest are
even larger than those listed in Table 1. For many medical
applications, the objects usually have more than 1 million
triangles and it is not appropriate to use a lower resolution to
extract the triangle surfaces. In particular, when the objects
are manipulated, the execution time of generating the new
object surfaces is extremely critical to the user interactions.
In this case, the GMC algorithm can be used to improve the
performance of the MC algorithm.

3. The Surface Extraction Algorithm

3.1 Pre-Processing

Generally speaking, most of the images need some kind of
pre-processing before they can be used for 3D object recon-
struction. Therefore, in the pre-processing, without loss of
generality, we can add an extra layer of 0’s around the 3D
scene to ensure that all the voxels of the objects of interest
will not be on the boundary of the overall 3D scene.

3.2 Introduction to the Concept of the GMC

In the context of the MC algorithm, a “cube” has 8 cor-
ners each of which is a voxel in the voxel-based object
representation. Other than this relationship, the voxels and
cubes have nothing to do with each other. However, if we
think about the definition of the “cube” from a different per-
spective, there is a duality between the cubes and voxels.
For simplicity, let us consider a one-dimensional case as

Fig. 3 (a) The relationship between the intervals and points. (b) The
new-voxel edges form the whole 3D scene.

shown in Fig. 3 (a). There are six points and five intervals
on a line. If we ignore the boundary point “a” in Fig. 3 (a),
there is a one-to-one correspondence between the intervals
and points: interval B to point b, interval C to point c, and
so on. As described in the pre-processing, we add an extra
layer of 0s around the original 3D scene. If we ignore the
first boundary voxel in each row of cubes, there is a one-
to-one correspondence between the “voxel world” and the
“cube world” in the 3D space. In other words, there is a du-
ality between the voxels and the cubes. Each MC cube in
the 3D scene has its own corresponding voxel.

We assume that the cubes are scanned in a row-by-row,
slice-by-slice fashion. We can imagine that the original 3D
scene is empty and there is no voxel in the scene. When
we scan through each cube to generate its vertices and trian-
gles based on the case types, we can imagine that its corre-
sponding voxel is added into the 3D scene. For instance,
in Fig. 4, when the cube is considered, its corresponding
“new voxel” v6 is added into the scene. We assume that
we scan the 3D scene from left-to-right, top-to-bottom, and
front-to-back. The “new voxel” V6, together with the 7 ex-
isting neighboring voxels that have been added into the 3D
scene, form the “current MC cube”. Furthermore, three
new edges x, y, and z in Fig. 3 (b) are also added into the
scene and are referred to as “new-voxel edges” (imagine
that a “new voxel” and three “new edges” are added into
the scene, together with the existing voxels and edges in the
scene, to form a “new cube”). Three potential new vertices
located on the three new-voxel edges are referred to as “new-
voxel vertices” (one vertex for each dimension) if they exist.



1294
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011

Fig. 4 The arrangement of weights of voxels for the case type values.

In other words, each cube also has three corresponding new-
voxel edges and new-voxel vertices. Therefore, as we scan
through each cube, its corresponding new-voxel edges are
built up as shown in Fig. 3 (b) in sequence. Eventually all
these new-voxel edges form the overall 3D scene. Please
note that the arrows in Fig. 3 (b) are for explanatory purposes
only and are not the coordinate axis.

For each case type of an MC cube, its correspond-
ing new-voxel vertices can be pre-computed and stored in
a look-up table called “new-voxel-vertex table”. With this
concept in mind, there are two different types of MC ver-
tices defined in an MC cube: (1) new-voxel vertices that are
the only vertices newly generated for the cube and (2) the
rest of the vertices that have been generated when the neigh-
boring cubes of the current cube were considered previ-
ously. Therefore, the search process, which was discussed
in Sect. 2 and used to decide whether a vertex in a cube
was generated previously, is not necessary. This will signifi-
cantly speed up the surface extraction time. For instance, in
Fig. 4, the v6 is the now-voxel for the cube. If v2 is the only
voxel that is inside the object, the case type is 4 and ver-
tices A, B, and C form a triangle. Through the new-voxel-
vertex table, without the need for a search process, we know
vertex A is the only new-voxel vertex that needs to be gener-
ated and assigned a new vertex index, while vertices B and
C were generated in the previous cube we scanned before.
To generate the triangle indices, we need to know the indices
of vertices B and C, i.e., the vertex identification process.

Therefore, we need to set up two “layers” of cubes cor-
responding to the previous and current slices of cubes shown
in Fig. 3 (b), called a “vertex-index” array to store the ver-
tex indices that have been assigned to vertices whenever the
vertices are generated. Each element of the “vertex-index”
array represents a cube and has three entries (instead of 12
entries) to store the indices of its three new-voxel vertices in
each cube, if such vertices do exist. Therefore, we can ob-
tain the indices of vertices B and C from this array and pro-
duce the triangle indices. For the given new-voxel, knowing
how and where to obtain the entries of vertices B and C in
the array and the indices of the vertices B and C efficiently
will be explained in the next sub-section.

Fig. 5 (a) A simple 2D example. (b) The local vertex name assigned
to each vertex and the value assigned to each voxel for the case type
computation.

3.3 A Simple 2D Example

Our algorithm works for 3D objects. The experiment results
are shown in Table 1 described in 2.3 previously. However,
since the 3D case is harder to draw in a 2D figure, we simply
go through a 2D example as shown in Fig. 5 (a) to explain
how the algorithm really works. The same mechanism can
be directly applied to a 3D case without any new complica-
tion since only an additional dimension is needed.

In a 2D case, the object space is represented as an ar-
ray square[5, 4], each element of which is a square (equiv-
alent to a cube for a 3D case in the MC algorithm). The
number inside each square is its case type, which is com-
puted based on the setting shown in Fig. 5 (b). The value
around each voxel is used to compute the case type if the
voxel is inside an object while the value around each ver-
tex is the “local vertex name” assigned to the vertex and has
only local significance for a given square. For instance, the
case type of square[2, 0] = 2 + 4 = 6 and the case type of
square[2, 2] = 1 + 2 + 8 = 11 where 6 and 11 are the MC
case types. Each square can have two new-voxel vertices
with the local vertex names 0 and 1 in Fig. 5 (b). We say that
the new-voxel vertices 0 and 1 belong to the square. After
all case types are computed, the object space is scanned on
a row-by-row basis to generate the vertex and index arrays
for MC triangles.

At this point, our goal is to efficiently generate the ver-
tex and index array for the squares with their case types so
that we can store all the triangle data and use the OpenGL
indexed vertex rendering function to display the 3D objects
as discussed in 2.3. When a square with its case type is ex-
amined to generate the vertices and indices of its triangles,
we have to do two-step computations: (1) find out which



CHEN et al.: A “GROUP MARCHING CUBE” (GMC) ALGORITHM
1295

Table 3 (a) The edge table. (b) The new-voxel-vertex table. (c) The
square-offset tables. (d) The vertex-offset tables.

new-voxel vertices should be generated for this square and
generate them accordingly. The new-voxel vertices are the
only new vertices needed for the given square. (2) gener-
ate the vertex indices of all the edges (or triangles for a 3D
case) in this square (or cubes for a 3D case). We are going
to discuss these two steps in 3.3.1 and 3.3.2 respectively.

3.3.1 The Generation of New-Voxel Vertices for a Square

In the original MC algorithm, an edge table “edge[case
type]” is used to generate the vertices and triangle edges for
a given case type. The contents of the edge table are shown
in Table 3 (a). For instance, “edge[2] = {0, 1}” means that
a square with a case type 2 has a triangle edge with two
end vertices 0 and 1 (where 0 and 1 are the “local vertex
names” defined in Fig. 5 (b)). Please note that the contents
of edge[case type] table are the “local vertex names” (local
to a square or a cube for 2D or 3D cases). In the 3D case, this
“edge[case type]” becomes “triangle[case type]” that stores
the local vertex names for all the triangles of the given case
type so that the MC algorithm can generate all the triangles
for the given case type.

We use the table “new-voxel-vertex[case type]” to store
the new-voxel vertices for a given case type shown in
Table 3 (b). For instance, the first edge detected is in
square[0, 1] with a case type 2. “new-voxel-vertex[2] =

{0, 1}” means that a square with a case type 2 has two new-
voxel vertices: 0 and 1 (the local vertex names) as shown
in Fig. 5 (b). These two vertices have to be created and
assigned vertex indices for the corresponding square. The
“new-voxel-vertex[3] = {1}” means that a square with a case
type 3 has only one new-voxel vertex 1. Please note that the
new-voxel vertices are the only new vertices generated for
the current square. These new-voxel vertices will be gen-
erated in the vertex array and assigned some new vertex
indices which will be stored in the vertex-index array de-
scribed at the end of 3.2 for future references.

3.3.2 The Generation of the Vertex Indices for All the
Edges (or Triangles for a 3D Case)

Here we discuss the generation of the vertex indices for all
the edges (or triangles for a 3D case) in the correspond-
ing square (or cube for a 3D case) in the vertex-index array
where the indices of all the existing vertices are stored. No-
tice that these vertices are any vertices other than the new-
voxel vertices we computed in the first step. To store the ver-
tex indices of all existing vertices, we use an array “vertex-
index[5x4, 2]”, since the dimension of the 2D array is m× n
where m = 5 and n = 4 in this case, and the size of the vertex
index array is m×n). The first array index represents a linear
array for the 5 × 4 object space shown in Fig. 5 (a). In other
words, we use a linear array to represent the 2D space. A lin-
ear pointer LP is used to point to the current square under
process in the vertex-index array. In this example, the first
square that has vertices is square[1, 0]. Therefore, LP = 5
since the row-wise array index is used and LP = m × 1 + 0
where m = 5. Each square can have at most two new-voxel
vertices. Therefore, the second index of the vertex-index ar-
ray has values 0 or 1 to store indices of the two new-voxel
vertices belonging to each square respectively if they exist.
In other words, the first array index is a “global address” of
a cube and the second one indicates which new-voxel ver-
tex is stored. Therefore, we have vertex-index[5, 0] = 0 and
vertex-index[5, 1] = 1 for the current square (please note
that the array index starts with 0 based on the C++ conven-
tion); the 0 and 1 are the vertex indices assigned to the two
new-voxel vertices respectively. The data of these two new
vertices, such as coordinates, are output to the vertex array
for OpenGL rendering later.

The next step is to generate the edge indices and out-
put them to the edge index array (triangle index array for
the 3D case so that an OpenGL function can render the 3D
object). We know that the indices of the previously created
vertices are stored in the vertex-index array. The question
is where they are in the vertex-index array described previ-
ously. In other words, we have to start with the local vertex
names 0, 1, 2, or 3 obtained from the edge[case type] array
(the triangle[case type] for the 3D case), and find the global
addresses of the two vertex indices in the vertex-index array.
Another two tables: “square-offset[local vertex name]” and
“vertex-offset[local vertex name]”, can be set up to help us
compute where the indices of the vertices are. The contents



1296
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011

of these two tables are shown in Table 3 (c) and 3 (d) re-
spectively. We know currently LP = 5. For a given local
vertex name, the square-offset table tells us the offsets of the
squares the vertex belongs to while the vertex-offset tells us
the offsets of the vertex locations in the square the vertex
belongs to.

For instance, “square-offset[2] = −L” means that a ver-
tex with a local vertex name “2” belongs to the top square
(relative to the current square as shown in Fig. 5 (b)) and
the offset of the global address of that square from the
current square is −L where L is the width of the object
space (since we use a linear array to represent this 2D ob-
ject space). Likewise, “square-offset[3] = −1” means that
a vertex with a local vertex name “3” belongs to the left-
adjacent square of the current square and the offset is just
−1. “vertex-offset[2] = 0” means that the vertex with a lo-
cal vertex name “2” in the current square has a local vertex
name “0” in the square it belongs to, i.e., the top square of
the current square, and is stored at the entry 0 of the top
square.

In this example, “square-offset[0] = square-offset[1] =
0” indicates that both vertices belong to the current square.
“vertex-offset[0] = 0” and “vertex-offset[1] = 1” mean that
the vertex indices of both vertices are stored in the entries 0
and 1 of the current square respectively. Therefore, we can
access these two vertex indices and output them to the edge
index array (equivalent to the triangle index array in 3D).

The next edge detected is in square[1, 1] with a case
type 3. Currently, LP = 6. Based on “new-voxel-vertex[3]
= {1}”, only one new-voxel vertex is newly generated
for this square and assigned a vertex index 2 which
will be stored in vertex-index[6, 1]. Note that vertex-
index[6, 0] is left empty since there is only one new-voxel
vertex for this square. For the output of edge indices,
based on edge[3] = {3, 1}, we can access the vertex indices
from vertex-index[LP + square-offset[3], vertex-offset[3]]
and vertex-index[LP+square-offset[1], vertex-offset[1]] and
output them to the edge index array. With the concept of the
new-voxel vertex and the associated tables, the vertex array
and edge index array are generated efficiently without the
need for searching.

The same process will be repeated continuously until
all squares have been processed. In fact, since the vertices
created for each square will be used only by the adjacent
squares, the vertex-index array only needs to store two rows
of the vertex indices instead of the whole object space. The
additional space needed is rather small and can be ignored
compared to the size of the original input data.

4. Discussions of the Related Issues

4.1 Discussion of the Additional Memory Needed by the
GMC Algorithm

Several look-up tables have been described previously. Ap-
parently the space needed for these tables is very small and
can be ignored. Since we assume that the cubes are scanned

in a row-by-row, slice-by-slice fashion, the additional data
structure we use, i.e. the vertex-index-array, can be reduced
to only two slices in size, i.e. the current slice the GMC al-
gorithm is scanning currently, and the previous slice. There-
fore, the additional memory needed for the GMC algorithm
can be ignored.

4.2 How to Combine the GMC Algorithm with the Other
Existing MC Acceleration Algorithms

We did not compare our algorithms with other acceleration
MC algorithms that also speed up the original MC algorithm
significantly [15]. This is because the GMC algorithm tries
to eliminate the “search process”, which was never consid-
ered by other algorithms before. The GMC algorithm also
does not conflict or compete with other algorithms. The ex-
isting acceleration MC algorithms mostly try to avoid traver-
sal of inactive cubes for dynamic threshold range applica-
tions that are not considered by the GMC algorithm. There-
fore, it does not make too much sense to directly compare
the performance of the GMC algorithm with that of those ac-
celeration MC algorithms. In fact, some of those algorithms
can be incorporated with our algorithm. In other words,
the GMC algorithm is complementary to those algorithms
rather than in competition with them.

For instance, for the interval-based algorithms [6],
[16]–[18], the active cubes can be extracted for a given
threshold range first. Then, all the active cubes can be
easily converted to an auxiliary data structure such as the
quadtree-segment data structure [10] that organizes all the
active cubes in a row-by-row, slice-by-slice fashion. Since
all the coordinates of the active cubes are integers, this
implies that we do not really need to use an O(N log N)
sorting algorithm to sort all the active cubes according to
their geometrical coordinates. This “sorting” process can
be done within an O(N) time where N is the number of ac-
tive cubes. Furthermore, if the number of active cubes is
relatively small compared with that of the overall cubes in
the 3D space, this conversion can be done very efficiently.
In this case, the interval-based algorithm can be viewed as
a pre-processing of the GMC algorithm.

As for the hierarchical-geometric algorithms [7], [19],
[20], in general, the hierarchical-geometric data structure
can be traversed in a front-to-back, top-to-bottom fashion
that is equivalent to the way the GMC algorithm scans the
cubes described previously. In fact, this fashion of scanning
the cubes is also usually used in the hierarchical-geometric
algorithms for hidden surface removal process. Therefore,
the same GMC idea can be applicable to speed up the origi-
nal algorithms.

As for the propagation-based algorithms [8], [21], [22]
since it is difficult to control the traversal direction in a row-
by-row, slice-by-slice fashion, they can not be easily in-
corporated into the GMC algorithm. In this case, Itoh et
al. [22] discussed in Sect. 2.3 can be used to improve the
performance. These algorithms avoid the traversal of in-
active cubes and can save a significant amount of time for



CHEN et al.: A “GROUP MARCHING CUBE” (GMC) ALGORITHM
1297

the surface detection if the visualization space is huge and
the object of interest is relatively small. They can also be
used for detecting a connected object while others described
above can not. In other words, different algorithms are used
for different situations and there is no single winner.

4.3 How to Parallelize the GMC Algorithm

Recently, due to the advances in CPU (Central Processing
Unit) and GPU (Graphics Processing Unit) development,
parallel computing is becoming very important and popu-
lar. Because the GMC algorithm is based on the original
MC algorithm that determines object surfaces within a cube
locally, both the MC and GMC algorithms can be easily par-
allelized in the following fashion to further speed up the ex-
ecution time.

We can simply partition the whole 3D space into sev-
eral 3D sub-spaces, each of which can be independently
computed in parallel by GPGPU (General-Purpose Com-
puting on Graphics Processing Units) using some software
computing engines, such as CUDA (Compute Unified De-
vice Architecture), or by one of the cores in a multi-core
CPU system. We have implemented the parallel version of
our software system, and based on our experiments the sys-
tem indeed speeds up the execution time linearly with the
number of cores in a multi-core CPU system. This is due
to the fact that the parallel version of the GMC algorithm
uses a straight-forward space-partition method, and there is
virtually no parallelization overhead.

5. Conclusions

Although it was pointed out that for the original MC algo-
rithm, we can limit vertex calculations to once per vertex
to speed up the surface extraction process, however, neither
how this process could be done efficiently nor the reuse of
these MC vertices was looked into seriously in the literature.
The concepts of the GMC and the new-voxel vertex take ad-
vantage of spatial coherence to make the MC algorithm very
efficient, and can be applied to any kinds of data structures
as long as they scan the data in a row-by-row, slice-by-slice
fashion. Furthermore, those algorithms that speed up the
MC algorithm in various ways as discussed in Sect. 2.1 and
4.2 do not conflict with the proposed algorithm and can be
incorporated into our system to boost up the performance
even further when necessary. The GMC triangles can be ef-
ficiently extracted without the need for a search process to
determine whether a vertex has been defined or not. All of
the operations involved consist mainly of table look-ups. In
practice, this results in a very efficient execution of the algo-
rithms for interactive applications.

References

[1] A. Kaufman, D. Cohen, and R. Yagel, “Volume graphics,” Com-
puter, vol.26, no.7, pp.51–64, July 1993.

[2] M. Levoy, “Display of surfaces from volume data,” IEEE Comput.
Graph. Appl., vol.8, no.3, pp.29–37, May 1998.

[3] W. Lorensen and H. Cline, “Marching cubes: A high resolution
3D surface construction algorithm,” Comput. Graph., vol.21, no.4,
pp.163–169, July 1987.

[4] P-W. Liu, L-S. Chen, S-C. Chen, J-P. Chen, F-Y. Lin, and S-S.
Hwang, “Distributed computing: New power for scientific visual-
ization,” IEEE Comput. Graph. Appl., vol.16, no.3, pp.42–51, May
1996.

[5] http://www.vtk.org/
[6] P. Cignoni, P. Marino, C. Montani, E. Puppo, and R. Scopigno,

“Speeding up isosurface extraction using interval trees,” IEEE Trans.
Vis. Comput. Graph., vol.3, no.2, pp.158–170, April 1997.

[7] PM. Sutton and CD. Hansen, “Accelerated isosurface extraction in
time-varying fields,” IEEE Trans. Vis. Comput. Graph., vol.6, no.2,
pp.98–107, April 2000.

[8] T. Itoh, Y. Yamaguchi, and K. Koyamada, “Fast isosurface genera-
tion using the volume thinning algorithm,” IEEE Trans. Vis. Com-
put. Graph., vol.7, no.1, pp.32–46, Jan. 2001.

[9] J. Beyer, M. Hadwiger, S. Wolfsberger, and K. Bühler, “High-quality
multimodal volume rendering for preoperative planning of neurosur-
gical interventions,” IEEE Trans. Vis. Comput. Graph., vol.13, no.6,
pp.1696–1703, Nov. 2007.

[10] L-S. Chen and M. Sontag, “Representation, display, and manipula-
tion of 3D digital scenes,” Computer Vis. Graph. Image Process.,
vol.48, no.2, pp.190–216, Nov. 1989.

[11] S. Islam, D. Silver, and M. Chen, “Volume splitting and its applica-
tions,” IEEE Trans. Vis. Comput. Graph., vol.13, no.2, pp.193–203,
March/April 2007.

[12] A. Joshi, D. Scheinost, KP. Vives, DD. Spencer, and LH. Staib,
“Novel interaction techniques for neurosurgical planning and stereo-
tactic navigation,” IEEE Trans. Vis. Comput. Graph., vol.14, no.6,
pp.1587–1594, Nov./Dec. 2008.

[13] H. Childs, MA. Duchaineau, and K-L. Ma, “A scalable, hy-
brid scheme for volume rendering massive data sets,” Proc. 6th
Eurographics Symposium on Parallel Graphics and Visualization,
pp.153–162, Portland, Oregon, May 2006.

[14] A. Dietrich, E. Gobbetti, and S-E. Yoon, “Massive-model rendering
techniques,” IEEE Comput. Graph. Appl., vol.27, no.6, pp.20–34,
Nov. 2007.

[15] TS. Newman and H. Yi, “A survey of the marching cubes algorithm,”
Comput. Graph., vol.30, no.5, pp.854–879, Oct. 2006.

[16] UD. Bordoloi and H-W. Shen, “Space efficient fast isosurface extrac-
tion for large datasets,” Proc. 14th IEEE Visualization, pp.201–208,
Seattle, WA, Oct. 2003.

[17] Y-J. Chiang, “Out-of-core isosurface extraction of time-varying
fields over irregular grids,” Proc. 14th IEEE Visualization,
pp.217–224, Seattle, WA, Oct. 2003.

[18] H-W. Shen, “Isosurface extraction in time-varying fields using a
temporal hierarchical index tree,” Proc. Conf. Visualization ’98,
pp.159–166, North Carolina, Oct. 1998.

[19] C. Montani, R. Scateni, and R. Scopigno, “Decreasing isosurface
complexity via discrete fitting,” Computer Aided Des., vol.17, no.3,
pp.207–232, March 2000.

[20] F. Velasco and JC. Torres, “Cells octree: A new data structure for
volume modeling and visualization,” Proc. Vision Modeling and Vi-
sualization ’01, pp.151–158, Stuttgart, Germany, Nov. 2001.

[21] T. Itoh and K. Koyamada, “Automatic isosurface propagation using
an extrema graph and sorted boundary cell lists,” IEEE Trans. Vis.
Comput. Graph., vol.1, no.4, pp.319–327, Dec. 1995.

[22] T. Itoh, Y. Yamaguchi, and K. Koyamada, “Fast isosurface gen-
eration using the cell-edge centered propagation algorithm,” Proc.
3rd International Symposium on High Performance Computing,
pp.547–556, Tokyo, Japan, Oct. 2000.



1298
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011

Lih-Shyang Chen received the BS and
MS degrees in electrical engineering from the
National Cheng-Kung University in 1978 and
1980, respectively and the PhD degree in com-
puter and information science from the Univer-
sity of Pennsylvania in 1987. He is currently
a professor of electrical engineering at National
Cheng-Kung University. His research interests
include computer graphics, image processing,
computer vision, and distributed computing.

Young-Jinn Lay received the MS degree in
electrical engineering from the Dayeh Univer-
sity in 1996. He is currently a PhD student in
the Department of Electrical Engineering at Na-
tional Cheng-Kung University. His research in-
terests include computer graphics, visualization,
and image processing.

Je-Bin Huang received the BS degree in
Math from the National Cheng-Kung University
in 2009. He is currently MS student in the De-
partment of Electrical Engineering at National
Cheng-Kung University. His research interests
include computer graphics, visualization, and
image processing.

Yan-De Chen received the BS degree in
CS from the Fu-Jen University in 2009. He is
currently MS student in the Department of Elec-
trical Engineering at National Cheng-Kung Uni-
versity. His research interests include computer
graphics, design patterns, and image processing.

Ku-Yaw Chang received the BS, MS,
and PHD degrees in electrical engineering
from National Cheng-Kung University in 1993,
1995, and 2002 respectively. He is currently
an assistant professor of Da-Yeh University,
Taiwan. His research interests include medical
image diagnosis, image processing, and pattern
recognition.

Shao-Jer Chen received the PHD degree
from the National Cheng-Kung University in
2008. He is currently a doctor in Buddhist Tzu
Chi General Hospital, Taiwan. His research in-
terests include medical image diagnosis and im-
age processing.


