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PAPER

Re-Scheduling of Unit Commitment Based on Customers’ Fuzzy
Requirements for Power Reliability

Bo WANG†a), You LI†b), Nonmembers, and Junzo WATADA†c), Member

SUMMARY The development of the electricity market enables us to
provide electricity of varied quality and price in order to fulfill power con-
sumers’ needs. Such customers choices should influence the process of
adjusting power generation and spinning reserve, and, as a result, change
the structure of a unit commitment optimization problem (UCP). To build a
unit commitment model that considers customer choices, we employ fuzzy
variables in this study to better characterize customer requirements and
forecasted future power loads. To measure system reliability and deter-
mine the schedule of real power generation and spinning reserve, fuzzy
Value-at-Risk (VaR) is utilized in building the model, which evaluates the
peak values of power demands under given confidence levels. Based on
the information obtained using fuzzy VaR, we proposed a heuristic algo-
rithm called local convergence-averse binary particle swarm optimization
(LCA-PSO) to solve the UCP. The proposed model and algorithm are used
to analyze several test systems. Comparisons between the proposed algo-
rithm and the conventional approaches show that the LCA-PSO performs
better in finding the optimal solutions.
key words: customer requirements, power supply reliability, fuzzy set the-
ory, fuzzy value-at-risk, particle swarm optimization algorithm, test sys-
tems

1. Introduction

Most previous studies have evaluated power loads fore-
casted using sufficient historical data. Then, using load
prediction, grid corporations assign power generation tasks
to each power plant without considering the possibility
that power consumers can select different power supplies.
The recent expansion of the electricity market enables con-
sumers to purchase electricity of different quality and price
according to their own requirements. Recently, Bilinton
et al. [1], Niioka et al. [2] and Bilinton and Zhang [3] in-
vestigated consumers’ preferences and requirements in the
construction of their models.

Nevertheless, the current studies have three primary
disadvantages. First, there are many factors that must be
simulated or determined in order to find which factors will
affect the real power loads. For example, weather, tempera-
ture and unexpected emergencies influence power consump-
tion. As a result, power systems suffer from the uncertainty
associated with the fact that the real power demands al-
ways deviate from forecasts [4]. Consequently, the use of
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historical information alone cannot predict real future de-
mands. Secondly, in conventional models, the customer
requirements for power supply reliability are expressed in
real values such as 89.4%, 92.5% and 96.7%, but generally
speaking, most power consumers have only intuitive opin-
ions on the required supply reliability. Real values cannot
effectively describe imprecise and vague customer require-
ments. Thirdly, the existing studies assign a single value to
the consumers’ requirements during different periods of the
day. In actuality, the power consumers always have differ-
ent requirements for different periods. With respect to fac-
tories’ electricity use, for example, for normal and efficient
operation, the power supply reliability during working hours
should always be higher than during non-working hours.

In this study, the conventional models are improved
to mitigate the above shortcomings. The experts’ opinions
from related fields are taken into consideration to better de-
scribe the future power loads. To handle the uncertainty that
arises from the use of historical data and expert opinions, it
is better to treat the forecasted power loads as variables with
imprecise distributions, i.e., fuzzy variables. The power sup-
ply reliability is described in fuzzy terms, as “94% is pre-
ferred, but it must be higher than 88%”, or “the reliability
is about 85% to 90%”. Such expressions are more accept-
able for the power consumers when choosing their electric-
ity supplies. Moreover, in this study, the customers are able
to buy electricity of varied reliability for each time-period.

Employing fuzzy set theory, we take the forecasted
loads and customers’ reliability as fuzzy variables; the daily
power demand is divided into 24 time-periods for each day
(one hour per unit time). To deal with the fuzzy informa-
tion, the fuzzy Value-at-Risk (VaR) is used to measure the
reliability and determine the power demand and spinning re-
serve. After establishing the power generation and reserve,
we must address a unit commitment problem (UCP) which
is commonly a complex, nonlinear, mixed-integer optimiza-
tion problem [4]–[6]. The conventional objective function is
updated here by considering the spinning reserve costs in a
fuzzy environment. To handle this UCP, we propose a lo-
cal convergence-averse binary particle swarm optimization
(LCA-PSO), which outperforms existing algorithms.

The remainder of this paper is organized as follows:
in Sect. 2, we briefly review previous fuzzy power system
problems and introduce some basic background regarding
fuzzy variables and fuzzy VaR; Sect. 3 illustrates the pro-
posed model; then, Sect. 4 provides the LCA-PSO as the
solution; the model and algorithm are exemplified by some
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test systems in Sect. 5; finally, Sect. 6 summarizes the con-
clusions.

2. Preliminaries

Fuzzy set theory is a fundamental mathematical system that
describes uncertainty, and various researchers have applied
it to solve power system problems. To minimize real power
losses and improve the voltage profile of a given system,
Rahman [7] mathematically formulated an optimal reactive
power control problem in which the objective function and
constraints are expressed by fuzzy sets when modeled. In
Khare’s paper [8], fuzzy set theory was used to capture
the subjective preferences of human operators in order to
model their decision-making and generate a prioritized list
of emergency problems that is more acceptable to the op-
erator. Using a multi-objective fuzzy linear programming
technique, Abou El-Ela [9] proposed a multi-stage proce-
dure that lessens the influence of different emergency condi-
tions. The results of their experiments showed that the pro-
posed fuzzy procedure can reduce the influence of different
emergency conditions.

Before discussing the fuzzy VaR, we preliminarily pro-
vide some basic concepts and features of fuzzy variables.

Suppose ξ is a fuzzy variable whose membership func-
tion is μξ, and r is a real number. Then, the possibility, ne-
cessity and credibility of event ξ ≥ r are expressed, respec-
tively, as follows:

Pos{ξ ≥ r} = sup
t≥r
μξ(t), (1)

Nec{ξ ≥ r} = 1 − sup
t<r
μξ(t), (2)

Cr{ξ ≥ r} = 1
2
[
Pos{ξ ≥ r} + Nec{ξ ≥ r}] . (3)

The credibility measure is formed on the basis of the
possibility and necessity measures, and in the simplest case,
it is taken as their average. The credibility measure is a self-
dual set function [10], i.e. Cr{ξ ≥ r} = 1 − Cr{ξ < r}. Equa-
tion (3) also results in the following:

Cr{ξ ≥ r} = 1
2

[
sup
t≥r
μξ(t) + 1 − sup

t<r
μξ(t)

]
. (4)

For further information on fuzzy variables, one may
refer to [10], [11] and [14].

According to [15], the VaR of an investment can be
considered as the greatest value under a given confidence
level. Following [12], if L̃t denotes the fuzzy power demand
of period t, in a fuzzy environment, the VaR of Lt with a
confidence of (1 − β) can be written as:

VaR1−β = sup{λ|Cr(L̃t ≥ λ) ≥ β}, (5)

where β ∈ (0, 1).
Equation (5) tells us that the greatest value of L̃t under

confidence level (1 − β) is the largest λ.
The following numerical example illustrates the calcu-

lation of the VaR.

Example 1. Supposing fuzzy variable L̃ = FN(1.0, 2.0),
its membership function is normally distributed as μL̃(r) =
Exp{−[(r − 1.0)/2]2}, then let us calculate VaR0.9.

At first, we need to calculate the credibility function of
L̃ ≥ r. From Eq. (1), we can compute the possibility and the
credibility of L̃ ≥ r in the following:

Pos{L̃ ≥ r} =
{

1 r≤1.0
Exp{−[(r − 1.0)/2]2}, r>1.0

Nec{L̃ ≥ r} =
{

1 − Exp{−[(r − 1.0)/2]2} r≤1.0
0 r>1.0.

(6)

Hence, according to Eq. (3), the credibility of L̃ ≥ r is
written as:

Cr{L̃ ≥ r} =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 − 1
2

Exp{−[(r − 1.0)/2]2} r≤1.0
1
2

Exp{−[(r − 1.0)/2]2} r>1.0.

(7)

Therefore, making use of Eq. (5), we have,

VaR0.9 = sup{λ|Cr(L̃ ≥ λ) ≥ 0.1} = 2.91.

Recently, the measure of Value-at-Risk has been ap-
plied to many engineering problems to build fuzzy op-
timization models, you may refer to [12], [13], [16]–[18],
[20], [21], [23]–[25].

3. Modeling

The proposed model consists of two stages. In the first stage,
customers choose power supplies for each period accord-
ing to their requirements. Then, on the basis of the fuzzy
power loads and customers’ selections, the grid company
forecasts the future demand and assigns the generation task
to the power plants. In the second stage, with the purpose of
providing sufficient electricity and reducing the generation
cost, the UCP is solved by determining the power genera-
tion unit schedule. In the following, we explain the above
two stages of the model in detail.

3.1 First Stage: Analyzing Forecasted Power Load and
Customer Choices

The customer requirement for power reliability is expressed
in natural language such as “B% is preferred, but it must be
higher than A%” or “About A% – B%”. Fuzzy variables are
more suitable to denote such linguistic terms, whose mem-
bership function is shown in Fig. 1.

Here, μ(R) is the function that describes the reliability
membership degree of the customers’ requirement.

Based on the customers’ requirements, the grid com-
pany provides n alternative power supplies as shown in
Fig. 2.

The forecasted power load at unit time t is taken as a
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Fig. 1 Fuzzy membership function of customer requirements.

Fig. 2 Alternative power supplies.

Fig. 3 Forecasted power load of unit time t.

fuzzy variable L̃t as Fig. 3 shows.
The consumers choose the electricity while consider-

ing the supply reliability and price of power. Then, the
grid company needs to determine the real generation and
reserve in each period based on the fuzzy power load and
consumers’ choices.

3.2 Second Stage: Re-Scheduling the UCP

After pursuing the first stage, each power plant is assigned a
certain amount of generation. It is their duty to provide suf-
ficient real power and spinning reserve in each period. How-
ever, in a market environment, the profit is also important.
Therefore, the majority of the previous studies summarized
the UCP as minimizing the cost function without violating
the constraints.

3.2.1 The Conventional UCP

A. Objective function

minF =
T∑

t=1

N∑
i=1

ut
i · [ fi(P

t
i) + S Ci(1 − ut−1

i )]. (8)

Respectively, F denotes the total cost of the power
plant over the scheduling periods; T and N denote the num-
ber of considered system periods and the number of genera-
tion units, Pt

i is the power generation of unit i at time t; S Ci

Fig. 4 The situation that spinning reserve is called.

is the start cost of unit i; ut
i denotes the status of unit i at

time t. fi(Pt
i) is the cost function of unit i at time t, which is

normally expressed by the following equation:

fi(P
t
i) = ai + biP

t
i + ci(P

t
i)

2, (9)

where, ai, bi and ci are the coefficients determined by the
attributes of each generation unit.

3.2.2 The Improved UCP

A. Objective function
This study takes the spinning reserve cost into consid-

eration. Then, in a fuzzy environment, the objective func-
tion is modified as follows:

minF =
T∑

t=1

N∑
i=1

ut
i · {[1 − Pos(Qt > Pt)] fi(P

t
i)

+ Pos(Qt > Pt) fi(P
t
i + Rt

i) + S Ci(1 − ut−1
i )}.

(10)

Qt is the real load in period t, Pos(Qt ≥ Pt) is the pos-
sibility that the real demand is larger than the forecasted
value Pt, Rt

i is the spinning reserve of unit i at time t, and
N∑

i=1
Rt

i = Rt, respectively.

Remarks:
� Supposing � P = Qt−Pt, if and only if � P > 0 (that

is to say the real load is larger than the forecasted value as
Fig. 4 shows), the reserve is considered to be called (even
though the � P is sufficiently small).
� In an uncertain environment, the power loads are

fuzzy variables, and subsequently, the possibility theory can
be applied to measure the chance that the spinning reserve
will be called:

Pos{Qt > Pt} = sup
t>Pt

μL̃t
(t). (11)

B. Constraints
The constraints are forwarded on the basis of system

objective environmental demands. From the literature, they
can be summarized as follows:
1). Power demand balance

N∑
i=1

Pt
iu

t
i = Pt,

where Pt is the total power demand in period t.



WANG et al.: RE-SCHEDULING OF UNIT COMMITMENT BASED ON CUSTOMERS’ FUZZY REQUIREMENTS FOR POWER RELIABILITY
1381

2). Spinning reserve balance

N∑
i=1

Pmaxut
i ≥ Pt + Rt,

where Rt is the spinning reserve in period t.
3). Interval of each generation unit

Pi
min ≤ Pt

i ≤ Pi
max,

where Pi
max and Pi

min are the maximum and minimum gen-
eration capacity of unit i, respectively.
4). Unit on/off limitations

Usually, the unit state should be kept on for certain
hours before it can be changed.{

T t
i,on ≥ Ti,up

T t
i,o f f ≥ Ti,down

.

where, respectively, T t
i,on and T t

i,o f f are the time periods that
unit i has been turned on or off. Ti,up and Ti,down are the
minimum unit on time and maximum off time which are
determined by the property of each unit.
5). Initial status of each unit

Before arranging the schedule, the unit initial status
needs to be taken into consideration. That is, it is necessary
to decide how many hours each unit has been committed or
de-committed.

4. The Solution

In this section, we provide the solution for the proposed
problem.

4.1 The Strategy to Determine the Real Power Demands
and Reserves

In this study, based on the fuzzy Value-at-Risk, we provide
the following strategy to decide the real power demand and
reserve of each unit time. According to Sect. 2, the credibil-
ity function of the fuzzy power load L̃t can be obtained as
shown in Fig. 5.

Figure 2 shows the membership functions of the alter-
native power supplies. Supposedly, all the customers choose
the power supply with the lowest reliability and price (the
case of “B1% is preferred, but it must be higher than A1%”,
shown in Fig. 2). That means, all of the customers’ are sat-
isfied with a supply reliability of B1%. Then, we calculate

Fig. 5 Credibility function of the fuzzy power load.

the peak value of power loads under the supply reliability of
B1%. In Eq. (5), set 1 − β = B1%, then under confidence
level of B1%, the largest power demand of period i is:

VaRB1% = sup{λi|Cr(L̃i ≥ λi) ≥ 1 − B1%}, (12)

According to the computed result, if the generated elec-
tricity is no less than VaRB1% , the power supply can be fully
satisfied with reliability of B1%.

However, it is true that some customers want to buy
power with higher reliability even though the price is higher.
To provide sufficient power for all of the customers, a power
reserve is required, and the reserve amount of period i can
be computed by the following Eq. (13):

Ri =

n∑
j=2

ω j · (VaRBj% − VaRB1%), (13)

where Ri denotes the power reserve of period i, and ω j is the
coefficient that describes the proportion of customers who
select a power supply with a reliability of Bj%, respectively.
The increasing expense of the spinning reserve is afforded
by the customers with a higher expectation of electricity re-
liability. The higher the reliability they choose, the higher
the power price will be.

This strategy is significant in two aspects: First, the ba-
sic requirement of power is probabilistically satisfied by the
real generations. Second, the spinning reserve established
by this approach can fulfill the power requirement in uncer-
tainty environment under the given confidence level.

Repeating this strategy, we can determine the real val-
ues of 24-hour power demand and reserve.

4.2 The Solution to UCP

UCP has been solved using various kinds of heuristic al-
gorithm, such as genetic algorithm (GA) [19], evolution-
ary programming (EP) [22] and lagrangian relaxation based
PSO (LRPSO) [26]. Based on these methods, Yuan [6] pro-
posed an improved binary PSO (IPSO) algorithm, which has
proven to be more effective than other approaches.

In this research, based on original PSO [27], an LCA-
PSO is proposed to better solve the problem. The following
is a preliminary explanation of the proposed method.
A. The fitness function

Considering the spinning reserve cost and fuzzy power
load, the objective function is updated as Eq. (10), which is
considered as the fitness function of LCA-PSO.
B. The equations for the update of particle position and ve-
locity

The equations proposed in classic binary PSO [28] are
employed here. The particle position is updated by the fol-
lowing equations:

vi = w·vi+c1 ·rand()·(Pbest,i−xi)+c2 ·rand()·(Gbest−xi),

xi = xi + vi, (14)

where, vi is the velocity of i, ω is the inertia weight, c1 and c2
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are the learning rates generated in the interval [0, 4]. rand()
is a random number distributed in the interval [0, 1]. Pbest,i

and Gbest are the personal and global best among the itera-
tions of particles, respectively. Subsequently, the position of
particle i is updated by Eq. (14).

Finally, the particles 0/1 states are determined by a sig-
moid function S (x):

S (x) =
1

1 + e−xi
. (15)

C. The local convergence of PSO
It is well known that the PSO algorithm can find the

optimal solution in fewer iterations than other algorithms,
but may suffer from the local convergence problem. In par-
ticular, when the selection problem contains a large number
of objectives, this defect of the PSO becomes more obvi-
ous. To solve this problem, Yuan [6] performed 10 trials
from different initial populations and selected the smallest
cost as the result. Lee [29] proposed a mutation-based PSO
(MPSO) where mutations occur with given possibility. In
this paper, we design the LCA-PSO by employing the es-
cape speed (ES) and velocity modification (VM).

Escape speed: If the optimal solution cannot be up-
dated after a specified number of time iterations, it will be
considered as having fallen into local convergence. Then,
each particle speed will be modified by the escape speed.
The value of ES should be determined by the experiments’
performances: on one hand, if the escape speed is suffi-
ciently large, all of the particles can jump out of the current
loop and resume searching in different areas; on the other
hand, if the escape speed is smaller, the new optimal solu-
tion can be obtained more quickly.

Velocity modification: After the above step, each par-
ticle’s velocity has been modified to an opposite direction
with a random value. This is inappropriate for the future
search. Therefore, the VM is used to modify the velocity to
a suitable value and in direction. In this case, a potential
global optimal solution will be found.

We use the following two-dimensional Fig. 6 to ap-
proximate the LCA-PSO.

Based on the above analysis, we summarize the LCA-
PSO algorithm as follows:

[Step 1]. Initialize particles: Each particle contains T×
N generator states, as:

xi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u1

1 u2
1 · · · uT

1

u1
2 u2

2 · · · uT
2· · · · · · · · ··

u1
N u2

N · · · uT
N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

[Step 2]. Check the constraints of UCP, as mentioned
in Sect. 3.2.2, part B.

[Step 3]. Solve the economic load dispatch (ELD)
problem and update gray zone states for start-up cost. The
concepts of ELD and gray zone have been well described in
previous studies. One may refer to [6] and [30] for further
information regarding these topics.

Fig. 6 Local convergence-averse BPSO.

[Step 4]. Initialize personal best and global best: The
personal best and global best are determined by the fitness
function (10).

[Step 5]. Particle iterations: The particle positions are
updated by Eq. (14), and Step 2 is repeated to modify the
unit states, then, new Pbest and Gbest are calculated.

[Step 6]. Solve the local convergence problem: If the
global best cannot be improved in a given number of itera-
tions, we consider the program to have fallen into the local
convergence. Then, the aforementioned approach is used to
cause the particles to jump out of current loop and to revise
the particle’s velocity.

[Step 7]. Following the completion of all iterations, the
final global best is returned as the optimal result.

5. Exemplification Using Test Systems

5.1 The Performances of the Proposed Model and LCA-
PSO

In this section, the proposed model and algorithm are ex-
emplified using test systems. The 24-hour power loads are
fuzzy variables evaluated from previous data and experts’
opinions, as listed in Table 1. (a, b, c) denotes the trian-
gular fuzzy variable, and FN(a, σ2) represents a normally
distributed fuzzy variable. The power demand here are mea-
sured in megawatt (MW).

Three types of power supplies are available, as listed in
Table 2.

The power supply reliability is considered across the
interval of [minimum reliability, maximum reliability].

Supposedly, from period 1 to 12, each power supply
scenario is selected by one-third of the customers; from pe-
riod 12 to 24, one-fourth of the customers choose scenario
I, whereas one-fourth choose scenario II, and the remaining
half select scenario III.

We can determine the real power demand and reserve
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Table 1 24 hours forecasted fuzzy power demands.

Period Power Demands Period Power Demands
1 (650, 700, 750) 13 (1350, 1400, 1450)
2 (700, 750, 800) 14 (1250, 1300, 1350)
3 (800, 850, 900) 15 (1150, 1200, 1250)
4 (900, 950, 1000) 16 (1000, 1050, 1100)
5 (950, 1000, 1050) 17 FN(1000, 400)
6 (1050, 1100, 1150) 18 FN(1100, 410)
7 (1100, 1150, 1200) 19 FN(1200, 410)
8 FN(1200, 440) 20 FN(1400, 430)
9 FN(1300, 420) 21 FN(1300, 400)

10 FN(1400, 400) 22 (1050, 1100, 1150)
11 FN(1450, 400) 23 (850, 900, 950)
12 FN(1500, 390) 24 (750, 800, 850)

Table 2 Available power supplies.

Supply Scenario Minimum Reliability Maximum Reliability
1 70% 80%
2 80% 92%
3 90% 99%

Table 3 24 hours evaluated power demands and reserves.

Period Demands Reserves Period Demands Reserves
1 730.0 10.3 13 1430.0 12.5
2 780.0 10.3 14 1330.0 12.5
3 880.0 10.3 15 1230.0 12.5
4 980.0 10.3 16 1080.0 12.5
5 1030.0 10.3 17 1019.1 12.2
6 1130.0 10.3 18 1119.4 12.3
7 1180.0 10.3 19 1219.4 12.3
8 1220.1 9.9 20 1419.4 12.7
9 1319.6 9.7 21 1319.1 12.2

10 1419.1 9.4 22 1130.0 12.5
11 1469.1 9.4 23 930.0 12.5
12 1518.9 9.3 24 830.0 12.5

by using Eqs. (12) and (13). The results are shown in Ta-
ble 3. Additionally, Eq. (11) computes the possibility that
the spinning reserve might be called.

Based on the above analysis, the proposed LCA-PSO
is evaluated through the use of different-sized test systems
(10, 20, 40, 60, 80 and 100 units), which are expanded from
a 10-unit based system [22]. All of the experiments are im-
plemented on a Dell E8500 3.16 GHz CPU with 2.96 GB of
RAM.

We first tested the LCA-PSO in different systems of
various unit sizes. The parameters were selected as follows:
20 particles, 1000 iterations, c1 = 2.8, c2 = 1.2, ω = 1, a
maximum speed of 4.0 and a minimum speed of −7.0. For
LCA-PSO, the given time iteration mentioned in Sect. 4 was
set at 20, and this was used to evaluate whether the local
convergence occurs.

Table 4 illustrates the performance of LCA-PSO by
comparing the initial cost and the cost after 1000 iterations
in different-sized systems. The savings are calculated as
(InitialCost − FinalCost)/InitialCost ∗ 100%.

From Table 4, it is obvious that, the LCA-PSO is an
effective solution to the UCP, and this method could result
in a cost-saving of more than 5.3%.

In Tables 5 and 6, we show an example of initial and

Table 4 The performance of LCA-PSO.

Unit No. Initial Cost Final Cost Savings
10 601,610 569,301 5.37%
20 1,207,189 1,137,585 5.77%
40 2,417,657 2,274,514 5.92%
60 3,622,180 3,410,280 5.85%
80 4,823,056 4,561,093 5.43%
100 6,027,820 5,697,125 5.49%

Table 5 The initial solution of LCA-PSO (cost: 601,610).
��������Hours

Unit No.
0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 0 0 1 1 0
2 1 1 1 1 1 0 0 0 0 1
3 1 1 1 1 1 0 0 0 0 0
4 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 0 0 0
6 1 1 1 1 1 1 1 0 0 0
7 1 1 1 1 1 0 1 1 0 0
8 1 1 1 1 1 0 1 0 0 1
9 1 1 1 1 1 0 1 0 1 1
10 1 1 1 1 1 1 1 0 0 0
11 1 1 1 1 1 1 1 0 1 0
12 1 1 1 1 1 1 1 0 0 1
13 1 1 1 1 1 1 1 0 0 0
14 1 1 1 1 1 1 1 1 1 0
15 1 1 1 1 1 1 1 0 1 1
16 1 1 1 1 1 1 1 1 1 0
17 1 1 1 1 1 1 1 0 1 1
18 1 1 1 1 1 1 1 0 0 1
19 1 1 1 1 1 1 1 0 0 1
20 1 1 1 1 1 1 1 0 0 1
21 1 1 1 1 1 1 0 1 0 1
22 1 1 1 1 1 1 0 0 0 0
23 1 1 1 1 1 0 0 0 1 0
24 1 1 1 1 1 0 0 0 0 0

Table 6 The optimized solution of LCA-PSO (cost: 569,301).
��������Hours

Unit No.
0 1 2 3 4 5 6 7 8 9

1 1 1 0 0 1 0 0 0 0 0
2 1 1 0 0 1 0 0 0 0 0
3 1 1 0 0 1 0 0 0 0 0
4 1 1 0 0 1 0 0 0 0 0
5 1 1 0 0 1 0 0 0 0 0
6 1 1 0 1 1 0 0 0 0 0
7 1 1 0 1 1 0 0 0 0 0
8 1 1 1 1 1 0 0 0 0 0
9 1 1 1 1 1 0 0 0 0 0
10 1 1 1 1 1 1 1 0 0 0
11 1 1 1 1 1 1 1 0 0 0
12 1 1 1 1 1 1 1 1 0 0
13 1 1 1 1 1 1 1 0 0 0
14 1 1 1 1 1 1 0 0 0 0
15 1 1 1 1 1 0 0 0 0 0
16 1 1 1 1 1 0 0 0 0 0
17 1 1 1 1 1 0 0 0 0 0
18 1 1 1 1 1 0 0 0 0 0
19 1 1 1 1 1 0 0 0 0 0
20 1 1 1 1 1 1 0 1 0 0
21 1 1 1 1 1 1 0 0 0 0
22 1 1 0 0 1 1 0 0 0 0
23 1 1 0 0 1 0 0 0 0 0
24 1 1 0 0 1 0 0 0 0 0
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Table 7 Optimal results of different algorithms.
����������Unit No.

Methods
LCA-PSO MPSO IPSO

10 569,301 575,782 600,892
20 1,137,585 1,152,383 1,192,453
40 2,274,514 2,316,431 2,397,195
60 3,410,280 3,496,880 3,592,585
80 4,561,093 4,688,605 4,795,907
100 5,697,125 5,859,228 5,986,118

Table 8 Comparisons of CPU time (s).
����������Unit No.

Methods
LCA-PSO MPSO IPSO

10 18.22 15.34 16.08
20 55.46 63.30 68.79
40 270.67 312.22 282.66
60 569.52 669.76 740.98
80 1062.11 1280.91 1434.91
100 1667.68 2119.79 2496.10

final schedules as found by the LCA-PSO for the 10-unit
test model. This illustrates the number of start-up and shut-
down decisions made through the LCA-PSO optimization
process.

5.2 Comparisons between LCA-PSO and Other Improved
PSO Algorithms

In this subsection, we compare the LCA-PSO with IPSO
(for the best result out of 10 trails) [6] and MPSO [29]. For
MPSO, the mutation probability was 0.1. After 1000 iter-
ations, the total costs and CPU time of each algorithm are
listed in Tables 7 and 8.

We found that, in most of the test systems, the LCA-
PSO was able to obtain better optimal solutions with less
runtime cost than other approaches.

Nevertheless, compared with the CPU time used in
prior work, more computation time is required to reach the
final optimal solutions in this study. The reason for this
could be that the objective function here is modified from
Eqs. (8) to (10). Therefore, during each iteration, the cost
was computed with respect to two options: 1. The reserve
was not called (as in the conventional UC models); 2. The
reserve was called. We must re-arrange different unit on/off
schedules for each situation. Therefore, more time was re-
quired to obtain the optimal result.

To prove the effectiveness of LCA-PSO, we employed
a 100-units test system, and Fig. 7 shows the performance of
each method during the 1000 iterations.

Finally, in Fig. 7, it should be noted that, in the 100
units test system, the IPSO and MPSO are suffering from the
local convergence problem. However, the proposed LCA-
PSO could overcome the local convergence effectively, the
ES and VM were quite effective in solving such unit com-
mitment optimization problem.

Fig. 7 Performances in a 100 unit test system.

6. Conclusions

In this study, we have proposed a fuzzy power system model
that takes into consideration the customers’ requirements.
The fuzzy variable is used to more accurately describe the
future power load and customers’ requirements while the
fuzzy Value-at-Risk is employed as a technique to evaluate
the power demand and reserve for each period under a given
confidence level. The conventional unit commitment model
is improved by considering the possibility that the reserve
is called. This model can minimize the system cost by con-
sidering various constraints and the customers’ choices of
power supply. To solve the problem, we proposed an LCA-
PSO as the solution that has been proved to be most useful
and effective by the test systems. Furthermore, comparisons
with existing algorithms show that the LCA-PSO has higher
performance. In addition, the proposed model can be ap-
plied to various engineering reliability control problems.
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