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A Statistical Method for Counting Pedestrians in Crowded
Environments
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SUMMARY We propose a statistical method for counting pedestrians.
Previous pedestrian counting methods are not applicable to highly crowded
areas because they rely on the detection and tracking of individuals. The
performance of detection-and-tracking methods are easily degraded for
highly crowded scene in terms of both accuracy and computation time. The
proposed method employs feature-based regression in the spatiotemporal
domain to count pedestrians. The proposed method is accurate and requires
less computation time, even for large crowds, because it does not include
the detection and tracking of objects. Our test results from four hours of
video sequence obtained from a highly crowded shopping mall, reveal that
the proposed method is able to measure human traffic with an accuracy of
97.2% and requires only 14 ms per frame.
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1. Introduction

Counting pedestrians provides useful information for the de-
sign, management and monitoring of large public areas. Pre-
vious computer vision methods for pedestrian counting are
primarily based on the detection and tracking of humans.
Humans are first located by either segmenting foreground
blobs [1]–[3] or by detecting individuals based on their ap-
pearance or shape [4], [5]. Subsequently, the identified hu-
mans are tracked in consecutive frames in order to count the
number of people going past. The previous detection-and-
tracking methods are not adequate for applications in a large
public area because reliable detection and tracking of indi-
viduals in a large crowd is not an easy task. Moreover, as the
population increases, the accuracy decreases and additional
computation time is needed.

We propose an alternative method for pedestrian count-
ing. The proposed method is a statistical approach based on
feature-based regression. Pedestrians are counted using the
relationship between the image features and the number of
people who pass by. To count these people, rather than the
static humans, a spatiotemporal analysis is performed. Be-
cause our method uses a statistical approach that does not
involve detection or tracking, it requires minimal computa-
tion. Moreover, its performance remains stable for varying
traffic levels.
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2. Proposed Method

2.1 Determining Pedestrian Numbers from Image Fea-
tures

For counting pedestrians, we set up a measurement line, or
a virtual gate, in the video frame (Fig. 1 (a)). The virtual
gate was placed orthogonal to the predominant direction of
the pedestrians. Observing the image pixels on the virtual
gate over time creates a spatiotemporal image, with two co-
ordinates corresponding to the time, t, and the linear coordi-
nate along the virtual gate, s. In the spatiotemporal image,
s connects a pixel location (x, y) to the corresponding pixel
on the virtual gate (Fig. 1 (b)).

The number of people passing the virtual gate is ac-
quired by counting the number of people in the spatiotempo-
ral image. Conventional detection techniques are not appli-
cable in a spatiotemporal image because human shapes may
undergo severe deformation (Fig. 1 (b)). As indicated by ar-
rows, human shapes can be: (A) slanted or bent because of
the non-orthogonal directions of movement; (B) elongated
or compressed due to slow or fast moving speeds; or (C) oc-
cluded by other individuals in heavy traffic.

Rather than trying to detect individuals in the spatio-
temporal image, we counted pedestrians statistically using
feature-based regression, which has been successfully used

Fig. 1 (a) Input video frame. The white line indicates the virtual gate.
(b) Spatiotemporal image; (c) Foreground map; (d) Motion vector map
(bright and dark colors correspond to motion directions. Gray corresponds
to a zero motion vector).
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in crowd size estimation [6]–[10]. Feature-based regression
assumes that the number of people in an image is highly
correlated to the total amount of features extracted from the
image. Thus, crowd size is measured by extracting the im-
age features and setting a relationship between the amount
of features and the number of people. Foregrounds, edges,
or textures are commonly used features. In this study, only
foreground pixels were used as image features. We avoided
using any edge or texture features because of their sensitiv-
ity to lighting changes, image resolution and noise levels.
Furthermore, to obtain separate pedestrian counts for oppo-
site directions, we simultaneously examined motion vectors
as image features.

We extracted the foreground pixels and motion vectors
using conventional methods [11], [12]. To avoid unneces-
sary computation, foreground segmentation was performed
only for the pixels on the virtual gate. We examined motion
vectors for every two pixels on the virtual gate, and subse-
quently interpolated them. To compute the motion vectors,
we used 8× 8-sized blocks and three levels of hierarchy. As
a result of the feature extraction, we created a foreground
map, f g(t, s), and a motion vector map, v(t, s), for the spatio-
temporal image. In the foreground map, f g(t, s) is equal to
one when a pixel, s, on the virtual gate belongs to the fore-
ground at time, t, otherwise it is zero. Similarly, the motion
vector map, v(t, s), contains the motion vector for a pixel, s,
on the virtual gate at time, t. Figures 1 (c) and (d) give exam-
ples of the foreground and motion vector maps, respectively.

The upward direction is that which moves away from
the camera, with the downward direction moving toward it.
To provide pedestrian counts for both the upward and down-
ward directions separately, we introduced a passing direc-
tion, k ∈ {+1,−1}. This direction was defined as +1 when
the inner product of the motion vector and the normal vector
of the virtual gate line was equal to or greater than zero and
otherwise as −1.

Based on the assumption that the number of people is
proportional to the amount of image features, the pedestrian
count for a direction, k during the time from ti to t j was
obtained by accumulating extracted image features using the
following formula:

Fk(t1, t2) =
t2∑

t=t1

N∑

s=1

α · ρ(s) · f g(t, s) · δ(k, d(t, s)). (1)

In (1), N is the number of pixels on the virtual gate and
d(t, s) is the passing direction for pixel s at time t. A delta
function, δ(i, j), (which equals one if i = j, but is otherwise
zero) was used to accumulate only the image features in the
same direction. Hence the summation of f g() multiplied by
δ() resulted in the number of foreground pixels of the same
direction that occurred on the virtual gate during times t1
and t2.

The number of foreground pixels was then converted
to the number of pedestrians by introducing two scaling fac-
tors, ρ(s) and α. To determine ρ(s), we modeled humans
as rectangles whose sizes varied linearly with the vertical

image coordinates. The rectangle size for each pixel po-
sition was easily calculated by annotating the human size
manually at several locations and interpolating them. Thus,
pixel s, ρ(s), was set as 1/W(s) · H(s) where W(s) and H(s)
were the width and height of the rectangle. Because the
area covered by a human is generally smaller than its bound-
ing box, another scaling factor, α, was employed to fill this
gap. This was determined using a short video sequence with
a known number of pedestrians.

2.2 Improving Feature Accumulation to Manage Distor-
tions in the Spatiotemporal Domain

As previously mentioned, different moving speeds and di-
rections influence feature observation in the spatiotemporal
domain. For example, a slow-moving person produces more
foreground pixels by taking a longer time to pass through
the virtual gate. To account for the different moving speeds
and directions of travel, the feature accumulation in (1) was
modified to (2):

Fk(t1, t2) =
t2∑

t=t1

N∑

s=1

α · ρ(s) · ‖v(t, s)‖ · |cos θv| · f g(t, s) · δ(k, d(t, s)).

(2)

In this equation, the motion magnitude is multiplied so
as to include the different moving speeds in the measured
pedestrian count. To consider only the motion components
that contribute to pass through the virtual gate, the motion
vector was projected onto a normal vector in the virtual gate;
thus, θv is the angle between the motion vector, v(t, s), and
the normal vector.

Although different pedestrian moving speeds and di-
rections can be accounted for using motion vectors, Eq. (2)
cannot accurately measure high crowd levels. When a scene
is crowded, occlusions occur between individuals that make
foreground pixels less observable. Hence, the pedestrian
count calculated using (2) tended to underestimate the actual
count as the scene became more crowded. To compensate
for these inaccuracies, a nonlinear regression was applied to
the count estimate:

F′k(t1, t2) = a · Fk(t1, t2)b, (3)

where a and b are the regression parameters determined dur-
ing the initial training. Because feature observation loss is
incremented with increasing crowd levels we chose a func-
tion of the power form for the regression. The measurement
duration t2 − t1 was fixed at 60 seconds for all of our ex-
periments because we used the feature accumulation results
of (2) as input in the nonlinear regression. We employed the
gradient descent method as the optimization algorithm for
parameter learning.
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2.3 Advantages of Statistical Analysis in the Spatiotempo-
ral Domain

The pedestrian count explained by (1) expresses the basic
concept of feature-based regression. The number of people
who pass by a measurement line is measured by counting
the number of foreground pixels. The proposed method ex-
tracts the image features from the virtual gate line and ac-
cumulates them for sequential frames. This incremental ac-
cumulation makes the counting process as the same with an
image analysis in the spatiotemporal domain.

This statistical analysis in the spatiotemporal domain
brings some advantages to the proposed method. First, it
greatly reduces the computational burden, as the number of
pedestrians is obtained by extracting the image features and
accumulating them, rather than through the use of detec-
tion or tracking. Furthermore, instead of analyzing a whole
video frame, only the pixels on the virtual gate line are pro-
cessed. Second, the performance of the proposed method
remains stable for highly crowded scenes. The accuracy of
previous detection and tracking methods decreased as the
number of people in a scene increased. The statistic basis of
the proposed method enables the accuracy and processing
times to remain more stable, regardless of the crowd size.

3. Experiments and Discussion

For the evaluation, we used an experimental dataset com-
prised of four hours of video sequences. The video se-
quences were acquired at two different locations in the most
crowded shopping mall in Korea; the video was captured at
15 fps with a frame size of 352 × 240 (Fig. 2). We recorded
the video sequences at two different times (10:00–11:00 AM
and 7:00–8:00 PM) because the characteristics of pedestrian
traffic in the complex building differ depending on the time
of day (early versus late).

As the ground truth for evaluation, the number of peo-
ple passing the virtual gate was counted manually for every
minute. The initial 20 minutes of each sequence was em-
ployed as a training set in order to determine the parame-
ters (i.e., α, a and b), and the remaining 40 minutes of the
video sequences were used for evaluation. The same coeffi-
cients were maintained across all experiments for the video
sequences obtained from the same camera.

The relative accuracy of the proposed method ranged

Fig. 2 Examples of test sequences: (a) Video 1 and (b) video 2.

from 95% to 100%, averaging 97.20% (Table 1). The al-
gorithm required only 13–16 ms to process one frame on an
Intel Pentium IV 2.67 GHz PC. Figures 3 and 4 show the
graphical evaluation results for Videos 1 and 2. The accu-
racy remained stable, in spite of the significant differences
in traffic levels between the video sequences at the differ-
ent times (a minimum of 200, with a maximum of 1,200 for
40 minutes).

The method proposed in this paper is similar to crowd
estimation methods [6]–[10]. Crowd size estimation meth-
ods compute the number of people in a crowd or measure
crowd density using image features. Cho et al. proposed
a method of estimating crowd level using a neural network
and counts of foreground/edge pixels [7]. Their method

Table 1 Evaluation results.

Fig. 3 Evaluation results for video 1.
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Fig. 4 Evaluation results for video 2.

resulted in 93.89% accuracy for sequences of CCTV im-
ages. Celik et al. also used foreground pixels [9]. Their
results only differed from the ground truth by less than or
equal to one person for 86–92% of test images. In [10],
crowd counting was performed using various image features
and Gaussian process regression. For an outdoor video se-
quence of 50 minutes that contained, at most, 46 people in
a frame, their estimate was within 2–3 people of the ground
truth for 91–98% of the test images.

The major difference between the crowd size estima-
tion and the proposed method is that the proposed method
accumulates image features over sequential frames. Crowd
size estimation methods determine the number of people
that exist in a scene. All people produce the same count
in crowd counting, regardless of movement, and the total
pedestrian count cannot be determined using crowd size es-
timation. For example, in [10], the dataset contains 49,885
people; however, this count does not coincide with the actual
number of pedestrians passing through the area, as it is the
total number of people counted from the different images.
Because the proposed method uses an analysis over time, it
can count the number of people who pass by a certain point
over a given period of time.

Compared to previous methods based on human detec-
tion and tracking, the proposed method is much faster and
provides similar or higher accuracy. A blob tracking method
that uses a top-view camera [1] showed a precision of 100%
and a recall of 95% with a processing speed of 12 fps. How-
ever, the test sequence used a total of only 21 pedestrians

with, at most, three appearing on the scene at the same time.
The blob tracking method in [2] showed an absolute error of
less than one person for groups of people from 2 to 11. Even
though this method achieved a real time performance pro-
cessing speed of up to 25 frames per second, the processing
speed reduced to 11 fps as the number of groups in the scene
increased. Zhao et al. employed elliptical human models to
detect pedestrians from a foreground area and to track the
people located [3]. In their experiments, 5.3% of the trajec-
tories could not be tracked properly. Their method was able
to process only two frames per second on a 2.8 GHz PC.
In [4], a human detection method using hierarchical tem-
plate matching attained a detection rate of 90 to 95% with
a small number of false alarms; however, only two to five
frames were processed per second on a Pentium-M 2 GHz
machine. Another detection-based method using shape and
motion cues [5] achieved detection rates of approximately
90%, with a small number of false alarms, for videos ob-
tained at a railway station. With the aid of graphics hard-
ware for fast computation, a real-time performance (20 fps)
was obtained. Conversely, the proposed method required
only approximately 14 ms per frame. The low complexity
is beneficial for complex environments with a large num-
ber of cameras because it helps the algorithm either run on
an embedded system or process multiple inputs on a single
machine.

One limitation of the proposed method is that the accu-
racy could decrease if the camera angle is too far away from
the frontal-view or too close to the side-views. The side-
view produces more occlusions because pedestrians walk
along the main direction of a corridor in most cases. This
form of occlusion easily occurs, even when the scene is
not very crowded, and cannot be analyzed using the non-
linear regression given by Eq. (3). The proposed method
also could produce over-estimates when objects larger than
humans (e.g., cars or carriers) pass by because it does not
distinguish between objects, relying only on low level im-
age features.

4. Conclusions

We proposed a novel method for counting pedestrians. Un-
like previous methods, which count individuals using detec-
tion and tracking, our approach applies a feature-based re-
gression in the spatiotemporal domain. Our method requires
less computation, while providing similar or higher accu-
racy. Moreover, the performance of the proposed method re-
mains stable for video sequences with large crowds. Hence,
the proposed method is highly applicable to systems in com-
plex environments.
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