
1306
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011

PAPER

A Timed-Based Approach for Genetic Algorithm: Theory and
Applications

Amir MEHRAFSA†, Member, Alireza SOKHANDAN†, Nonmember, and Ghader KARIMIAN†a), Member

SUMMARY In this paper, a new algorithm called TGA is introduced
which defines the concept of time more naturally for the first time. A pa-
rameter called TimeToLive is considered for each chromosome, which is a
time duration in which it could participate in the process of the algorithm.
This will lead to keeping the dynamism of algorithm in addition to main-
taining its convergence sufficiently and stably. Thus, the TGA guarantees
not to result in premature convergence or stagnation providing necessary
convergence to achieve optimal answer. Moreover, the mutation operator is
used more meaningfully in the TGA. Mutation probability has direct rela-
tion with parent similarity. This kind of mutation will decrease ineffective
mating percent which does not make any improvement in offspring individ-
uals and also it is more natural. Simulation results show that one run of the
TGA is enough to reach the optimum answer and the TGA outperforms the
standard genetic algorithm.
key words: genetic algorithms, time unit, time to live, population, genera-
tor, crossover probability, GAVaPS, premature convergence, random search
algorithm.

1. Introduction

Genetic algorithms (GAs) are a family of probabilistic
search algorithms inspired by the biological processes of
genetics and evolution. GA developed by Holland [1] and
were applied to many practical problems by Goldberg [2].
These algorithms became the most popular evolutionary
algorithm due to their successful application in optimiza-
tion and search problems, particularly in those problems in
which the size or complexity of the search space renders in-
feasible the use of other optimization techniques [3].

A GA allows a population of individuals represented
by chromosomes to evolve under specified selection rules
for crossover and mutation to a state that minimizes the cost
function, i.e. maximizes the “fitness” [4].

Behavior and performance of genetic algorithms are di-
rectly affected by the values of their input parameters. Poor
parameter settings usually lead to several problems such as
the premature convergence [5].

The most important parameters are the strategy or
control parameters: population size, mutation rate, and
crossover rate [6]. Finding robust methods for determining
the optimum values of these parameters is probably impos-
sible, since the optimal values are problem-dependent and
the GA parameters interact with each other in a complex
way [7]. Moreover, the optimal values can be different in

Manuscript received August 12, 2010.
Manuscript revised February 24, 2011.
†The authors are with Electrical and Computer Engineering

Department, University of Tabriz, Tabriz, Iran.
a) E-mail: karimian@tabrizu.ac.ir

DOI: 10.1587/transinf.E94.D.1306

different phases of one single run on a given problem.
Several features have recently been added to the basic

genetic algorithm in order to emulate the natural evolution
process as precisely as possible. The size of the population
is one of the most important parameters of GAs and may be
critical in many applications. If the population size is too
little, the algorithm may converge too quickly to a local op-
timum. However, if the population size is too big, the algo-
rithm may become a random search wasting computational
resource [8], [9].

Arabas et al. [8] propose the Genetic Algorithm with
Variable Population Size (GAVaPS) by introducing the age
and maximum lifetime properties for individuals. The max-
imum lifetime depends on the fitness of the corresponding
individual and it is assigned only once to each individual at
the moment they are born and remains constant during their
evolution, while the age (initialized to zero at birth) is incre-
mented at each generation by one. Individuals are removed
from the population when their ages reach the value of their
predefined maximal lifetime [10]–[12].

GAVaPS was very sensitive to the reproductive ratio
parameter, and the algorithm frequently increased the size of
the population over several thousand individuals, which re-
sulted in unreliable performance [13]. Back et al. proposed
a variant of GAVaPS, namely the Adaptive Population size
GA (APGA) by leaving the best individual unchanged when
individuals grow older [6]. It was shown that the APGA is
not capable of properly adapting the population size, and
that its newly introduced parameters act as the actual pop-
ulation size parameter of a traditional GA [14]. Harik and
Lobo [15] introduce parameter-less GA, where several pop-
ulations with different sizes evolve in parallel starting with
small population sizes. By inspecting the average fitness
of these populations, less fit undersized populations are re-
placed by larger ones. Eiben et al. [13] suggest using the
pace of fitness improvements as a signal to control popu-
lation size in Population Resizing on Fitness Improvement
GA (PRoFIGA).

Last and Eyal [5] developed a GA with varying popu-
lation size, where chromosomes are classified into young,
middle-age and old according to their age and lifetime. In
this GA, crossover probability is a function of parent’s age-
type (young, middle-aged, old, etc.) and is obtained using a
fuzzy rule base and fuzzy possibility theory. Roy et al. [16]
proposed a fuzzy genetic algorithm (FGA). Suitable mem-
bership function Parameters, as well as the settings of the
“expert knowledge”, requires further research and experi-

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

MEHRAFSA et al.: A TIMED-BASED APPROACH FOR GENETIC ALGORITHM: THEORY AND APPLICATIONS
1307

mentation.
In this paper, a new algorithm called TGA (Timed-GA)

is introduced which defines the concept of time more natu-
rally for the first time. The mutation operator is used more
meaningfully in the TGA. Simulation results show that the
TGA outperforms standard genetic algorithm.

This paper is organized as follows: Sect. 2 describes
the proposed algorithm. Section 3 discusses results of few
experiments, and some simulation results are provided and
compared to standard GA and GAVaPS. The final section is
the conclusions.

2. The Proposed Algorithm

2.1 General Description of the Proposed Algorithm

More practical problems are problems with large or infinite
state space and mostly non-systematic, or goal-based algo-
rithms are used for solving these problems. For an ideal
non-systematic algorithm, three features could be consid-
ered.

First, the cycle of algorithm execution could lead to a
more optimal answer. In other words, the continuation of
algorithm execution should guarantee the chance of search-
ing spaces which are not searched yet. Most of the random
search algorithms implement this feature.

Second, the algorithm should start exploring the state
space with large steps. And when a relative convergence
around the optimal answer appears, it continue to explore
the state space with smaller steps. This feature of genetic al-
gorithm, like Stochastic Beam Search, combines uphill ten-
dency using random exploration with exchange of informa-
tion between parallel strings [18].

Third, The movement of the algorithm through state
space should always put the algorithm in a more compati-
ble state with the desired goal, i.e. the movement of the al-
gorithm should provide necessary convergence to expedite
the process of reaching the optimal answer. The GA pro-
vides the third feature by applying the law of “Survival of
the fittest” or “Elitism” to the population of chromosomes.

One problem of genetic algorithm is the extreme use of
survival of the fittest law, to an extent that almost all chro-
mosomes with higher finesses than average fitness are more
likely to acquire eternal life. Therefore, the individuals will
become more similar to each other resulting in a premature
convergence or algorithm stagnation. This, in turn, will raise
the necessity of algorithm execution for several times from
the beginning to make sure that the most efficient answer is
found. Therefore, the first feature is sacrificed for the sake
of the third one.

This problem of GA could be solved by applying the
law of survival of the fittest in a more normal and natural
way, as mentioned in this article. We use a parameter called
“TimeToLive” to solve this problem. The TimeToLive pa-
rameter for a chromosome is a time that it participates in
the process of the algorithm. The parameter has a direct
relationship with chromosome fitness and inverse relation-

ship with the population fitness range, i.e. the interval be-
tween the best and worst fitness of population. There is an
algorithm called GAVaPS which utilizes a parameter called
“lifetime”. This parameter assigns a time concept to indi-
viduals in a similar manner with our TimeToLive parameter.
Yet, GAVaPS has a completely different purpose of using
this parameter which will be explained in more details in
Sect. 3.1.

The other problem with genetic algorithm is that it ap-
plies mutation only to temporarily avoid premature conver-
gence, which seems inefficient. In the proposed algorithm,
always the whole population is in the mating pool but indi-
viduals with higher fitness have more chance of being se-
lected for mating. Mutation is only applies to offsprings and
its probability has direct relation with the parent similarity,
i.e. that is to say that higher the similarity of the parent chro-
mosome, the higher mutation probability. This kind of mu-
tation will decrease ineffective mating percentage that does
not make any improvement in offsprings and also is closer to
the natural mutation. This will be explained in more details
in Sect. 2.6.

The other point is that in the proposed algorithm, even
the chromosomes placed in the infeasible space of the prob-
lem do not lose the chance of participation, although their
participation is low. The proposed algorithm guarantees not
to result in premature convergence or stagnation providing
necessary convergence to achieve optimal answer. Indeed,
the positive features of genetic algorithm in converging pop-
ulation to achieve optimal answer are combined with one of
the features of random search algorithms which is the hope
of finding better answers if the algorithm execution is con-
tinued. Therefore in finding the optimum answer using the
proposed algorithm, unlike other non-systematic algorithms
derived from genetic algorithm, it is not necessary to exe-
cute it for several times. In addition, the use of any relatively
improved individuals in the population will not have any un-
desirable effect from the point of premature convergence on
the algorithm process.

2.2 Time Concept in the Proposed Algorithm

The process of the proposed algorithm is based on time.
Each individual has longevity and its life will be reduced
in time. The remaining life time of each chromosome is cal-
culated using its birth time and the value of its fitness. This
parameter is called “TTL” which stand for TimeToLive.

The proposed algorithm represents a time axis called
“TimeLine” which is used to illustrate the remaining
longevity of each chromosome. The minimum value of
TimeLine is always zero and we will use a parameter called
“MaxLife” as its maximum value. It should be noted that
inappropriate value assignment to MaxLife or other param-
eters of the algorithm will not lead to violations of men-
tioned features in the proposed algorithm, but it will only
reduce its speed. For example, we run the problem 3.2.5
twice with values of 50 and 200 for MaxLife while keep-
ing other parameters of algorithm unchanged. The result is

1308
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011

(a)

(b)

Fig. 1 Average fitness and Best fitness of purposed algorithm with re-
spect to the time unit for the problem 3.2.5; (a) MaxLife is 200 and the
time to reach the optimum answer is 1615 time unit (b) MaxLife is 50 and
the time to reach the optimum answer is 25341 time unit.

shown in Fig. 1. The effects of the changes in the values of
the algorithm parameters are studied in Sect. 3.3.

Since mutation and crossover operators apply to in-
dividuals through their longevity, therefore the generation
concept, which GA uses is not needed by the proposed al-
gorithm anymore. The methods of applying crossover and
mutation operators will be explained later in this article.

In each time unit, the remaining MaxLife of each chro-
mosome is decreased by one until the TTL parameter be-
comes zero, and then the chromosome will be removed from
the process of algorithm execution. Therefore, none of the
chromosomes will get immortal life during the algorithm
process. It can be concluded from what we have mentioned
so far, chromosomes with higher fitness will achieve higher
TTL and this will make the chromosome participate in the
process of the algorithm for longer periods of time.

The value of TTL for each chromosome has a direct
relationship with its fitness and will be recalculated for each
chromosome i in each time unit as mentioned in Eq (1).

TT L[i] =
MaxLi f e

|BestFitness −WorstFitness|
× |Fitness[i] −WorstFitness| (1)

Moreover, as Eq. (1) represents, for calculating TTL[i]
a mapping from range of [Worst Fitness, Best Fitness] to
TimeLine is applied first. Then the Fitness value of each
chromosome is mapped onto the TimeLine.

The problem with the proposed method is that if a chro-
mosome gets the worst fitness at BirthTime, according to the
Eq (1), its TTL will be zero and it will be removed from the
algorithm process at the time of its creation.

Fig. 2 Mapping fitness value to TTL.

To solve this problem, the fitness values is mapped
onto the range of [X × MaxLife, MaxLife] instead of [0,
MaxLife], where X is a number between zero and one. This
mapping is shown in Fig. 2. So, the TTL calculation method
is revised from Eq (1) to Eq. (2).

TT L[i] =
(1 − X) × MaxLi f e

|BestFitness −WorstFitness|
× |Fitness[i] −WorstFitness|

+ X × MaxLi f e (2)

The variable X in the Eq (2) is the maximum chance of
worst chromosomes or chromosomes that are in the infeasi-
ble space of problem to participate in the algorithm process.

It should be noted that the proposed algorithm does not
put any chromosome out of algorithm process, even if the
chromosome is in the infeasible space of problem. This fea-
ture is more useful in applications in which their infeasible
state spaces are greater than their feasible state spaces. The
problem 3.2.5 demonstrates this feature clearly.

Where the values of the BestFitness and WorstFitness
are equal at the time of first chromosome generation, the
value of WorstFitness is considered one unit less than the
BestFitness; therefore, according to the Eq (2), the TTL
value of first chromosome equals to the value of MaxLife.

Another point which should be considered is that
whenever the BestFitness or WorstFitness values of the al-
gorithm change, the TTL value of the whole chromosomes
changes, too.

Pseudo Code 1 Generator work conditions
if (ChromosomeCount <MaxChromosome × a)
start Generator

elseif (ChromosomeCount >MaxChromosome × b)
stop Generator

MaxChromosome × a ≥ 2
0 < a, b < 1
a < b

2.3 Generator

One of the features of the proposed algorithm is a unit called
generator, which is responsible to produce the new chromo-
somes of the population. The generator will start to work in
two conditions: First, when the algorithm begins and there
are not enough chromosomes in the population. Second,

MEHRAFSA et al.: A TIMED-BASED APPROACH FOR GENETIC ALGORITHM: THEORY AND APPLICATIONS
1309

Fig. 3 Generator work range as a function of chromosomecount.

when most of chromosomes die out. This will happen be-
cause their TTL gets a small value due to a sudden difference
between the best and average fitness. In these two cases, the
generator produces new random chromosomes for resolving
population lack problem.

Unlike the GA and its derived algorithms there is no
first population concept in the proposed algorithm, and chro-
mosomes will be produced during the time intervals if nec-
essary.

When a chromosome with more optimal fitness than
average fitness has been generated, the new TTL assign-
ment to individuals cause the inferior individuals to achieve
smaller TTL value, so they die out much earlier; then the
new randomly generated chromosomes with higher finesses
will correct the wrong way of population convergence. The
new random chromosomes which are placed in older section
of population, die sooner. Therefore, the new chromosomes
generation is continued by the generator until the algorithm
reach its goal.

In the proposed algorithm a new parameter called
“MaxChromosome” is used to represent the maximum num-
ber of individuals allowed. Since all chromosomes have per-
mission to participate in the algorithm process proportional
to their TTL values, it is possible that the number of chro-
mosomes may grow uncontrolled, so the population size is
controlled by MaxChromosome.

If the population size is less than the percentage of the
MaxChromosome, the generator starts to work and produces
new random chromosome on each time unit. The generator
functionality is shown in Pseudo code 1.

According to the Pseudo code 1, when the size of pop-
ulation shown by “ChromosomeCount” is less than the per-
centage of the MaxChromosome, e.g. MaxChromosome/4,
then the generator starts and produces new chromosome on
each time unit, and when the population size is somewhat
more, e.g. MaxChromosome/2, then the generator stops.

In Pseudo code 1, ‘a’ and ‘b’ are user-defined param-
eters. If the distance between a and b is large, the genera-
tor operates for longer time, and scattering of chromosomes
will be more on the TimeLine because of more random chro-
mosome production.

However, as mentioned above, the value of (MaxChro-
mosome × a) should not be less than two, because in this
case, only one chromosome is produced by generator, there-
fore no crossover operation will occur and this causes the
algorithm to fail. The efficiency of the generator based on
the a and b parameters is shown in Fig. 3.

(a)

(b)

Fig. 4 Generator operation over time. (a) Population produced by gen-
erator w.r.t time, (b) Fitness values w.r.t time. Generator starts to generate
new chromosomes at time T=40 after it was already stopped.

The Fig. 4 presents a sample run of generator for prob-
lem 3.2.7. According to Fig. 4, when the population be-
gins to converge, the generator tends to stop generation of
chromosomes. In the time of 40, a sudden improvement
in the value of best fitness causes the denominator of frac-
tion in Eq. (2) to increase which results in TTL reduction of
chromosomes. Therefore, the old chromosomes dies out in
smaller time and new random chromosomes are produced
by generator. This procedure enables directed random gen-
eration of the chromosomes such that the population conver-
gence is in the way of optimum answer and the probability
of the generator to start again would be reduced. Where the
maximum number of population for a run of the algorithm is
so low that it delays the first convergence, then the generator
is more likely to behave in the way mentioned above.

2.4 Chromosome Structure

According what was mentioned, chromosome structure in
this algorithm is as follows:

2.4.1 Alphabet String

Decimal or binary array, which forms the main body of the
chromosome. The fitness value of each chromosome is cal-
culated from its alphabet string.

2.4.2 BirthTime

BirthTime is a time in which a chromosome is generated by
the generator or crossover operator.

1310
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011

2.4.3 LCT (Last Crossover Time)

LCT of a chromosome is the last time when it participates
in the crossover operation. This parameter is used to avoid
selecting same chromosomes for crossover. The initial value
of this parameter for each chromosome is −1, which means
that the chromosome has not participated in the crossover
yet.

This parameter is also included in the parent chromo-
some selection process for the crossover operation.

2.4.4 Fitness

The fitness value of each chromosome which is calculated
from the fitness function is similar to GA.

2.4.5 TTL

Equation (2) shows the TTL of ith chromosome in the mo-
ment of birth. Therefore, to calculate MaxLife of ith chro-
mosome in every moment, we should subtract its past life
(CurrentTime - BirthTime[i]) from its initial TTL value.
Therefore, Eq. (2) can be rewritten in the form of Eq. (3).

TT L[i] =
(1 − X) × MaxLi f e

|BestFitness −WorstFitness|
× |Fitness[i] −WorstFitness|
+ X × MaxLi f e − (CurrentT ime − BirthT ime[i]) (3)

Hence, the value of TTL for each chromosome depends
on the obtained fitness range. Then the value of TTL is con-
stantly updated during the algorithm execution.

Our proposed algorithm is capable of acting like GA
or random search algorithm by adding a parameter called
LifeStep to Eq. (3). Equation (4) shows how to apply this
parameter.

TT L[i] =
(1 − X) × MaxLi f e

|BestFitness −WorstFitness|
× |Fitness[i] −WorstFitness|
+ X × MaxLi f e

− Li f eS tep × (CurrentT ime − BirthT ime[i]) (4)

According to the Eq. (4), when this parameter is zero,
TTL value of chromosomes will be constant during the ex-
ecution time, so the size of population achieves its maxi-
mum value. In this case in order to reach GA functionality,
a strategy should be taken to remove a number of chromo-
somes with bad fitness. If this parameter is considered to be
∞, the algorithm will act like random search algorithm. In
this case, the TTL value of all chromosomes becomes neg-
ative. Therefore, the fitness of chromosomes are evaluated
exactly at the moment of their birth, then they die. The value
of LifeStep in the proposed algorithm is considered one as
shown in Fig. 5.

Fig. 5 The TGA algorithm acts like GA or random search algorithm by
adjusting LifeStep parameter.

2.5 Crossover Operator

In the proposed algorithm, crossover operation is similar to
GA, but the difference is that the crossover is done in each
time unit with the probability of Pc. Thus, for each time
unit a uniformly distributed random number between zero
and one is generated. If the generated number is less than
Pc, the crossover operation will occur.

Two concepts of “Percentage of young population” and
“Population ratio” are declared to be used in the calculation
of Pc parameter.

Pseudo Code 2 Calculation of crossover probability
if (ChromosomeCount < 2)
Pc=0

else
Pc=N ×A

2.5.1 Percentage of Young Population

Percentage of young population is denoted by A and calcu-
lated by the Eq. (5).

A =
∑

TT Lchromosomes

ChromosomeCount
× 1

MaxLi f e
(5)

In the first part of Eq. (5), the average age of chro-
mosomes is calculated, which is certainly a number be-
tween zero and MaxLife. Then by division of this value to
MaxLife, a number between zero and one is obtained which
is Percentage of young population.

The closer the value of A is to zero, the older is the
population. The closer this value is to one, the younger is
the population, i.e. the average TTL of population become
closer to zero or MaxLife.

2.5.2 Population Ratio

Population ratio is denoted by N and calculated by the
Eq. (6).

N =

√
1 − (

ChromosomeCount
MaxChromosome

)2 (6)

As the Eq. (6) shows, the value of N is between zero

MEHRAFSA et al.: A TIMED-BASED APPROACH FOR GENETIC ALGORITHM: THEORY AND APPLICATIONS
1311

Fig. 6 Crossover probability as a function of population size and average
of chromosome’s TTL.

and one. Initially, when the ChromosomeCount is zero, the
value of N is one. As the algorithm execution advances and
the population size gets closer to the MaxChromosome, then
the value of N tends to zero.

Of course, any other equation which controls the pop-
ulation size can be used instead of Eq. (6).

2.5.3 Crossover Probability

Crossover probability (Pc) depends on Percentage of young
population (A) and Population ratio (N). According to these
two parameters, the probability of crossover in each time
unit will be as shown in Pseudo code 2:

Since the crossover operation requires at least two
chromosomes, if the number of chromosomes is less than
two, then the crossover probability becomes zero (the first
section of Pseudo code 2). Otherwise, crossover probability
is calculated based on the values of A and N.

Figure 6 illustrates the crossover probability as a func-
tion of population size and average of chromosome TTL
which is based on Eqs. (5) and (6).

2.6 Mutation Operator

Genetic similarity of parents increase the probability of mu-
tation. The mutation operator is applied to a chromosome
exactly the same as GA. Only the offspring chromosomes
may be mutated and mutation probability has a direct re-
lationship with parent similarity. The parent similarity is
defined as the ratio of the number of similar genes to the
total number of genes in their alphabet string. Thus, the par-
ent similarity is calculated after the crossover operation, and
the result is used as the probability of mutation on the off-
spring chromosomes. Therefore, the more similar the chro-
mosomes participating in crossover operation are, the higher
is the probability of mutation on offspring chromosomes.

This type of mutation decreases the percentage of bar-
ren mutations which do not have any effect on the improve-
ment of the answer.

2.7 Selection Method

Any selection algorithm can be used to select chromosomes

as parents for crossover operation. However, unlike the GA,
in the proposed algorithm the fitness value is not the param-
eter which determines the selection probability of the chro-
mosomes. In the proposed algorithm, the chance of chromo-
somes to be selected as a parent in the crossover operation
has a relationship with the TTL and LCT parameters. The
selection probability is calculated in Pseudo code 3.

Pseudo Code 3 Calculation of the chance of chromosomes
to be selected as a parent for crossover operation
if LCT(Chromosome[i]) = CurrentTime
Selection Probability(Chromosome[i]) = 0

if LCT(Chromosome[i]) = -1
Selection Probability(Chromosome[i]) = TTL(Chromosome[i])+ (Cur-

rentTime -BrithTime(Chromosome[i]))
else

Selection Probability(Chromosome[i]) = TTL(Chromosome[i]) + (Cur-
rentTime - LCT(Chromosome[i]))

When a chromosome is selected for the crossover op-
eration, its LCT value changes to current time value. Hence,
the first section of Pseudo code 3 prevents the parent chro-
mosomes to be the same. According to the second section of
Pseudo code 3, the greater is the chromosomes TTL and the
more time lapses from the last crossover time, the higher
is chance of chromosome for selection as a parent in the
crossover operation.

Now by using a regular selection algorithms such as
Roulette Wheel Selection, Rank Selection and etc. and using
the above parameters, the parents for crossover operation
can be selected.

2.8 The Procedure of Algorithm in a Time Unit

The generator unit starts up the time of algorithm by gener-
ating the first chromosome.

In each time interval, algorithm procedure begins by
checking current population size. If conditions of the gen-
erator are satisfied, a new chromosome would be generated
(Sect. 1 of Fig. 7).

The next step of each time interval is the crossover
operation. If the population size is less than two (Sect. 2
of Fig. 7), the algorithm enters the interval finishing step.
Otherwise, if the population size is greater than two, the
crossover operation will be performed with the probability
of Pc. But, if the crossover operation does not occur, the
algorithm goes to the interval finishing step. The selection
method used for choosing the parents of the crossover oper-
ation has been explained in Sect. 2.7.

The time interval is continued by mutation operation.
For muting an offspring, a uniformly distributed random
number between zero and one is generated. If the gener-
ated number is greater than parent similarity percentage of
that chromosome, the mutation will occur and the mutated
chromosome will be added to the population; otherwise, the
offspring will be added directly to the population.

1312
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011

Fig. 7 Algorithm flowchart in a time unit.

Each time interval is finished with the interval finish-
ing step. At the interval finishing step, the algorithm re-
moves dead chromosomes (chromosomes with zero or neg-
ative TTL). Then the algorithm procedure in this time unit
ends, and the algorithm enters the next time unit.

3. Experiments and Results

3.1 TGA vs. GAVaPS

In the GAVaPS algorithm, a parameter called lifetime is as-
signed to each chromosome which expresses its life time.
At the moment of generating a chromosome, a fixed value
is assigned to this parameter which is based on the current
state of the algorithm and average fitness of population. The
goal of this parameter is to vary the size of population, so if
the difference of best and average fitness of population gets
higher, the population size increases which enable the algo-

rithm to search larger state spaces. When the algorithm best
fitness gets closer to the optimal answer, the population size
decreases to save the computing resources.

This method of lifetime allocation could cause some
problems. Previously allocated lifetime might wrongly af-
fect the forthcoming state of algorithm, which has different
conditions and average fitness. In the problems in which
almost all the chromosomes have the same value of fitness
with different alphabet string, the allocation of lifetime on
basis of the average fitness of total population will make
the algorithm such a non-efficient and computation-wasting
algorithm that it may face premature convergence. The al-
gorithm will reduce the size of population because of deter-
mination of the sufficient convergence in the population, for
the average fitness and best fitness values are close to each
other. Therefore, the answer becomes difficult to achieve. In
other words, the potential of GAVaPS algorithm for stagna-
tion will be higher.

In the proposed TGA (Timed-GA) algorithm, a param-
eter called TimeToLive is considered for each chromosome.
The TimeToLive parameter for a chromosome is a time du-
ration in which it could participate in the process of the al-
gorithm. Its value has a direct relationship with the fitness of
the chromosome and inverse relationship with the difference
of the worst fitness and best fitness of the whole population.
The value of this parameter will change for all chromosomes
whenever a new optimal answer is found in the algorithm.
The change of worst fitness will also change the parameter
value.

The goal of this parameter is to make an ideal con-
vergence while keeping the progress of the algorithm away
from stagnation. Thus, after sufficient convergence in the
population, the population will have a dynamic average fit-
ness with relatively constant variance in the process of al-
gorithm. This will keep the dynamism of algorithm while
maintaining its convergence sufficiently and stably.

Moreover, the algorithm search for the optimum an-
swer without facing any premature convergence and stag-
nation by using fixed computational resources and memory,
which is one of the features of non-systematic search algo-
rithms. Hence, a reasonable algorithm is achieved which
uses GA operators to speed up reaching the optimal answer
while using random search algorithm feature which main-
tains the possibility of reaching better answers by continua-
tion of algorithm execution.

The amount of population in the proposed algorithm
can not be more than a certain value, and whenever the dif-
ference between best fitness and the worst fitness becomes
higher, then the destruction of the defected chromosomes
will speed up automatically, so the algorithm survives any
chromosome production which converges the algorithm in
the wrong way, i.e. the algorithm converges to local opti-
mum instead of global optimum. The sudden destruction
of defected chromosomes may result in population decline,
which will be compensated by restarting the generator unit.

MEHRAFSA et al.: A TIMED-BASED APPROACH FOR GENETIC ALGORITHM: THEORY AND APPLICATIONS
1313

3.2 Problems

Test problems used for comparing proposed TGA algorithm
with other algorithms contain different types of examples
which behave differently in optimization problems. Each
problem has been executed for twenty times and they termi-
nate if there is no progress in terms of the best value found
for 10,000 consecutive time units.

There are eight test problems. The first five problems
are maximization problems and the rest are minimization
problems. In addition to SGA (Simple Genetic Algorithm),
The results of the first four problems are compared with
GAVaPS [8]. These three algorithms (TGA, SGA, GAVaPS)
use the same encoding method. Fixed-point method is used
for storing a decimal number as a binary-encoded and the
length of chromosomes are twenty.

For the SGA results, the same method is applied. The
different is that when the algorithm is fully converged, its
execution stops. In the result tables, SGA (1) shows the
average results of SGA for 20 runs. For the first four
problems, the results are obtained from [8], and for the re-
maining problems, the results are obtained from the self-
implemented SGA using the same approach. SGA (2) in-
dicates the best result of SGA run through 20 runs for that
problem obtained from self-implemented SGA. For legi-
bility of Time-Fitness diagrams of TGA, results have been
truncated until the algorithm reaches the best fitness. It
should be mentioned that for the problems in which the SGA
results do not exist in [8], the results are obtained from a
similar implementation of those problems.

It should be mentioned that only the optimum answers
of all algorithms have been compared. However, the time
need to achieve the optimal answer in the TGA cannot be
compared with the generation numbers in the SGA, because
the number of chromosomes which have been processed in
each time unit of TGA is less than that of each generation in
other genetic algorithms.

3.2.1 Finding the Maximum Value of G1 Function

In this problem, a one-dimensional function with a large
number of local maximum is studied, which is shown in
Fig. 8.

During maximizing such a function, two directions of
growth can easily be recognized, but the boundaries are cho-
sen in such a way that a global maximum is obtained for
only one of them.

According to the length of binary chromosomes
(twenty bit), the value of possible optimal answer is
2.95032.

G1(x) = −x sin(10πx) + 1 − 2.0 ≤ x ≤ 1.0 (7)

Table 1 and Fig. 9 show the results of maximizing
Eq. (7).

Fig. 8 Diagram of G1 function.

Table 1 Maximization results for G1 function.

Approach Best Fitness
TGA 2.95032

SGA(1) 2.814
SGA(2) 2.95030
GAVaPS 2.841

(a)

(b)

Fig. 9 Algorithm run for problem 3.2.1 (a) TGA (b) SGA.

3.2.2 Finding the Maximum Value of G2 Function

Function G2 cannot be optimized by means of any gradi-
ent technique, since there is no gradient information avail-
able. In this problem, population has been converged imme-
diately, so GAVaPS algorithm reduces the population size
quickly instead of trying to search another part of state
space, and the continuation of search become ineffective.

The SGA converges more quickly for this problem too
and continuation of the algorithm execution cannot improve
the answer.

1314
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011

Fig. 10 Diagram of G2 function.

Table 2 Maximization results for G2 function.

Approach Best Fitness
TGA 1

SGA(1) 0.875
SGA(2) 0.875
GAVaPS 0.875

The TGA has shown its efficiency to solve this prob-
lem, since it is far from stagnation. It can find the optimum
answer in all its twenty executions.

Another feature of this problem is that, the G2 function
has only one maximum point in the given boundaries. The
value of this maximum point has a big difference from the
value of other points. Therefore, there is only one chromo-
some with the best fitness, which in terms of alphabet string
has a big difference from the other chromosomes.

Considering Fig. 10, the value of function G2 in the in-
terval [0.875, 1) is 0.875, so all chromosomes have the same
fitness values in this interval; then the algorithm should
search all the state space to reach the optimal answer. This
feature is satisfied by TGA as well.

G2(x) =
[8x]

8
0.0 ≤ x ≤ 1.0 (8)

Table 2 and Fig. 11 show the results of maximizing
Eq. (8).

3.2.3 Finding the Maximum Value of G3 Function

The G3 function as illustrated in Fig. 12, is another decep-
tive problem like G1 function but a nonlinear one.

G3(x) = |x| − 1.0 ≤ x ≤ 2.0 (9)

Table 3 and Fig. 13 show the results of maximizing
Eq. (9).

3.2.4 Finding the Maximum Value of G4 Function

This function as shown in Fig. 14, has many local maximum
and minimum points close to each other like G1 function
and in the neighborhood of global minimum and maximum

(a)

(b)

Fig. 11 Algorithm run for problem 3.2.2 (a) TGA (b) SGA.

Fig. 12 Diagram of G3 function.

Table 3 Maximization results for G3 function.

Approach Best Fitness
TGA 2

SGA(1) 1.992
SGA(2) 2
GAVaPS 1.999

points, the distance between local maximum and minimum
points becomes smaller.

G4(x) = 0.5+
sin(
√

x2 + y2)2

(1 + x2+y2

1000)2
−100.0 ≤ x ≤ 100.0 (10)

Table 4 and Fig. 15 show the results of maximizing
Eq. (10).

3.2.5 The Extended Knapsack Problem

The classic knapsack problem is extended to become a
multi-object optimization problem with two limitations. In
order to reach this approach, there is a set of n items with
definite weight and value.

The goal is to choose a subset of these items in which

MEHRAFSA et al.: A TIMED-BASED APPROACH FOR GENETIC ALGORITHM: THEORY AND APPLICATIONS
1315

(a)

(b)

Fig. 13 Algorithm run for problem 3.2.3 (a) TGA (b) SGA.

Fig. 14 Diagram of G4 function.

Table 4 Maximization results for G4 function.

Approach Best Fitness
TGA 0.996987

SGA(1) 0.959
SGA(2) 0.93751
GAVaPS 0.972

their total weight is minimized and their total value is maxi-
mized. Moreover, their total weight should not violate a cer-
tain Wmax value, while their total value should be more than
a certain Vmin value. Thus, Eq. (11) is the accumulative fit-
ness function for this problem, which should be maximized.
In this equation list is selected items set, α is coefficient of
value parameter, β is coefficient of weight parameter and m
is size of selected items set.

In the following a knapsack problem for 20 proposed
items is simulated. This example presents a combinational
problem, which have 220 states. Table 5 shows the set of
items with their value and weight. According to the aver-

(a)

(b)

Fig. 15 Algorithm run for problem 3.2.4 (a) TGA (b) SGA.

Table 5 Set of items with their value and weight.

Item value weight Item value weight
N1 1 5 N11 7 51
N2 4 9 N12 16 29
N3 3 7 N13 31 1
N4 2 7 N14 24 63
N5 9 15 N15 22 19
N6 12 21 N16 9 1
N7 7 11 N17 7 74
N8 8 4 N18 13 65
N9 41 2 N19 41 23
N10 16 42 N20 63 23

age weight of items (23.6), and the weight limitation of 70
(Wmax = 70), approximately 3 items could be chosen on av-
erage. On the other hand, according to the average value of
items (16.8), and avoiding the violation of value limitation
of 200 (Vmin = 200), approximately 12 items should be cho-
sen, but the optimal answer which could satisfy these two
limitations contains 6 items, while most of the other states
fail to satisfy the limitation, so they are given penalty. The
failure of SGA in finding the optimal answer proves that this
problem could be considered as a problem with hard limita-
tions. Table 6 and Fig. 16 shows the results of maximizing
Eq. (11). In this simulation α and β are chosen 5 and 2 re-
spectively.

F(list) = α
m∑

i=1

value(i)−β
m∑

i=1

weight(i)−PV−PW (11)

PV =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0

∑m
i=1 value(i) > Vmin

Vmin −∑m
i=1 value(i) otherwise

1316
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011

Table 6 Maximization results for the extended knapsack problem.

method best best value weight
fitness chromosome

TGA 897 00000000100010110011 207 69
SGA(1) -40 10011001110011111110 224 321
SGA(2) -40 10011001110011111110 224 321

(a)

(b)

Fig. 16 Algorithm run for problem 3.2.5 (a) TGA (b) SGA.

PW =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0
∑m

i=1 weight(i) < Wmax

Wmax −∑m
i=1 weight(i) otherwise

3.2.6 Word Guess [4]

It is a simple-word-guess problem which the algorithm is
given the number of letters in a word, and it guesses the
letters that composes the word until it finds the right answer.
In this case, we will use a GA where each letter is given the
integer corresponding to its location in the alphabet (a = 1,
b = 2, etc.). Suppose that the GA must find unknown word
“Colorado”. The fitness function is given by Eq. (12) that
calculate the sum of absolute differences between the codes
of str and pass, in which the str is guessed word by GA and
pass is the word “Colorado”.

F(str) =
8∑

i=1

|str[i] − pass[i]| (12)

Table 7 and Fig. 17 provide the results of minimizing
Eq. (12).

3.2.7 Travelling Salesman Problem [4]

The travelling salesman problem is a permutation problem

Table 7 Minimization results for word guess problem.

method best best
fitness chromosome

TGA 0 2.14.11.14.17.0.3.14
SGA(1) 0 2.14.11.14.17.0.3.14
SGA(2) 0 2.14.11.14.17.0.3.14

(a)

(b)

Fig. 17 Algorithm run for problem 3.2.6 (a) TGA (b) SGA.

Table 8 Cities distance from each other.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
c1 − 10 3 2 5 6 7 2 5 4
c2 20 − 3 5 10 2 8 1 15 6
c3 10 5 − 7 8 3 11 12 3 2
c4 1 2 3 − 5 6 7 8 9 10
c5 1 2 3 4 − 5 10 20 11 2
c6 8 5 3 10 2 − 6 9 20 1
c7 3 8 5 2 20 21 − 3 5 6
c8 5 2 1 25 15 10 6 − 8 1
c9 10 11 6 8 3 4 2 15 − 1
c10 5 10 6 4 15 1 3 5 2 −

in which the goal is to find the shortest path between N dif-
ferent cities that the salesman takes which is called a tour. In
other words, the problem deals with finding a route covering
all the cities so that the total distance traveled is minimal.

For this problem, ten cities have been assumed, which
all are connected to each other. Distances between the cities
have been defined in Table 8.

The purpose of this algorithm is to find the minimum
distance which the salesman should go to cover the whole
cities and each city must be visited once. Thus, the purpose
is to minimize the Eq. (13), in which the path is the order
cites covered by the salesman.

MEHRAFSA et al.: A TIMED-BASED APPROACH FOR GENETIC ALGORITHM: THEORY AND APPLICATIONS
1317

Table 9 Minimization results for travelling salesman problem.

method best best
fitness chromosome

TGA 19 4-9-7-8-2-3-10-6-5-1
SGA(1) 21 5-2-8-3-10-7-1-4-9-6
SGA(2) 21 8-3-10 -9-7-1-4-6-5-2

(a)

(b)

Fig. 18 Algorithm run for problem 3.2.7 (a) TGA (b) SGA.

Table 10 Minimization results for travelling salesman problem using
100 cities.

method best
fitness

TGA 370
SGA(1) 404
SGA(2) 472

F(path) =
9∑

i=1

(distance(path[i], path[i + 1]))

+ distance(path [10], path [1]) (13)

Table 9 and Fig. 18 show the results of minimizing
Eq. (13).

To study the operation of the algorithm in problems
with larger state space, the problem of the travelling sales-
man using 100 cities and an average distance of 20 between
them was examined. The results are shown in Table 10 and
Fig. 19. As the results show, TGA has a better performance
and yield better results than SGA.

3.2.8 Wireless ATM Network [17]

For this Problem, consider a group of cells and a group of
switches in an ATM network (whose locations are fixed and
known). The problem is to assign cells to switches in the
ATM network in an optimum manner. Topological design of
a two-level hierarchical network has been considered. The

(a)

(b)

Fig. 19 Algorithm run for problem 3.2.7 using 100 cities (a) TGA
(b) SGA.

Fig. 20 Two-level hierarchical network.

upper-level network is a connected ATM network, and the
lower-level network is a PCS network which is configured
as an H-mesh (Fig. 20). The assumptions of the problem are
stated as follows:

1) The structures and positions of the ATM network
and cell network are known.

2) Each cell in the cell network will be directly as-
signed and connected to only one switch in the ATM net-
work.

3) The number of calls that can be handled by each cell
per unit time is equal to 1.

4) The capacity of a switch, the number of cells that it
can be assigned, is limited to a constant called Cap.

5) The cost has two components. One is the cost of
handoffs that involve two switches, and the other is the cost
of cabling (or trucking).

6) Minimal switches assumption: the number of
switches assigned is assumed to be minimized.

7) Load balance assumption: The load of assigned

1318
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011

switches is assumed to be balanced. If this load balance
assumption is satisfied, ḿ = [n/Cap] switches need to be
assigned, and the number of cells assigned to switches is
[n/ḿ].

The various notations used here are:
n: total number of cells in the cell network
m: total number of switches in the ATM network
Lik: cost of cabling per unit time and between cell
ci and switch sk

Fi j: cost per unit time of the handoffs that occur
between cell ci and c j

Wi j: weight of edge (ci, c j), where
Wi j = Fi j + F ji, Wi j = Wji, and Wii = 0
Dki: minimal cost between switches sk and si

Cx:number of cells that are connected to the
switch x
Cap: cell handling capacity of the switch
ḿ = �n/Cap�: number of switches that need to be
assigned
α: ratio of the cost of cabling to that of handoff
Thus the objective is to minimize the Eq. (14).

T (v) =
n∑

i=1

Li,v(i) + α

n∑
i=1

n∑
j=1

Wi, j × Dv(i),v(j)

P = β(
ḿ∑

k=1

|Ck −Cap| +
m∑

k=ḿ+1

|Ck |)

F(v) = T (v) + P (14)

Since our problem is the way of connecting cells and
switches, cells are labeled from one to n (the total number
of cells); and switches are labeled from one to m (the total
number of switches). The cell-oriented representation of the
chromosome structure express that the ith cell belongs to the
v(i) switch. P is the penalty measure associated with a chro-
mosome, and β is the penalty weight. Proposed values for
parameters are as follows:

The area is divided into fifty cells (n = 50), including
eight switches (m = 8) with the capacity of ten for each
switch (Cap = 10).

Table 11 and Fig. 21 show the results of minimizing
Eq. (14).

Table 12 Effect of algorithm parameters changes.

Row Description MaxLife LifeStep a b X Best Best fitness
fitness achievement time

1 Proper Initialization 100 1 0.25 0.5 0.25 0.996987 3490
2 Smaller MaxLife 50 1 0.25 0.5 0.25 0.996987 19413
3 Bigger MaxLife 200 1 0.25 0.5 0.25 0.996987 8859
4 Smallest X 100 1 0.25 0.5 0 0.996987 8700
5 Bigger X 100 1 0.25 0.5 0.8 0.996987 13775
6 Lower Range of a, b 100 1 0.1 0.3 0.25 0.996987 19915
7 Higher Range of a, b 100 1 0.7 0.9 0.25 0.996987 26850
8 Wider Range of a, b 100 1 0.15 0.7 0.25 0.996987 6483
9 Narrower Range of a, b 100 1 0.45 0.5 0.25 0.996987 25252
10 Smaller LifeStep 100 0.1 0.25 0.5 0.25 0.996987 6224
11 Bigger LifeStep 100 10 0.25 0.5 0.25 0.996987 30806

3.3 Parameters Effect

In this section, the effect of parameters on the algorithm
functioning is studied. The problem of finding the maxi-
mum value of G4 function as stated in Sect. 3.2.4, with vary-
ing values of its input parameters is solved by the proposed
algorithm (TGA). The results are shown in Table 12. The
first row in Table 12 shows proper initial values for the pa-
rameters. The rest of rows in Table 12 show the behavior of
the algorithm with changing a parameter while keeping the
others unchanged.

• As shown in Sect. 2.2 and Fig. 2, MaxLife is the highest

Table 11 Minimization results for wireless ATM problem.

method best
fitness

TGA 91
SGA(1) 91
SGA(2) 91

(a)

(b)

Fig. 21 Algorithm run for problem 3.2.8 (a) TGA (b) SGA.

MEHRAFSA et al.: A TIMED-BASED APPROACH FOR GENETIC ALGORITHM: THEORY AND APPLICATIONS
1319

TTL value that a chromosome can possibly obtain. As
the value of this parameter increases, so does the life of
the chromosomes, and this enables the chromosomes
to participate in crossover and mutation operations for
longer periods of time. When MaxLife has a low value,
the chromosomes will have a shorter life, acting only
fewer times in the crossover and mutation operations.
The effect of MaxLife parameter in solving the prob-
lem 3.2.4 is explained in rows 2 and 3 of Table 12. It
should be noted that inappropriate value assignment to
MaxLife will only reduce the speed of algorithm.
• As shown in Sect. 2.2 and Fig. 2, the value of parameter

X represents the maximum chance of the worst chro-
mosome participating in the algorithm process. The
closer its value to zero, the lower TTL allocated to bad
chromosomes (chromosomes with fitness values close
to the worst fitness); consequently, they will have less
participation in the algorithm process. On the other
hand, as this value approximates 1, TTL of chromo-
somes with bad fitness values will be closer to the TTL
of chromosomes with better fitness values; and their
participation will be more likewise. Rows 4 and 5 in
Table 12 show the effect of this parameter on the solu-
tion of the problem 3.2.4 by TGA.
• According to the Pseudo code 1 and Fig. 3, a change in

the distance between a and b affects the generator op-
eration period. The effect is such that as the distance
between a and b increases, the generator operates for
longer periods, producing more and more random chro-
mosomes. On the other hand as this distance decreases,
the efficiency of the generator will decrease and fewer
random chromosomes are produced. As a result, the ef-
fect of crossover and mutation operators will be more
prominent in the execution of the algorithm. the effect
of a and b parameter values is shown in rows 6 through
9 of Table 12.
• The effect of LifeStep parameter is addressed in

Sect. 2.4.5. As explained in this section and from the
Eq. (4) and Fig. (5), it can be said that a change in the
value of this parameter, ranging from zero to infinity,
causes a change in algorithm behavior from a genetic
algorithm to a random search one. Row 10 and 11 of
Table 12 explain the effect of this parameter on the so-
lution of problem 3.2.4 by TGA.

3.4 Discussion

In the all applications presented in this paper, the TGA
reaches the optimal answer with only one run, unlike other
genetic algorithms which should be run several times in or-
der to ensure the optimal answer. Unlike the SGA results,
the average Fitness curve in Time-Fitness diagram of the all
problems for TGA, changes dynamically over the time unit
and this guarantees that TGA never stagnates by the contin-
uation of execution.

TGA appears to solve the problems with hard limita-

tions better than other optimization algorithms. This is be-
cause TGA behaves with chromosomes located in the in-
feasible state space of problem much more efficiently. The
problem 3.2.5 proves this as well. For the same problem
shown in Fig. 16, the SGA algorithm stagnates just as the
algorithm starts up.

Unlike other genetic algorithms, TGA guarantees not
to stagnate by the continuation of execution, so we can be
sure that it would search non-searched spaces of problem to
find a better answer if there is any. The problem 3.2.2 proves
this as well.

While searching state space of NP problems by non-
systematic algorithms, where there is no estimation of the
optimal answer, no one can claim finding the final optimum
answer. When solving NP problems with SGA and similar
algorithms, because the execution mostly ends with stagna-
tion, we have to accept the results which are achieved by
several runs. But in TGA, as we never face stagnation, we
should decide on stop time of the algorithm, considering the
computational resources, time constraint and estimation of
problem answer.

4. Conclusion

In this paper, a new algorithm called TGA is introduced
which for the first time defines the concept of time more nat-
urally. Moreover, the mutation operator is used more mean-
ingfully. According to the results of simulated problems,
unlike other genetic algorithms, only one run of proposed al-
gorithm is enough to reach the optimum answer. The results
of TGA algorithm for multi-object optimization are much
better than the results of SGA. For an unskilled user it is
much easier to work with TGA because inaccurate initial-
ization of parameters in TGA only affects the achievement
time of optimal answer, but not the optimal answer itself.

It can be concluded that the proposed algorithm pro-
vides an intermediate solution between genetic and random
search algorithm and uses main features of both such that
the speed of reaching the optimal answer is comparable with
genetic algorithm while avoiding premature convergence or
stagnation like random search algorithm.

References

[1] J.H. Holland, Adaptation in Natural and Artificial Systems, Univer-
sity of Michigan Press, Ann Arbor, 1975.

[2] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, Reading, Addison-Wesley, MA, 1989.

[3] R.S. Zebulum, M.A.C. Pacheco, and M.M.B.R. Vellasco, Evolution-
ary Electronics, Automatic Design of Electronic Circuits and Sys-
tems by Genetic Algorithms, CRC Press, 2002.

[4] R.L. Haupt and S.E. Haupt, Practical Genetic Algorithms, John
Wiley & Sons, 2004.

[5] M. Last and S. Eyal, “A fuzzy-based lifetime extension of genetic
algorithms,” Fuzzy Sets and Systems, vol.149, pp.131–147, 2005.

[6] T. Back, A.E. Eiben, and N.A.L. van der Vaart, “An empirical study
on GAs “without parameters”,” Parallel Problem Solving from Na-
ture, PPSN VI, pp.315–324, 2000.

[7] K. Deb and S. Agrawal, “Understanding interactions among ge-
netic algorithm parameters,” in Foundations of Genetic Algorithm

1320
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011

5, ed. W. Banzhaf and C. Reeves, pp.265–286, Morgan Kaufmann,
San Francisco, CA, 1998.

[8] J. Arabas, Z. Michalewicz, and J. Mulawka, “GAVaPS-a Genetic
Algorithm with varying population size,” Proc. 1st IEEE Conf. on
Evolutionary Computation, pp.73–78, 1994.

[9] G.F. Minetti and H.A. Alfonso, “Variable size population in parallel
evolutionary algorithms,” Proc. 2005 5th International Conference
on Intelligent Systems Design and Applications (ISDA’05), 2005.

[10] T. Hu and W. Banzhaf, “The role of population size in rate of evo-
lution in genetic programming,” EuroGP 2009, LNCS 5481, pp.85–
96, 2009.

[11] X.H. Shi, Y.C. Liang, H.P. Lee, C. Lu, and L.M. Wang, “An im-
proved GA and a novel PSO-GA-based hybrid algorithm,” Inf. Pro-
cess. Lett., vol.93, pp.255–261, 2005.

[12] L. Lanzarini, C. Sanz, M. Naiouf, and F. Romero, “Mixed alterna-
tive in the assignment by classes vs. conventional methods for cal-
culation of individuals lifetime in GAVaPS,” Int. Conf. Information
Technology Interfaces ITI 2000.

[13] A.E. Eiben, E. Marchiori, and V.A. Valko, “Evolutionary algorithms
with on-the-fly population size adjustment,” Parallel Problem Solv-
ing from Nature PPSN VIII, LNCS 3242, pp.41–50, Springer, 2004.

[14] F.G. Lobo and C.F. Lima, “Revisiting evolutionary algorithms with
on-the-fly population size adjustment,” GECCO’06, July 2006.

[15] G.R. Harik and F.G. Lobo, “A parameter-less genetic algorithm,”
Proc. Genetic and Evolutionary Computation Conference (GECCO
1999), pp.258–267, 1999.

[16] A. Roy, S. Pal, and M.K. Maiti, “A production inventory model
with stock dependent demand incorporating learning and inflation-
ary effect in a random planning horizon: A fuzzy genetic algorithm
with varying population size approach,” Comput. Ind. Eng., vol.57,
pp.1324–1335, 2009.

[17] S.N. Sivanandam and S.N. Deepa, Introduction to Genetic Algo-
rithms, Springer Berlin Heidelberg, 2009.

[18] S. Russell and P. Norvig, Artificial Intelligence: A Modern Ap-
proach, 2nd ed., Prentice Hall, 2002.

Amir Mehrafsa was born in 1984 in
Tabriz, Iran. He received his B.Sc., degree
in Computer Engineering from the Univer-
sity of Tabriz in 2010. His interests include
algorithm design, artificial intelligence, com-
puter vision and image processing. E-mail:
a.mehrafsa89@ms.tabrizu.ac.ir

Alireza Sokhandan was born in 1988
in Tabriz, Iran. He received his B.Sc., de-
gree in Computer Engineering from the Uni-
versity of Tabriz in 2010. His interests in-
clude algorithm design, artificial intelligence,
computer vision and image processing. E-mail:
ar.sokhandan89@ms.tabrizu.ac.ir

Ghader Karimian was born in 1975
in Khosrowshar, Iran. He received his B.Sc.,
M.Sc. and Ph.D. degrees in Electrical Engineer-
ing from the University of Tabriz, Amirkabir
University of Technology and Amirkabir Uni-
versity of Technology in 1998, 2000, and 2005,
respectively. He is a faculty member at Elec-
trical Department of University of Tabriz since
2005. His interests include robot vision, target
tracking, image processing, digital signal pro-
cessing and Hardware Design.

