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Least-Squares Independence Test

Masashi SUGIYAMA†,††a), Member and Taiji SUZUKI†††b), Nonmember

SUMMARY Identifying the statistical independence of random vari-
ables is one of the important tasks in statistical data analysis. In this paper,
we propose a novel non-parametric independence test based on a least-
squares density ratio estimator. Our method, called least-squares inde-
pendence test (LSIT), is distribution-free, and thus it is more flexible than
parametric approaches. Furthermore, it is equipped with a model selection
procedure based on cross-validation. This is a significant advantage over
existing non-parametric approaches which often require manual parameter
tuning. The usefulness of the proposed method is shown through numerical
experiments.
key words: independence test, density ratio estimation, unconstrained
least-squares importance fitting, squared-loss mutual information

1. Introduction

Identifying the statistical independence of random variables
is one of the fundamental tasks in statistical data analysis.
Independence tests can be used for various purposes such as
feature selection [9] and causal inference [10].

A traditional independence measure is the Pearson cor-
relation coefficient, which can be used for detecting lin-
ear dependency. Thus, it is useful for Gaussian data, al-
though the Gaussian assumption is rarely fulfilled in prac-
tice. Recently, kernel-based independence measures have
been studied in order to overcome the weakness of the
Pearson correlation coefficient. The Hilbert-Schmidt in-
dependence criterion (HSIC) [4] utilizes cross-covariance
operators on universal reproducing kernel Hilbert spaces
(RKHSs) [7], which is an infinite-dimensional generaliza-
tion of covariance matrices. HSIC allows efficient detection
of non-linear dependency by making use of the reproducing
property of RKHSs [1]. However, HSIC has a critical weak-
ness that its performance depends on the choice of RKHSs
and there is no theoretically justified way to determine the
RKHS properly. In practice, using the Gaussian RKHS with
width set to the median distance between samples is a pop-
ular heuristic [4].

Another popular independence criterion would be mu-
tual information [2]. In this paper, we consider a squared-
loss variant of mutual information and use its estimator
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least-squares mutual information (LSMI) [9] for indepen-
dence test. LSMI is also distribution-free as HSIC, but it is
equipped with a natural model selection procedure based on
cross-validation, which is an advantage over HSIC. Through
experiments, we show the usefulness of the LSMI-based
independence test called least-squares independence test
(LSIT).

2. Least-Squares Independence Test

In this section, we propose a novel non-parametric indepen-
dence test.

2.1 Formulation

Let x (∈ X ⊂ Rdx ) be an input feature and y (∈ Y ⊂ Rdy )
be an output feature, which follow a joint probability distri-
bution with density p(x, y). Suppose we are given a set of
i.i.d. paired samples {(xi, yi)}ni=1. Our goal is to test whether
x and y are statistically independent or not, based on the
samples {(xi, yi)}ni=1.

For independence test, we employ the squared-loss mu-
tual information (SMI) defined as follows:

SMI :=
1
2

�
p(x)p(y)

(
p(x, y)

p(x)p(y)
− 1

)2

dxdy, (1)

where p(x) and p(y) are marginal densities of x and y, re-
spectively. SMI is the Pearson divergence [6] from the joint
density p(x, y) to the product of marginals p(x)p(y), and
SMI is zero if and only if x and y are statistically indepen-
dent. Hence, SMI can be used for detecting the statistical
independence of random variables.

SMI includes unknown probability densities p(x, y),
p(x), and p(y), and thus it cannot be directly computed. A
naive approach is to estimate the densities p(x, y), p(x), and
p(y), and plug the estimated densities in Eq. (1). However,
since density estimation is known to be a hard task and divi-
sion by estimated densities can magnify the estimation error,
we consider estimating the following density ratio function
directly:

r(x, y) :=
p(x, y)

p(x)p(y)
. (2)

Once an estimator of the density ratio r̂(x, y) is obtained,
SMI can be approximated using samples as follows:
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ŜMI :=
1
n

n∑
i=1

r̂(xi, yi) −
1

2n2

n∑
i, j=1

r̂(xi, y j)
2 − 1

2
. (3)

2.2 Least-Squares Mutual Information

Here we explain the least-squares mutual information
(LSMI) method [9], which directly learns r(x, y) from data
samples without going through density estimation of p(x, y),
p(x), and p(y).

Let us approximate the density ratio (2) using the fol-
lowing model:

r̂(x, y) =
b∑
�=1

α�ψ�(x, y) = α�ψ(x, y),

where ψ(x, y) : Rdx ×Rdy → Rb is a non-negative basis func-
tion vector, α (∈ Rb) is a parameter vector, and � denotes the
transpose.

We determine the parameter α so that the following
squared-error J0 is minimized:

J0(α) :=
1
2

� (̂
r(x, y) − r(x, y)

)2 p(x)p(y)dxdy

=
1
2

�
r̂(x, y)2 p(x)p(y)dxdy

−
�

r̂(x, y)p(x, y)dxdy + Const.

Let us denote the first two terms by J. Since J contains the
expectations over unknown densities p(x, y), p(x), and p(y),
we approximate the expectations by empirical averages. By
including an �2-regularizer, the LSMI optimization problem
is formulated as follows.

α̂ := argmin
α∈Rb

[
1
2
α�Ĥα − α� ĥ +

λ

2
α�α

]
, (4)

where λ (≥ 0) is the regularization parameter that controls
the strength of regularization, and

Ĥ:=
1
n2

n∑
i, j=1

ψ(xi, y j)ψ(xi, y j)
�, ĥ :=

1
n

n∑
i=1

ψ(xi, yi).

The solution α̂ can be analytically obtained as

α̂ = (Ĥ + λIb)−1 ĥ, (5)

where Ib is the b-dimensional identity matrix. Finally, the
density ratio estimator r̂(x) is given by

r̂(x) := α̂�ψ(x).

Once a density ratio estimator r̂(x, y) is obtained, SMI can
be approximated by Eq. (3).

Thanks to the analytic-form expression, LSMI is com-
putationally very efficient. Furthermore, the above least-
squares density ratio estimator was shown to possess the
optimal non-parametric convergence rate and optimal nu-
merical stability [5], [8].

2.3 Basis Function Choice and Model Selection

Given that both {xi}ni=1 and {yi}ni=1 are normalized so that ev-
ery element of x and y has unit variance, we use the follow-
ing basis functions:

ψ�(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(
−‖x−x�‖2

2σ2

)
exp

(
−‖y−y�‖2

2σ2

)
for regression,

exp
(
−‖x−x�‖2

2σ2

)
δ(y = y�)

for classification,

where δ(c) = 1 if the condition c is true; otherwise δ(c) = 0.
We may also include a constant basis function φ0(x, y) = 1
to the above kernel basis functions.

The practical performance of LSMI depends on the
choice of the kernel width σ and the regularization parame-
ter λ. Model selection of LSMI is possible based on cross-
validation with respect to the criterion J. More specifically,
the sample set Z = {(xi, yi)}ni=1 is divided into M disjoint
sets {Zm}Mm=1. Then an LSMI solution r̂m(x) is obtained us-
ingZ\Zm (i.e., all samples withoutZm), and its J-score for
the hold-out samplesZm is computed as

Ĵ CV
m :=

1
2|Zm|

∑
(x,y)∈Zm̂

rm(x, y)2 − 1
|Zm|

∑
(x,y)∈Zm̂

rm(x, y),

where |Z| denotes the number of elements in the setZ. This
procedure is repeated for m = 1, . . . ,M, and the average
score Ĵ CV := 1

M

∑M
m=1 Ĵ CV

m is computed. Finally, the model
(the kernel width σ and the regularization parameter λ in
the current setup) that minimizes Ĵ CV is chosen as the most
suitable one.

2.4 Permutation Test

Our independence test procedure is based on the permuta-
tion test [3].

We first run LSMI using the original datasets Z =
{(xi, yi)}ni=1, and obtain an SMI estimate ŜMI(Z). Next,
we randomly permute {yi}ni=1 and form a shuffled dataset

Z̃ = {(xi, yτ(i))}ni=1, where τ(·) is a randomly chosen per-
mutation function. Then we run LSMI again using the
randomly shuffled dataset Z̃, and obtain an SMI estimate
ŜMI(Z̃). Note that the random permutation eliminates the
dependency between x and y (if exists), so ŜMI(Z̃) would
take a value close to zero.

This random permutation procedure is repeated many
times, and the distribution of ŜMI(Z̃) under the null-
hypothesis (i.e., x and y are independent) is constructed. Fi-
nally, the p-value is approximated by evaluating the relative
ranking of ŜMI(Z) in the distribution of ŜMI(Z̃). We re-
fer to this procedure as the least-squares independence test
(LSIT).

A MATLAB R© implementation of LSIT is available
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from http://sugiyama-www.cs.titech.ac.jp/˜sugi/software/
LSIT/.

3. Experiments

In this section, we report experimental results.

3.1 Numerical Illustration

First, we illustrate how the proposed LSIT method behaves
using the following toy datasets with one-dimensional input
x and one-dimensional output y:

(A) Regression: For x ∼ U(−20, 20) where U(a, b) denotes
the uniform distribution on (a, b),

y ∼
⎧⎪⎪⎨⎪⎪⎩U(−1, 1) (Independent),

N(sin(20x/π), 1) (Dependent),

where N(μ, σ2) denotes the normal distribution with
mean μ and variance σ2.

(B) Classification: For y ∼ B(0.5) where B(p) denotes the
binomial distribution on {−1,+1} with probability of
having +1 being p,

x ∼
⎧⎪⎪⎨⎪⎪⎩0.5N(−1, 1) + 0.5N(1, 1) (Independent),

N(y, 1) (Dependent).

Examples of realized samples are plotted in Fig. 1 for
n = 100, where {xi}ni=1 and {yi}ni=1 are normalized to have

unit variance. Figure 2 depicts the distributions of ŜMI(Z̃)
and the value of ŜMI(Z). The graphs show that reasonable
p-values were obtained for all the four cases. Figure 3 de-
picts the p-values and the frequency of accepting the null
hypothesis (i.e., x and y are independent) as functions of the
sample size n. The graphs show that LSIT works reasonably
well.

3.2 Performance Comparison

Here we compare the performance of LSMI and HSIC un-
der the common permutation-test framework. HSIC is the
state-of-the-art measure of statistical independence utilizing
Gaussian kernels [4]. The performance of HSIC depends
on the choice of the Gaussian width, and to the best of our
knowledge, there is no theoretically justified method to de-
termine the kernel width. Here we use a standard heuristic of
setting the Gaussian width to the median distance between
samples, which was also adopted in the original paper [4].

We generate data samples by[
x
y

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x′
y′

]
,

where

x′ ∼ 0.5N(−1, 1) + 0.5N(1, 1),

y′ ∼ 0.5N(−2, 1) + 0.5N(2, 1).

(a) Regression/Independent (b) Regression/Dependent

(c) Classification/Independent (d) Classification/Dependent

Fig. 1 Toy datasets.

(a) Regression/Independent (b) Regression/Dependent

(c) Classification/Independent (d) Classification/Dependent

Fig. 2 Distributions of ŜMI(Z̃) (randomly shuffled samples) for the toy
datasets. ‘×’ denotes the value of ŜMI(Z) (original samples).

Fig. 3 Experimental results for the toy datasets. Left: Mean and standard
deviation of p-values over 100 runs. Right: The frequency of accepting the
null hypothesis over 100 runs under the significance level 0.05.

Thus, (x, y) are rotation of (x′, y′) by angle θ. We conduct
experiments for θ = 0 (i.e., x and y are independent) and
θ = π/8 (i.e., x and y are dependent). Data samples {xi}ni=1
and {yi}ni=1 are normalized to have unit variance (see Fig. 4).

The results plotted in Fig. 5 show that the proposed
LSIT has comparable type-I error (rejecting correct null-
hypotheses) to HSIC, with far smaller type-II error (accept-
ing incorrect null-hypotheses).

Next, we vary the Gaussian width of HSIC and eval-
uate how the performance is changed. In Fig. 5, ‘HSIC(c)’
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Fig. 4 Rotation datasets. x and y are independent
if θ = 0, and they are dependent when θ = π/8.

Fig. 5 Experimental results for the rotation
datasets. Frequency of accepting the null hy-
pothesis over 100 runs under the significance
level 0.05 is depicted.

Fig. 6 Experimental results for the MNIST
datasets. Frequency of accepting the null hy-
pothesis over 50 runs under the significance
level 0.05 is depicted.

denotes HSIC with Gaussian width multiplied by c. The
results show that, although the type-I error does not really
change with respect to c, the type-II error is heavily affected
by the choice of the Gaussian kernel width. For this dataset,
the median heuristic does not work well, and c = 1/2 works
the best. However, the optimally-tuned HSIC is still outper-
formed by the proposed LSIT, which is automatically tuned
based on cross-validation and does not involve manual pa-
rameter tuning.

Finally, we use the MNIST handwritten digit dataset
for further performance evaluation. Each digit image (rep-
resenting an integer in {0, 1, 2, . . . , 9}) consists of 784 (=
28 × 28) pixels, each of which takes an integer value be-
tween 0 to 255 representing its intensity level in gray-scale.
Here, we label the data as ‘small’ for digits ‘0’, ‘1’, ‘2’,
‘3’, and ‘4’, and ‘large’ for digits ‘5’, ‘6’, ‘7’, ‘8’, and ‘9’.
We randomly choose 250 samples and randomly shuffle the
label of 250(1 − η) samples. Thus, increasing η from 0 to
1 corresponds to increasing the dependence between digit
patterns and labels.

The results are plotted in Fig. 6, showing that the pro-
posed LSIT has slightly larger type-I error (i.e., lower ac-
ceptance rate when η = 0) than HSIC, but the type-II error
of LSIT is slightly smaller than HSIC (i.e., lower acceptance
rate when η > 0). For this dataset, the optimally-tuned HSIC
(c = 1/2) slightly outperforms automatically-tuned LSIT.

4. Discussions and Conclusions

We proposed a novel non-parametric method of indepen-
dence test based on an estimator of a squared-loss variant
of mutual information called least-squares mutual informa-
tion [9]. The proposed method, which we called the least-
squares independence test (LSIT), can overcome the limita-
tion of the state-of-the-art method, the Hilbert-Schmidt inde-
pendence criterion (HSIC) [4], which is not equipped with
a model selection procedure of the Gaussian kernel width.

Through experiments, we confirmed that the proposed LSIT
compares favorably with the HSIC-based independence test.

Acknowledgment

MS was supported by SCAT, AOARD, and the JST
PRESTO program. TS was supported by MEXT Grant-in-
Aid for Young Scientists (B) 22700289.

References

[1] N. Aronszajn, “Theory of reproducing kernels,” Trans. American
Mathematical Society, vol.68, pp.337–404, 1950.

[2] T.M. Cover and J.A. Thomas, Elements of Information Theory,
2nd ed., John Wiley & Sons, Inc., 2006.

[3] B. Efron and R.J. Tibshirani, An Introduction to the Bootstrap,
Chapman & Hall, 1993.

[4] A. Gretton, K. Fukumizu, C.H. Teo, L. Song, B. Schölkopf, and A.
Smola, “A kernel statistical test of independence,” in Advances in
Neural Information Processing Systems 20, pp.585–592, 2008.

[5] T. Kanamori, T. Suzuki, and M. Sugiyama, “Condition number anal-
ysis of kernel-based density ratio estimation,” Tech. Rep., arXiv,
2009.

[6] K. Pearson, “On the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such
that it can be reasonably supposed to have arisen from random sam-
pling,” Philosophical Magazine, vol.50, pp.157–175, 1900.

[7] I. Steinwart, “On the influence of the kernel on the consistency
of support vector machines,” J. Machine Learning Research, vol.2,
pp.67–93, 2001.

[8] T. Suzuki and M. Sugiyama, “Sufficient dimension reduction via
squared-loss mutual information estimation,” International Confer-
ence on Artificial Intelligence and Statistics, pp.804–811, 2010.

[9] T. Suzuki, M. Sugiyama, T. Kanamori, and J. Sese, “Mutual infor-
mation estimation reveals global associations between stimuli and
biological processes,” BMC Bioinformatics, vol.10, no.1, p.S52,
2009.

[10] M. Yamada and M. Sugiyama, “Dependence minimizing regres-
sion with model selection for non-linear causal inference under
non-Gaussian noise,” AAAI Conference on Artificial Intelligence,
pp.643–648, 2010.


