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Scene Categorization with Classified Codebook Model

Xu YANG'?, De XU", Songhe FENG', Yingjun TANG'", Nonmembers, and Shuoyan LIU", Student Member

SUMMARY  This paper presents an efficient yet powerful codebook
model, named classified codebook model, to categorize natural scene cat-
egory. The current codebook model typically resorts to large codebook to
obtain higher performance for scene categorization, which severely limits
the practical applicability of the model. Our model formulates the code-
book model with the theory of vector quantization, and thus uses the fa-
mous technique of classified vector quantization for scene-category mod-
eling. The significant feature in our model is that it is beneficial for scene
categorization, especially at small codebook size, while saving much com-
putation complexity for quantization. We evaluate the proposed model on
a well-known challenging scene dataset: 15 Natural Scenes. The exper-
iments have demonstrated that our model can decrease the computation
time for codebook generation. What is more, our model can get better per-
formance for scene categorization, and the gain of performance becomes
more pronounced at small codebook size.

key words: codebook model, codebook generation, visual words, classified
vector quantization, scene categorization

1. Introduction

Today, digital images are ubiquitous, which implies the ne-
cessity of automatic image indexing by their semantic con-
tent. In this paper we address the problem of categorizing
an image into one scene category (e.g. forest, coast, street,
etc.), that has high potential for many applications, such as
image database browsing, image retrieval, and object recog-
nition. In the last decade, the popular codebook model (or
bag-of-words model) [1] has shown excellent performance
for visual categorization. Therefore, we focus on modeling
scene categories with the codebook model.

The codebook model treats an image as a histogram of
the “visual words”. Current codebook model has the follow-
ing typical steps. It begins with extracting local image fea-
tures (e.g. SIFT [2] or HOG [3]). Then, a visual codebook
is generated, which divides the feature space into several re-
gions. After that, local features are quantized into discrete
visual words according to the codebook. An image is finally
described as the histogram of the visual words, and scene
types are categorized by classifiers such as SVM. As far as
we know, all previous literatures on the codebook model are
consistent with this framework. We refer to the framework
as the basic codebook model (BCM).

However, one formidable problem that baffles BCM is
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the confliction between the codebook size and the discrim-
inative power for scene categories. A too small codebook
does not discriminate well between scene categories. Hence,
current methods often take several thousands of words to
improve the discriminative power of a codebook model.
However, large codebook size will severely limit the prac-
tical applicability of the model, because of its storage re-
quirement, working memory usage, and the computation
time to generate the codebook [4]. We present classified
codebook model (CCM) for the task of scene categoriza-
tion, inspired by the theory of classified vector quantiza-
tion (CVQ)[5]. As illustrated by Fig. 1, local image fea-
tures have to be classified into several classes before they are
quantized into visual words. As will be seen, compared with
BCM, CCM needs much less computational time for code-
book generation. Furthermore, CCM outperforms BCM for
scene categorization especially at small codebook size. All
these results are thoroughly verified on well-know challeng-
ing scene dataset: 15 natural scenes [6]. We summarize our
contributions as follows.

1) We formulate the codebook model with the theory
of vector quantization (VQ). Therefore, many famous tech-
niques developed in VQ can be effectively applied to the
codebook model.

2) CCM naturally follows the strategy of divide-and-
conquer, which greatly reduces the time complexity of code-
book generation.

3) We classify image features by their perceptual im-
portance. By allocating more visual words to the features
with higher perceptual importance, CCM produces more
compact and discriminatively powerful codebook for scene
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Fig.1  Framework of CCM.
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category.

The paper is organized as follows. In Sect.?2, we for-
mulate the codebook model in context with vector quanti-
zation, which is followed by the problem examination of
BCM. Section 3 describes the principle of the proposed
model, and the key steps involved in the proposed model.
Section 4 presents the experimental results. Finally, this pa-
per is concluded in Sect. 5.

2. Formulation of the Codebook Model
2.1 Vector Quantization Formulation

We formulate the codebook model from the perspective of
vector quantization [7]. VQ is a coding technique that maps
a feature vector of k-dimensional space R* to a finite set
of vectors V: R* — <V, where V = {v;,v,,...,vy},Vv; €
RF i e {1,2,...,N}. In the codebook model, each v; is de-
fined as a visual word, and the set V is the visual codebook,
N is the size of the codebook. Particularly, for the model of
BCM, vector quantization maps each local feature x to one
visual word by nearest neighbor matching, namely,

VO(x,V)=v; & dist(x,v;) < dist(x,v;) (1)

where i € {1,2,...,N},i # j. The final representation of
an image X on codebook V is the frequency histogram of
visual words.

2.2 Problem Examination of BCM

For BCM, current methods typically use clustering algo-
rithms to generate codebook. Particularly, K-means clus-
tering often serves as default algorithm due to mainly its
simplicity. As noted by Jurie [8] and Gemert [9], K-means
tends to place clusters near the most frequently occurring
features. However, features that occurs frequently are not
necessarily the most discriminative for scene categories. For
example, smooth regions (e.g. skies, walls, roads) occur far
more frequently than others region with detail perceptual
features (e.g. edges, faces, signs), but over-frequent features
located in the smooth regions typically contain much less
information than the middle or low frequency features. In
other words, over-frequent features should be allocated less
visual words compared with other informative features.

Another problem suffered by BCM is the time com-
plexity of codebook generation. For large database, the vi-
sual codebook usually contains tens of thousands of visual
words, and the scale of training features will reach tens of
millions. Under the framework of BCM, the time complex-
ity is a nightmare.

3. Classified Codebook Model (CCM)
3.1 Principle of CCM

We present one novel framework of codebook model by us-
ing the theory classified vector quantization (CVQ) [5]. In
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the field of vector quantization, CVQ has shown excellent
performance for image compression at low bit rates. The
theory of CVQ is simple: A vector quantizer benefits from
classifying information source into several subsources [5].
In this paper we extend its application to the codebook
model, and call the poposed model as classified codebook
model. Figure 1 illustrates the main process of CCM. The
key steps involved in CCM are as follows.

3.2 Feature Classification

To clearly demonstrate the approach, we simply classify in-
put features into two classes: smooth class and edge class.
We take dense SIFT descriptor [2] as local image feature,
that describes the information of orientation distribution of
gradients for one local patch of an image. Therefore, to
classify one descriptor, we just need to classify its corre-
sponding patch, by measuring the variance of gradient of
that patch. For each SIFT descriptor, we create a w X w win-
dow as its working patch, and define the variance of gradient
magnitude of the patch as follow:

o= Wiwdii(m(x,y)—ﬁﬁ (2

x=1 y=1

where m(x, y) is the gradient magnitude for pixel at location
(x,y), and m is the average of magnitude in the patch. The
classification rule for a descriptor is defined as

ifo<th,
otherwise

3)

() = smooth class
s\ = edge class

where ¢4 is a threshold determined empirically by user. Our
experiments indicate that lower th value results in more false
detection for edge class, while higher ¢4 value leads to miss
detection for edge class. However, for simplicity we always
set th = 0.001 in our experiment.

3.3 Subcodebook Generation and Quantizaiton

As stated in Sect. 2, BCM tends to assign too many visual
words to smooth class. However, CCM offers a direct way
to allocate small subcodebook size to the smooth class, but
large size to the edge class. By employing K-means cluster-
ing to each class, we generate two subcodebooks, namely,
V', (for smooth class) and V,(for edge class), with the size
of N and N, respectively. In experiments we always set
the parameters N; and N, so as to NIA+,2N2 = 0.8. In CCM, the
quantization step performs in the same manner as BCM (see
Eq. (1)), except that local features belonging to one class
are quantized only into visual words belonging to the same
class. For a input feature x, feature classification is em-
ployed to determine which class the feature belongs to. If
x belongs to class i, then the ith subcodebook is employed
to quantize x by nearest neighbor matching:

VO(x,V,) if x € smooth class

CVO(x,V) = { VO(x,V,) if x € edge class @
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By contrasting Eq. (1) and Eq.(4), it is clear that CCM
reduces the computational complexity of BCM, because
it searches only small subcodebooks instead of the en-
tire codebook, which follows the strategy of divide-and-
conquer.

4. Experiments

We experimentally compare CCM against BCM on well-
know challenging scene dataset: fifteen natural scene cat-
egories from Lazebnik et al. [6]. The dataset consists of
4485 images spread over 15 categories, ranging from natural
scenes like mountains and forests to manmade environments
like offices and stores. Each category contains 212 ~ 410
images, and the average image size is about 250 x 300. All
the experiments on fifteen scene categories are repeated 5
times. Reported values for all experiments correspond to
the average result.

4.1 Local Feature Extraction

This section briefly describes the implementation of extract-
ing features for codebook generation. Following Lazebnik
et al. [6], we randomly select 600 images from the database,
and compute dense SIFT descriptors on overlapping 16 X 16
pixel patches (i.e., w = 16 in Eq.(2)), over a dense grid
sampled over 8 pixels. Consequently, we collect about 1000
descriptors for each image, and totally about 600,000 candi-
date descriptors. To make the computation practically feasi-
ble, we only randomly select 22500 descriptors as training
features. Note that BCM and CCM share the same features
for codebook generation.

4.2 Codebook Comparison

K-means clustering algorithm is applied to the training fea-
tures for codebook generation. We first qualitatively com-
pare the codebook generated by BCM and CCM, by visual-
izing some of local image patches that are clustered together
by K-means in Fig.2. For example, the top-left picture in
Fig. 2 has 36 patches, where all of them correspond to one
visual word in the codebook of BCM. By observing the four
pictures on the top, we can see that the patches from smooth
class and edge class tends to be mixed together. In contrast,
the bottom pictures show that the patches have a more simi-
lar appearance, because patches from smooth class and edge
class have been well classified before generating the code-
book in CCM.

To evaluate the time complexity of codebook gener-
ation for BCM and CCM, we compare their computation
time under different codebook sizes. The sizes we consider
are:{32, 64, 128, 256, 512, 1024}. The experiment is ex-
ecuted by PentiumIV 2.66 GHz machine with 2 GB mem-
ory. Note that for CCM we have added the computation
cost caused by feature classification, although it spends only
small fraction of total computation time. Table 1 shows the
results for BCM and CCM at various codebook sizes. As
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Fig.2  Codebook comparison. Top: some patches that correspond to vi-
sual words from the codebook of BCM. Bottom: ditto, but from the code-
book of CCM.

Table 1  Computational time in seconds for codebook generation of

BCM and CCM with different codebook sizes.

codebook size || 32 | 64 128 | 256 | 512 | 1024
BCM (sec) 66 | 288 | 366 | 483 | 597 | 863
CCM (sec) 60 | 247 | 290 | 361 | 421 561

can be seen, the complexity of BCM grows significantly
with the codebook size, while CCM retains at a reasonable
complexity.

4.3 Comparison of Scene-Categorization Performance

We employ support vector machine (SVM) classifier with
either histogram intersection kernel (HIK) or spatial pyra-
mid matching kernel (SPMK) for scene categorization, be-
cause SVM with HIK and SPMK has shown excellent per-
formance [6]. The complexity for HIK and SPMK compu-
tation is O(n® x N), where n is number of images in train
set, N is the codebook size. Therefore, to study the practical
applicability of CCM, we investigate how the two factors
influence the performance of CCM and BCM.

Firstly, to compare the categorization performance for
BCM and CCM over fifteen categories for various codebook
sizes, we fix n = 1500 by randomly selecting 100 images
per category to composite the train set, and consider fol-
lowing codebook size: N ={32, 64, 128, 256, 512, 1024}.
Table 2 shows the precision for both HIK and SPMK kernel
over various codebook sizes. It is shown that CCM con-
sistently outperforms BCM for both HIK and SPMK. For
HIK kernel, CCM can easily obtain almost the same per-
formance as BCM with half codebook size. Moreover, it
shows a clear advantage of using SMPK over HIK for both
BCM and CCM, which is in line with [6] because SPMK
essentially captures global spatial information at different
resolution.

In Fig. 3 we plot and reproduce the same information
as the Table 2. As illustrated in Fig. 3, increasing the code-
book size increases the categorization performance for both
BCM and CCM, which demonstrate that large codebooks
have more discriminative power for scene categorization.
However, one significant observation from Fig. 3 is that, al-
though CCM always improves categorization performance,
the performance gain of CCM becomes more pronounced
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sults over various train sets. From the figure, we have two
observations: 1) CCM consistently outperforms BCM for all
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Table2  Comparison of categorization precision for BCM and CCM over
various codebook sizes for two SVM kernels.
codebook HIK SPMK
size BCM [ CCM | BCM [ CCM
32 64.50 | 68.20 | 75.61 | 77.29
64 68.50 | 71.86 | 78.29 | 80.30
128 72.09 | 74.37 | 80.00 | 80.57
256 73.83 | 76.24 | 80.44 | 81.07
512 7571 | 77.25 | 80.97 | 81.44
1024 76.11 | 78.63 | 80.77 | 81.24
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Fig.3  Categorization performance comparison between BCM and CCM
over various codebook sizes for two SVM kernels.
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Fig.4  Comparison between BCM and CCM at codebook size N = 32
over various number of images in train set.

for smaller codebook size. For example, when using SPMK
at codebook size 64, CCM achieves largest gain of preci-
sion relative to BCM, whose performance surprisingly al-
most reaches the best performance of BCM with SPMK at
codebook size 512. This is due to the fact that for BCM,
when codebook size is small, BCM concentrates too many
visual words on smooth class, and leads to poor codebook.
By contrast, CCM works quite well and generates more dis-
criminative codebook particularly at small codebook size.
As final experiment, to investigate the robustness of
CCM at small codebook size, we conduct scene categoriza-
tion with different amount of images in train set. We set the
codebook size N = 32, and use eleven train sets with fol-
lowing number of images: n ={75,150,300,450, 600, 750,
900, 1050, 1200, 1350, 1500}. Figure 4 illustrates the re-

train sets and for both SVM kernels. 2) When using smaller
train set, both CCM and BCM degrade their performances,
but the performance gain of CCM relative to BCM remains
fairly stable in this case. When taking all observations into
account, the results indicate that CCM can robustly provide
the highest possible accuracy using relatively small amount
of images in train set and small codebook size.

5. Conclusions

We propose the novel classified codebook model (CCM)
for scene categorization by using classified vector quanti-
zation. The proposed model separates local features into
two classes (smooth and edge) and generates two subcode-
books to form the whole codebook. Compared to BCM,
CCM naturally follows the divide-and-conquer strategy and
thus reduces the time complexity of codebook generation.
What is more, by allocating more visual words to the infor-
mative edge class, CCM can greatly increase the discrimi-
native power for scene categories especially at small code-
book size. The experiments show that CCM outperforms
BCM in both time complexity and scene-categorization per-
formance. However, in this paper only two classes are con-
sidered because we barely focus on validating our model.
In the future we will introduce more complicated schemes
of feature classification in CCM, which should certainly im-
prove the performance of CCM further.
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