
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011
137

PAPER

Geometry Splitting: An Acceleration Technique of Quadtree-Based
Terrain Rendering Using GPU

Eun-Seok LEE†a), Nonmember and Byeong-Seok SHIN†b), Member

SUMMARY In terrain visualization, the quadtree is the most frequently
used data structure for progressive mesh generation. The quadtree provides
an efficient level of detail selection and view frustum culling. However,
most applications using quadtrees are performed on the CPU, because the
pointer and recursive operation in hierarchical data structure cannot be ma-
nipulated in a programmable rendering pipeline. We present a quadtree-
based terrain rendering method for GPU (Graphics Processing Unit) execu-
tion that uses vertex splitting and triangle splitting. Vertex splitting supports
a level of detail selection, and triangle splitting is used for crack removal.
This method offers higher performance than previous CPU-based quadtree
methods, without loss of image quality. We can then use the CPU for other
computations while rendering the terrain using only the GPU.
key words: hierarchial data structure, terrain rendering, level of detail,
real-time rendering, quadtree

1. Introduction

Terrain visualization methods have been used in many appli-
cations, such as video games and flight simulations, for rep-
resenting outdoor scenes. In general, because huge datasets
are used in terrain visualization, much memory space and
computation time is required. Therefore, we have to apply
some mesh simplification methods while maintaining image
quality.

A number of researchers have proposed the CLOD
(Continuous Level Of Detail) methods for rendering the
large terrain datasets in real time. The CLOD methods us-
ing hierarchical data structures, such as quadtree [1]–[5], tri-
angle binary tree [6]–[8], longest edge bisection [9], right
triangle hierarchies [10], [11], texture hierarchies [12]–[15]
and vertex hierarchies [16] are usually executed by the CPU.
These methods simplify the geometry efficiently by using
CLOD and VFC (View Frustum Culling).

In recent years, the performance of graphic hardware
has continually improved. A GPU provides much faster
graphic operations and parallel computations, compared to
a CPU. However, there are the bottlenecks between CPU
and video memory. To overcome the communication bot-
tleneck, use of a geometry cache has been suggested [17]–
[19]. Yusov proposed a quadtree-based progressive ren-
dering method which uses optimized patches for GPU [20].
This method provides a balanced terrain patches by caching
the patch geometry in GPU’s memory. The patches will be

Manuscript received October 19, 2009.
Manuscript revised August 13, 2010.
†The authors are with MediaLab, Dept. Computer Science and

Information Engineering, Inha University, Inchon 402–751, Korea.
a) E-mail: elflee77@inha.edu
b) E-mail: bsshin@inha.ac.kr

DOI: 10.1587/transinf.E94.D.137

used across the several scenes. However, since the size of
video memory is limited, a large data requirement may in-
troduce a communication overhead between the CPU and
the video memory. To decrease this overhead, several data
compression methods have been presented [21]–[23]. Dick
proposed a geometry compression and decoding method us-
ing the GPU [24]. This compresses the preprocessed geo-
metric data using the CPU and decodes them in the GPU’s
rendering pipeline using a geometry shader [25]. However,
these methods struggle because of limited cache memory.
To alleviate this problem, Schneider et al. proposed the pro-
gressive transmission of geometry to decrease the commu-
nication time [26]. Livny et al. suggested the use of seam-
less patches for reducing the communication between CPU
and GPU [27]. The predefined patches are stored in a cache
and stitched between triangular tiles that have different LOD
levels.

Geometry clipmap techniques [28]–[32] can render
large terrain datasets by using a clipmap [33]. However,
the LOD level is selected in a world space based on several
quadrilateral regions. Therefore, geometry popping may oc-
cur, caused by inaccurate CLOD computation.

A quadtree [34] which is a hierarchical data structure,
is widely used in terrain rendering. The quadtree-based tri-
angulation methods [1]–[5] can provide higher-quality ter-
rain images easily by the simple error metrics. How-
ever, quadtree cannot be handled by the GPU’s render-
ing pipeline [35]. Therefore, previous methods involving
quadtrees used only CPU-based execution.

A GPU-based LOD method using an STA (Seamless
Texture Atlas) [36] has been suggested, which uses geom-
etry images [37]. Niski et al. proposed a multi-grained
LOD for load balancing between CPU and GPU using an
STA [38]. In this technique, the CPU controls the LOD
by using a quadtree, and the GPU manipulates detail lev-
els using a hierarchical STA. To increase usage of the GPU,
Chang and Shin proposed the ef-buffer [39]. This method
performs most of quadtree-based computation in the GPU’s
rendering pipeline. However, crack removal is still per-
formed on the CPU.

We present a fully GPU quadtree-based terrain-
rendering method that represents the quadtree appropriately
for the GPU’s rendering pipeline. Figure 1 shows the over-
all procedure for our method. The input datum is a height
field of size n × n (n = 2d + 1, where d is the depth of the
quadtree). In a preprocessing step, we generate a quadtree
texture, which stores the surface roughness values for effi-

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

138
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

Fig. 1 Rendering procedure of our method.

cient LOD control. In the rendering step, we calculate the
detail level for each vertex, using the values of quadtree tex-
ture. When a more detailed level for a vertex is required in
the LOD selection step, we split the vertex using the vertex-
splitting method. This step is repeated d times, with the
stream output buffer feeding back its output to the previous
step as input data. After the vertex splitting, each vertex
is converted into a quadrilateral block to generate the ter-
rain mesh. However, adjacent blocks having different levels
will have cracks caused by T-vertices. We use triangle split-
ting to handle this T-junction problem, and the cracks are
removed.

In Sect. 2, we explain the main algorithms of fully GPU
quadtree-based rendering in detail. The acceleration in our
methods is presented in Sect. 3, and experimental results are
given in Sect. 4. Finally, Sect. 5 concludes the paper.

2. Terrain Visualization Using GPU Quadtree

In this section, we present a GPU-based rendering method
for quadtree-based terrain. In conventional quadtree-based
methods, major procedures, such as LOD selection and
VFC, are executed by the CPU. These require much compu-
tation and the rendering speed is slower than that for other
GPU-based methods. Our method provides high perfor-
mance without loss of image quality, because it performs
the entire process in the GPU.

The GPU’s rendering pipeline does not support pointer
and recursive operations. Therefore, hierarchical data struc-
tures cannot be manipulated in the GPU. We suggest ver-
tex splitting and triangle splitting as alternatives to pointer
operations. These are implemented in DirectX10 Shader
Model 4.0 [25] Recursive operations can be substituted by
the stream output stage.

Fig. 2 Computation of geometric errors. (a) shows the vertices included
in a quadrilateral block. They are located at the midpoints of each triangle’s
edge. (b) depicts the five geometric errors δl0 ∼ δl4, which are the distances
between the midpoints of edges of the upper level block and vertices of the
lower level block.

2.1 LOD Selection

In this section, we propose an efficient CLOD method that
reduces geometry popping by using the screen space error
of a vertex and the distance between a viewpoint and the
terrain surface.

In conventional quadtree-based CLOD methods, ge-
ometry popping may occur, caused by geometric errors. The
geometric error value δ can be computed as the distance be-
tween the midpoint of an edge in an upper level block v and
the vertex in a lower level block v′, as shown in Fig. 2. A
block contains five geometric error values at its center and
the midpoints of its four edges.

The surface roughness value σ, which is the maximum
of the geometric errors, is used to compute the screen space
error σ. Figure 3 shows the evaluation of a screen space er-
ror value. In evaluation of the screen space errors, all δs of a
block will be replaced into σ. Then we project all vs and v′s
onto the view plane using the world, view and perspective
projection matrix. We obtain the screen space error values
by evaluating the errors between pairs of projected vertices
v and v′.

Our method uses a threshold τ, representing the toler-
able screen space error, as specified by the user. Using τ,
we can compute a flag value f as shown in Eq. (1). When
the maximum screen space error exceeds τ, f = 1 and the
LOD selection is continued for lower level blocks. Other-

LEE and SHIN: GEOMETRY SPLITTING
139

Fig. 3 Evaluations of the surface roughness value in screen space.

Fig. 4 A parent node’s surface roughness value must be double that of
its child node.

wise, LOD selection stops at that level.

f =

⎧⎪⎪⎨⎪⎪⎩
1 if τ ≤ max(σl

k)

0 if τ > max(σl
k)

where k ∈ [0, 4] (1)

However, lower level blocks may have bigger geomet-
ric errors, causing incorrect LOD selections. Suppose that a
node and its parent node have the same σ values. When a
vertex v of a node is closer to the viewpoint than that of the
parent’s node, the screen space error of the node becomes
bigger than that of its parent. Therefore, LOD selection can
terminate at the parent node, even though the child node has
the bigger screen space error. This incorrect LOD selection
may cause geometry popping. To eliminate these incorrect
LOD selections, we have to consider the distance of blocks
from the view position. We use the boundary sphere P that
covers a block. CP is the center point and RP is the radius of
P. The LOD selection flag f can be rewritten as in Eq. (2),
which determines if traversing the lower level blocks is re-
quired. If the viewing position V is inside the boundary
sphere, while the surface roughness value is not zero, f has
the value of 1.

f =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if |V,CP| − RP < 0, σ � 0

or |V,CP| − RP ≥ 0, τ ≤ max(σl
k)

0 otherwize

where k ∈ [0, 4] (2)

Now we have to consider the maximum screen space
error when V is outside of P. In Fig. 4, the dotted line shows
the difference between the screen space errors of a block
and its child blocks that have the same σ values. We can
compute the maximum distance by locating V at the nearest

Fig. 5 An example of a quadtree texture for which d = 3. The white
texel is the root node, with the others being its lower level texels.

vertex of the block in contact with P. Then we can evalu-
ate the maximum difference, which is the same as the sur-
face roughness value of adjacent child blocks. Therefore,
we have to use a surface roughness value double that of the
child nodes as the block’s surface roughness value, if it is
bigger than the block’s other geometric error values. This
may avoid incorrect LOD selection. Therefore, the surface
roughness values are computed as in Eq. (3).

σl =

{
max(δlk) if l = d

max(max(δlk, δ
l+1 × 2)) if l < d

where k ∈ [0, 4] (3)

2.2 Initialization of Quadtree Texture

A quadtree texture is the texture used for LOD selections
in geometry shader. The resolution of quadtree texture is
same as the resolution of height field data. It stores surface
roughness values of each block. Therefore, the geometry
shader can access the vertices surface roughness values by
using their positions as the texture coordinates.

It does not have to be initialized more than once be-
cause the height field dataset does not change in general.
This texture will be generated and uploaded in the GPU’s
video memory once in the pre-processing step.

Figure 5 depicts an example of a quadtree texture. The
root node is located at the center of the texture. The texture
is subdivided into four square blocks. Then the children of
the root node are stored in the center of the divided blocks.
By continuing these steps d times recursively, the quadtree
texture will be completed.

By using the quadtree texture, LOD selection can be
implemented in the GPU. We can approach the surface
roughness value in the quadtree texture by the position of
the block’s center points.

2.3 Vertex Splitting

Instead of using a quadtree, we will exploit vertex splitting,
which substitutes the pointers and recursive operations. Ver-
tex splitting is performed in the GPU’s rendering pipeline

140
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

Fig. 6 Converting the vertices into quadrilateral blocks. The gray points
are the T-vertices causing cracks.

using a geometry shader and the stream output stage.
In the geometry shader stage, we have a single primi-

tive (a point, a line segment, or a triangle, with or without
adjacency information) as its input. This stage can modify
or delete primitives as well as create new primitives. The
computation will be performed in parallel for each primi-
tive. The stream output stage supplies the vertex data from
the geometry shader stage to one or more buffers in video
memory.

In the vertex-splitting method, the geometry shader
inputs a single vertex, representing the root node of the
quadtree, as an initial value (called the root vertex). The
root vertex is located at the center of the root block. If we
have to search for child nodes according to the value of the
flag f , the geometry shader splits the vertex into four child
vertices. These vertices are located at the centers of the sub-
blocks divided from the root block. In this step, vertices will
be produced and stored in the buffer in the video memory by
the stream output stage. These vertices will then be fed back
into the geometry shader and the process repeated d times.
As a result, a group of vertices representing the subdivided
blocks generated by LOD selection is produced.

The geometry shader performs these operations for
each vertex in parallel. Therefore, this vertex-splitting pro-
cess is faster than the previous quadtree traversal.

2.4 Triangle Splitting for Crack Removal

After the vertex-splitting step, the geometry shader converts
the vertices into quadrangle blocks, as depicted in Fig. 6.
These blocks make up the terrain mesh. However, cracks
may appear at the gaps between blocks at different levels.

In the previous method [39], the crack removal process
was performed by the CPU. We propose to use triangle
splitting, a crack removal method, in the GPU’s rendering
pipeline, using a geometry shader and the stream output
stages.

To remove cracks using the GPU, we have to determine
which blocks cause cracks. When blocks adjacent to a spe-
cific block are at different levels, cracks may occur. To eval-
uate an adjacent block’s level, we generate the four center
points of neighboring blocks that have the same level as the
target block, as shown in Fig. 7. We call these the neighbor
vertices. Because one or more neighbor vertices of a block
can be split in the vertex-splitting method, we split the block

Fig. 7 If the neighboring block is at a lower level, the block is divided
into four triangles. The gray vertex is the neighbor vertex of the block,
which is divided into four triangles.

Fig. 8 The triangle-splitting method is performed in �ABC if the LOD
flag f of the neighbor vertex N is 1.

Fig. 9 Crack removal using triangle splitting. The gray vertices are the
T-vertices.

into four triangles using the geometry shader. These four tri-
angles will be used for crack removal in each direction (up,
down, left, and right).

Triangle splitting, a parallel T-junction method, may be
accomplished only in those blocks that we have divided into
four triangles, as shown in Fig. 8.

We calculate the position of each triangle’s neighbor
vertex. In Fig. 8, the �ABC is the tr of Fig. 7. It finds the
neighbor vertex N. If N’s flag is 1, we find that there is a
T-vertex T at the center of AB. To remove the crack, we
have to split �ABC into �ATC and �T BC. These steps
will be performed recursively in the geometry shader d − 1
times, using the stream output stage as in vertex splitting.
The neighbor vertex of �ATC and �T BC can be computed
as the midpoint of AN and T BM . Figure 9 shows how the
triangle-splitting method executes at triangle tr in Fig. 7.

LEE and SHIN: GEOMETRY SPLITTING
141

3. Further Optimization

The method proposed in Sect. 2 takes long time because
of unnecessary computations and vertex creation. In this
section, we present optimization of our method to enable
speedup.

As shown in Fig. 10, during the vertex-splitting step,
we split each vertex into four vertices. Before splitting a
vertex, we calculate a boundary sphere P for each child ver-
tex. A boundary sphere outside the view frustum represents
a vertex that will never be used again. Therefore, we only
have to create vertices whose P’s are not located outside the
view frustum. Using this method, we can save much com-
putation time via decreased the number of vertices.

Vertex splitting and triangle splitting involve many re-
dundant computations. To reduce this redundancy, we use
the z,w field of the vertex in these computations as a buffer,
which is not used in the original method. We call this a tem-
porary buffer.

Most of the computations in vertex splitting are per-
formed in calculating the child vertex’s coordinates, LOD
selection, and VFC steps. If we have the block size for each
vertex, and the LOD flag f , we can reduce the number of
unnecessary computations.

We store the diagonal length of a block in the z field
of its corresponding vertex. It can be used as the diameter
of the bounding sphere. Since, we use square blocks in the
terrain mesh, we can compute the location of the child vertex
and perform VFC easily.

The w field stores the flag value f (see Sect. 2.1). Dur-
ing the vertex-splitting step, the same LOD selection process
will be repeatedly executed for a vertex for which f is zero
before l = d. By checking the vertex’s w value before LOD
selection, we can reduce the computation.

In triangle splitting, we have to compute the neighbor
vertex and perform LOD selection in every splitting step.
To simplify these computations, we also use the temporary
buffers.

In Fig. 8’s �ABC for example, the z field of vertex C
stores the distance between N and T . Vertex A stores the
predefined direction code (00: Up, 01: Down, 10: Left, and
11: Right) in the z field. This will simplify the computation

Fig. 10 Efficient vertex splitting using VFC. The fourth vertex located
in the bottom right subblock is not created because its boundary sphere P
is outside the view frustum.

of the neighbor vertex, by multiplying C’s z value by 0.5.
While we repeatedly split the triangle, we have to

check every neighbor vertex and its LOD selection, even if
the triangle’s splitting computation is already finished. By
storing the flag f in the w value for vertex C, we can reduce
redundant computation.

4. Experimental Results

All tests were performed on a consumer PC equipped with
an Intel Core 2 Duo E8400 CPU, 4 GB main memory, and
an NVIDIA 9800 GTX (+) graphic card with 1 GB video
memory.

The quadtree texture generation is performed by the
CPU with an application programmed in C#. This process
generates the quadtree texture as a 32-bit bitmap file, which
is used for the main process. We implemented our render-
ing process in C++ and DirectX10 using a 32-bit operat-
ing system. The viewport size is 1024 × 768. Puget Sound
(4097 × 4097) is used as the main dataset. Our rendering
process is using in-core method to show that we can han-
dle the large-sized quadtree in GPU. We can also render the
larger terrain using out-of-core method by using the slices
of the hight field with smaller quadtrees.

Table 1 shows the performance of our method. As the
rendering speed is dependent on the viewing condition, we
measured the rendering speed under two different viewing
conditions, named Far and Near. We also measured render-
ing speed while changing the viewing directions. By using
the Puget Sound dataset, the depth of the quadtree d = 12.
We set the threshold τ for the projected error at one pixel
and a half pixel. A-half pixel for τ represents the case of no
pixel error (see also Eq. (2)). In the Near view, view point
is located at the edge of the terrain in order to check the
worst-case performance of our method. Figure 11 shows
images of these two viewing conditions at τ = 1. Thanks

Table 1 Changes of rendering speed according to viewing conditions
(fps).

viewing Near Far
angle τ = 0.5 τ = 1.0 τ = 0.5 τ = 1.0

0◦ 8 19 8 24
30◦ 39 51 13 27
45◦ 60 74 17 39
60◦ 89 104 22 45
90◦ 170 243 32 72

Fig. 11 Left image shows the result of Far view, and right image shows
that of Near view.

142
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

Table 2 Performance enhancement when applying optimization.

τ with optimization w/o optimization
fps # of triangle fps # of triangle

1.0 51 152 K 0 N/A
3.0 148 67 K 1 1718 K

10.0 501 16 K 3 1143 K

Fig. 12 Result images of the different thresholds. (a) τ = 1.0 (b) τ = 3.0
(c) τ = 10.0.

to VFC, in the Near view, it renders less triangles in com-
parison with Far view. As the viewing angles increase, the
region of terrain included in the view frustum may decrease.
Therefore rendering speed (fps) stiffly increases. The screen
space error may increase when viewing angle gets lower and
distance to terrain becomes shorter as shown in Table 1.

For acceleration, several optimization techniques de-
scribed in Sect. 3 were applied. Table 2 shows the result of

Fig. 13 Result of view frustum culling.

Table 3 Performance of our method when using various datasets.

Dataset d fps # of Triangles
Puget Sound (4 K×4 K) 12 51 152 K

Grand Canyon (4 K×4 K) 12 29 231 K
Grand Canyon (2 K×2 K) 11 54 139 K

Je-ju Island (2 K×2 K) 11 114 83 K
Je-ju Island (1 K×1 K) 10 132 70 K

optimized method when the viewing angle is 30 degree and
the viewing point is close the surface. Also it shows that
frame rate increases when we apply bigger thresholds at the
same viewing condition. Figure 12 shows images according
to threshold values.

Figure 13 shows the wireframe representations of a ter-
rain view applying VFC as the optimization technique. Be-
cause it removes the triangles out of the view frustum, ren-
dering speed dramatically decreases.

Table 3 shows the performance evaluation using vari-
ous datasets. Grand Canyon data is mountainous, and the Je-
ju Island data (The biggest island of korea) is flat. The depth
of the quadtree is in proportion to the size of the datasets.
Experimental result shows that our method can render the
flat dataset much faster. This is because flat terrain can be
simplified more than the mountainous area. Figure 14 shows
the result of various datasets applying our method.

Table 4 shows the CPU usage of our algorithm while
changing viewing conditions with Puget Sound dataset.
Since only the viewing condition is computed in CPU, CPU
usage slightly increases only when the frame rate is very
high.

Without triangle splitting, there might be some cracks
as shown in Fig. 15 (a). Figure 15 (b) shows that all the
cracks are removed when applying our triangle splitting.

When we apply the CPU-based quadtree triangula-
tion [3] to our rendering method, it shows under 10 fps for
Je-ju island dataset (resolution of data is 1025 × 1025, the
τ = 1 and view point is far from the surface). Using an-
other datasets, it takes over 1 second to render an image.
This means that our GPU-based approach is at least 10 times
faster than the CPU-based quadtree method.

LEE and SHIN: GEOMETRY SPLITTING
143

Fig. 14 Result images of the various datasets. (a) Puget Sound (4 K × 4 K). (b) Grand Canyon (2 K ×
2 K). (c) Je-ju Island (1 K × 1 K).

Table 4 CPU usage of our method.

fps CPU usage
19 0%
51 0%
74 0%
104 1%
243 2%

Fig. 15 A comparison of images with (b) and without (a) triangle split-
ting. Our method can remove cracks efficiently.

The previous methods such as geometry clipmap [29]
and Persitant Grid Mapping (PGM) [32] show high render-
ing speed. However, they consider only the distance to sur-
face, they will cause the geo-poppings due to varying screen

Table 5 A comparison of the number of triangles that has the same pixel
errors.

τ PGM Our approach
0 1280 K 627 K
1 540 K 152 K
2 720 K 105 K
3 320 K 67 K

Fig. 16 Comparison of geometry clipmap’s result (a) and our result (b).

space errors. To elliviate these problems, they require lots
of triangles to render a scene. Our approach requires fixed
screen space error, and shows less geo-poppings when using
small threshold value.

144
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

Table 5 shows the maximum screen space error of
PGM and triangles to be rendered comparing with our ap-
proach. It shows our approach can render a scene with
less triangles. Therefore our method can reduce the video
memory consuption than PGM under the same viewing
conditions. We implemented PGM method with C# using
XNA3.0 and we used the Puget Sound (4 K × 4 K) dataset.
We can measure the screen error of PGM by projecting an
original vertex and its corresponding sampled vertex onto
screen and measuring distance of the projected vertices [32].
We measured number of triangles of our method and PGM
with the same viewing condition (viewpoint is near the sur-
face and viewing angle is 30 degree). The maximum screen
space error is referenced by the maximum pixel error of
Puget Sound dateset in 1024 × 768 viewport [32].

We implemented geometry clipmap method in C# us-
ing XNA3.0 and we used the Puget Sound (4 K × 4 K)
dataset. Figure 16 (a) shows the result image of geometry
clipmap and (b) for our method using the same dataset. By
using the distance-based LOD selection, the clipmap-based
method produces blurred images as shown in Fig. 16 (a).
However, since our rendering method considers the mipmap
level using the LOD selection which is used in the vertex
splitting stage, our method shows the higher quality images
in mountainous surface than those of clipmap-based meth-
ods [28]–[31].

5. Conclusions and Future Work

We have presented an efficient quadtree-based terrain-
rendering method that provides higher quality and faster
mesh generation than previous approaches. GPU-based ge-
ometry splitting is used to replace the quadtree. This enables
parallel computation for the nodes and achieves higher per-
formance than previous methods. By using our method, we
can more greatly reduce transmisson of the vertices from
CPU to GPU than the conventional. It can secure times
for uploading the large-sized terrain datasets, and it can also
save the video memory by simplification. In future work, we
will investigate the single-pass algorithm for higher perfor-
mance with frame coherency in various viewing conditions.

Acknowledgment

This work was supported by INHA university research
grant.

References

[1] P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N. Faust, and G.
Turner, “Real-time continuous level-of-detail ren-dering of height
fields,” Proc. ACM SIGGRAPH 1996, Addison Wesley, 1996.

[2] R. Lario, R. Pajarola, and F. Tirado, “HyperBlock-QuadTIN:
Hyper-block quadtree based triangulated irregular networks,” Proc.
IASTED VIIP, pp.733–738, 2003.

[3] S. Rottger, W. Heidrich, P. Slusallek, and H. Seidel, “Real-time gen-
eration of continuous levels of detail for height fields,” Proc. 6th
International Conference in Central Europe on Computer Graphics
and Visualization, 1998.

[4] R. Pajarola, “Large scale terrain visualization using the restricted
quadtree triangulation,” Proc. IEEE Visualization 1998, pp.19–26,
1998.

[5] R. Pajarola, M. Antonijuan, and R. Lario, “QuadTIN: Quadtree
based triangulated irregular networks,” Proc. IASTED VIIP, pp.733–
738, 2003.

[6] M. Duchaineau, M. Wolinsky, D. Sigeti, M. Miller, C. Al-drich,
and M. Mineev-Weinstein, “ROAMing terrain: Real-time optimally
adapting meshes,” Proc. Visualization 1997, pp.81–88, 1997.

[7] A. Pomeranz, ROAM using triangle clusters, Dissertation, Univer-
sity of California at Davis, 2000.

[8] M. White, “Real-time optimally adapting meshes: Terrain visualiza-
tion in games,” International Journal of Computer Games Technol-
ogy Volume 2008, Article ID 753584, 2008.

[9] P. Lindstrom and V. Pascucci, “Terrain simplification simplified: A
general framework for view-dependent out-of-core visualization,”
IEEE Trans. Vis. Comput. Graphics, vol.8, no.3, pp.239–254, 2002.

[10] S. Basu and J. Snoeyink, “Terrain representation using right-
triangulated irregular networks,” 19th Canadian Conference on
Computational Geometry, 2007.

[11] W.S. Evans, D.G. Kirkpatrick, and G. Townsend, “Right-
triangulated irregular networks,” Algorithmica, vol.30, no.2,
pp.264–286, 2001.

[12] L.M. Hwa, M.A. Duchaineau, and K.I. Joy, “Adaptive 4-8 tex-ture
hierarchies,” Proc. Visualization 2004, pp.219–226, 2004.

[13] B. Purnomo, J.D. Cohen, and S. Kumar, “Seamless texture atlases,”
Symposium on Geometry Processing, pp.65–74, 2004.

[14] C.C. Tanner, C.J. Migdal, and M.T. Jones, “The clipmap: A virtual
mipmap,” Proc. ACM SIGGRAPH 1998, pp.151–158, 1998.

[15] J. Dollner, K. Baumann, and K. Hinrichs, “Texturing techniques for
terrain visualization,” Proc. Visualization 2000, pp.227–234, 2000.

[16] H. Hoppe, “Smooth view-dependent level-of-detail control and its
application to terrain rendering,” Proc. Visualization 1998, pp.35–
42, 1998.

[17] R. Lario, R. Pajarola, and F. Tirado, “HyperBlock-QuadTIN:
Hyper-block quadtree based triangulated irregular networks,” Proc.
IASTED VIIP, pp.733–738, 2003.

[18] J. Levenberg, “Fast view-dependent level-of-detail rendering using
cached geometry,” Proc. Visualization 2002, pp.259–266, 2002.

[19] T. Ulrich, “Rendering massive terrains using chunked level of detail
control,” Proc. ACM SIGGRAPH 2002, 2002.

[20] E. Yusov and V. Turlapov, “GPU-optimized efficient quad-tree based
progressive multiresolution model for interactive large scale terrain
rendering,” Proc. GraphiCon2007, pp.53–60, Moscow, June 2007.

[21] C. Dick, J. Schneider, and R. Westermann, “Efficient geometry com-
pression for GPU-based decoding in realtime terrain rendering,”
Computer Graphics Forum, vol.28, no.1, pp.67–83, 2009.

[22] Y. Li and J.H. Gong, “Global terrain data organization and com-
pression methods,” International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, vol.37, no.B5,
pp.659–669, 2008.

[23] S. Kim, Y. Kim, M. Cho, and H. Cho, “A geometric compression al-
gorithm for massive terrain data using delaunay triangulation,” Proc.
WSCG 1999, pp.124–131, 1999.

[24] C. Dick, J. Schneider, and R. Westermann, “Efficient geometry com-
pression for GPU-based decoding in realtime terrain rendering,”
Computer Graphics Forum, vol.28, no.1, pp.67–83, 2009.

[25] S. Patidar, S. Bhattacharjee, J.M. Singh, and P.J. Narayanan, “Ex-
ploiting the Shader model 4.0 architecture,” Technical Report IIIT
Hyderabad, 2006.

[26] J. Schneider and R. Westermann, “GPU-friendly high-quality terrain
rendering,” J. WSCG, pp.49–56, Plzen-Bory Czech Republic, 2006.

[27] Y. Livny, Z. Kogan, and J. El-Sana, “Seamless patches for GPU-
based terrain rendering,” Proc. WSCG 2007, pp.201–208, 2007.

[28] F. Losasso and H. Hoppe, “Geometry clipmaps: Terrain render-ing
using nested regular grids,” ACM Trans. Graphics., vol.23, no.3,
pp.769–776, 2004.

LEE and SHIN: GEOMETRY SPLITTING
145

[29] A. Asirvatham and H. Hoppe, “Terrain rendering using GPU-based
geometry clipmaps,” GPU Gems 2, pp.27–45, 2005.

[30] M. Clasen and H. Hege, “Terrain rendering using spheri-
cal clipmaps,” Eurographics/IEEE-VGTC Symposium on Vi-
sualization, 2006.

[31] S. Bhattacharjee and P.J. Narayanan, “Hexagonal geometry
clipmaps for spherical terrain rendering,” Proc. SIGGRAPH Asia
2008, 2008.

[32] Y. Livny, N. Sokolovsky, T. Grinshpoun, and J. El-Sana, “Persis-
tent grid mapping: A GPU-based framework for in-teractive terrain
rendering,” Visual Computer, vol.24, pp.139–153, 2008.

[33] C.C. Tanner, C.J. Migdal, and M.T. Jones, “The clipmap: A virtual
mipmap,” Proc. ACM SIGGRAPH 1998, pp.151–158, 1998.

[34] H. Samet, “The quadtree and related hierarchical data struc-tures,”
ACM Comput. Surv., vol.16, no.2, pp.187–260, 1984.

[35] S. Patidar, S. Bhattacharjee, J.M. Singh, and P.J. Narayanan, “Ex-
ploiting the Shader model 4.0 architecture,” Technical Report IIIT
Hyderabad, 2006.

[36] B. Purnomo, J.D. Cohen, and S. Kumar, “Seamless texture atlases,”
Symposium on Geometry Processing, pp.65–74, 2004.

[37] X. Gu, S.J. Gortler, and H. Hoppe, “Geometry images,” SIG-
GRAPH’02, pp.355–361, 2002.

[38] K. Niski, B. Purnomo, and J. Cohen, “Multi-grained level of detail
using a hierarchical seamless texture atlas,” ACM Symposium on
Interactive 3D Graphics and Games, pp.153–160, 2007.

[39] H. Chang and B. Shin, “Hardware acceleration of terrain visualiza-
tion using ef-Buffers,” International Symposium on Computer and
Information Sciences, vol.4263, pp.316–324, 2006.

Eun-Seok Lee recieved the B.S. degree
in computer and information engineering from
Inha University, Korea, in 2008. He is a M.S
candidate in computer and information engi-
neering at Inha University. His research inter-
ests include terrain visualization and hardware-
based rendering.

Byeong-Seok Shin is an assistant profes-
sor in the school of computer and information
engineering, Inha University, Korea. Current re-
search interests include volume rendering, real-
time graphics, and medical imaging. He re-
ceived B.S., M.S., and Ph.D. in computer en-
gineering from the Seoul National University in
Korea.

