
1398
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.7 JULY 2011

PAPER

Analysis before Starting an Access: A New Power-Efficient
Instruction Fetch Mechanism

Jiongyao YE†a), Member, Yingtao HU†, Student Member, Hongfeng DING†, Nonmember,
and Takahiro WATANABE†, Member

SUMMARY Power consumption has become an increasing concern in
high performance microprocessor design. Especially, Instruction Cache
(I-Cache) contributes a large portion of the total power consumption in a
microprocessor, since it is a complex unit and is accessed very frequently.
Several studies on low-power design have been presented for the power-
efficient cache design. However, these techniques usually suffer from the
restrictions in the traditional Instruction Fetch Unit (IFU) architectures
where the fetch address needs to be sent to I-Cache once it is available.
Therefore, work to reduce the power consumption is limited after the ad-
dress generation and before starting an access. In this paper, we present a
new power-aware IFU architecture, named Analysis Before Starting an Ac-
cess (ABSA), which aims at maximizing the power efficiency of the low-
power designs by eliminating the restrictions on those low-power designs
of the traditional IFU. To achieve this goal, ABSA reorganizes the IFU
pipeline and carefully assigns tasks for each stages so that sufficient time
and information can be provided for the low-power techniques to maxi-
mize the power efficiency before starting an access. The proposed design
is fully scalable and its cost is low. Compared to a conventional IFU de-
sign, simulation results show that ABSA saves about 30.3% fetch power
consumption, on average. I-Cache employed by ABSA reduces both static
and dynamic power consumptions about 85.63% and 66.92%, respectively.
Meanwhile the performance degradation is only about 0.97%.
key words: low power, instruction cache, instruction fetch mechanism

1. Introduction

Power efficiency is important to modern microprocessor ap-
plications (e.g. notebook computers, consumer electronics
and cellular phones). They require not only high perfor-
mance, but also low power consumption for longer battery
life. Another driving force behind designing for power ef-
ficiency is that power consumption is becoming the limit-
ing factor in integrating more transistors on a single pro-
cessor or on a multi-processor module due to the cooling,
packaging and reliability problems. Especially, I-Cache as
the important component of IFU usually dissipates a con-
siderable portion of power in modern processors. For ex-
ample, the on-chip caches of the 211164 DEC Alpha chip
dissipate 25% of the total power of the processor [1]. The
Strong ARM SA-110 processor from DEC, which targets
specifically low-power applications, dissipates about 27%
of the power in I-Cache [2]. In the Pentium Pro processor,
the IFU and the I-Cache contribute 14% to the total power

Manuscript received November 10, 2010.
Manuscript revised February 28, 2011.
†The authors are with the Graduate School of Information, Pro-

ductions and Systems, Waseda University, Kitakyushu-shi, 808–
0135 Japan.

a) E-mail: yea asgard@suou.waseda.jp
DOI: 10.1587/transinf.E94.D.1398

consumed [3]. Thus optimizing the power consumption of
I-Cache is particularly important.

Up to now, many low-power techniques on I-Cache
have been proposed to achieve a power-efficient IFU. In
general, these techniques save power by analyzing the fetch
address to avoid some unnecessary accesses such as access-
ing only the predicted cache way instead of all of the way.
However, in the traditional IFU, I-cache needs to be immedi-
ately accessed once the fetch address is available. This leads
to the limited work which can be done by the power-saving
techniques after fetch address generation and before start-
ing an access. Therefore, the existing low-power techniques
usually lose possibility of maximizing power efficiency, or
make it necessary to increase the access delay and design
complexity. This problem stimulates us to seek a better
power-efficient IFU architecture.

In this paper, a new power-efficient IFU architecture,
Analysis Before Starting an Access (ABSA), is proposed to
maximize the efficiency of the low-power design. In ABSA,
before starting an access, a separate stage is introduced to
get useful information (i.e., way or subbank information) for
the low-power strategies by analyzing the fetch address or
other resources such as Branch Target Buffer (BTB). Then,
utilizing the analysis results, the supply voltage of the re-
quired I-Cache line is awakened in the subsequent pipeline
stage. At last, the instructions are fetched in the last stage of
IFU. As a result, the power consumption of I-Cache can be
reduced more effectively by performing more careful strat-
egy before starting an access. Furthermore, ABSA provides
a good low-power design space not only for I-Cache but also
for other power consumers of IFU (e.g., branch prediction).
Our proposed ABSA can maximize the power efficiency of
the low-power design in IFU by providing sufficient time
and information without significant performance overhead
and design complexity.

The remainder of this paper is organized as follows.
Section 2 discusses the related works and analyzes tradi-
tional IFU architectures. Next, the ABSA design is pre-
sented in Sect. 3. We describe the ABSA-based low-power
implementation in Sect. 4. The performance and scalability
of ABSA is discussed in Sect. 5. We show the experimental
results in Sect. 6. In Sect. 7, we conclude this paper.

2. Related Works

Several researchers have worked on reducing power con-

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



YE et al.: ANALYSIS BEFORE STARTING AN ACCESS
1399

sumption of the cache. Filter cache [4], L-Cache [5], block
buffer [6] and multiple line buffers [7] employ a small stor-
age unit between the processor and the level one cache to
avoid unnecessary cache lookups. Cache subbanking was
proposed by Su [6] to reduce power consumption in caches
by fetching only the requested subline, rather than the entire
logical cache line. Further study by Ghose and Kamble [7]
divides the data array not only vertically but also horizon-
tally into several segments of bitcells to get more power
savings. In this technique, greater power reductions are
achieved with less precharge drivers and sense amplifiers.
Way-prediction [10] is proposed to reduce the power con-
sumption of the set-associative cache, which saves power
by first accessing only the predicted cache way. It accesses
other ways only when the prediction is incorrect. This ap-
proach highly depends on the way-prediction accuracy, and
causes indefinite cache hit time. A better approach is the
two-level filter scheme [11], which accesses a block buffer
and sentry-tag arrays ahead of cache data. The block buffer
eliminates the unnecessary cache accesses, and the sentry-
tag further filters out the unnecessary way activities in case
of the block buffer miss. It reduces the total cache power
consumption of the 32 KB two-way set-associative I-Cache
by about 56.79%.

Other techniques focus on leakage power consump-
tion (e.g. drowsy caches [12], cache decay [17], gated-
VDD [18]). Especially, Drowsy I-Cache [13], a represen-
tative state-preserving technique, employs dynamic volt-
age scaling (DVS) circuit technique and subbank predic-
tion scheme to selectively wake up one I-Cache subbank
and keep other in the low-voltage mode. It reduces leakage
power consumption in I-Cache by about 75%.

Although these techniques can reduce power consump-
tion of I-Cache, we find that their efficiencies are still re-
stricted by the traditional IFU architectures. In general, be-
fore starting an access, those techniques in traditional IFU
architectures usually require some extra time or complex
hardware support to identify and eliminate unnecessary ac-
cesses. Two basic IFU architectures are widely used in mod-
ern processor design: one is the branch predictor is accessed
after I-Cache [16], which results in a one-cycle branch de-
lay (e.g. Alpha21164 [22], Intel i960 [23]). Another, such as
ultraSPARC-III [19], is proposed to access branch predictor
in parallel with I-Cache to reduce the branch delay. And,
most current advanced processor cores, such as IBM Power
6 [20] and Pentuim 4 [21], basically follow this IFU archi-
tecture design. A common characteristic of both traditional
IFU architectures is that the fetch address needs to be sent
to the I-Cache as soon as it is generated. Therefore, spare
time and information to eliminate the unnecessary access are
quite limited. For example, Drowsy I-Cache with the hor-
izontally configuration accesses the subbanks in all cache
way due to lack of cache way selection. To reduce the ac-
cess delay, the two-level filter cache must accesses the row
decoder of each way while accessing the L1 and L2 filter.

Due to such restrictions of the low-power designs in the
traditional IFU are prevented from maximizing power effi-

ciency. Thus, to use more time and information to identify
and eliminate unnecessary accesses, the traditional proces-
sors cannot but increase the access delay or reduce the core
frequency or increase the design complexity. To achieve
a better tradeoff between performance and power, a new
IFU architecture that is more suitable for another smart low-
power approach is indispensable.

3. ABSA Design

Based on the observations on the traditional IFU architec-
tures and the previous low-power approaches, we propose
a new power-efficient IFU where the low-power techniques
reduce the power dissipation more effectively. Our design
methodology is based on the following major principles:

1. The primary aim of our work is to effectively re-
duce power consumption on IFU at the cost of min-
imal performance overhead. Our proposed IFU with
the deeper pipeline technique reorganizes the pipeline
depth of IFU and carefully assigns the tasks for each
stage, which makes ensure that the frequency and band-
width can not be reduced. Meanwhile, the deeply
pipelined IFU can provides sufficient time and infor-
mation for the low-power strategies to maximize the
power efficiency. However, this approach incurs larger
branch misprediction penalties. In Sect. 5.1, two ap-
proaches are discussed to alleviate the branch mispre-
diction penalties in our design.

2. The low-power strategies used in our paper must be
carefully selected. The prediction-based low-power
strategies, such as the way-prediction techniques, are
not suitable for our purpose. It is because the perfor-
mance, access delay and power consumption depend
on their prediction accuracy. Our proposed IFU should
be capable of providing the sufficient time and infor-
mation for the low-power techniques, so that analysis-
based approaches are used to save more power due to
more accurate access because they can avoid unnec-
essary access by analyzing the fetch address or other
information before starting an access

3. The scalability is also an expected target for our pro-
posed IFU design. Our design can still maintain power
efficiency even if the fetch bandwidth and core fre-
quency increase. Moreover, the power-efficient IFU is
designed not only for I-Cache, but also for other power
consumption contributors of IFU.

3.1 ABSA Architecture

According to the above design methodology, ABSA is com-
posed of the basic four stages as shown in Fig. 1. Like as
other general processors, in the first stage (s0), the fetch ad-
dress is calculated either by incrementing the previous ad-
dress or by selecting a new address in response to a pre-
dicted or actual flow change operation. An individual stage,
named Analysis stage (s1), is added prior to the I-Cache ac-



1400
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.7 JULY 2011

Fig. 1 ABSA architecture.

cess, which provides useful information for the low-power
techniques to filter unnecessary I-Cache access. Moreover,
this stage can also generate the control information (e.g. way
selection and subbank selection) by analyzing the fetch ad-
dress for the subsequent I-Cache access when I-Cache ac-
cess cannot be avoided. Then, instruction fetch process
can implement a more accurate selection to maximize the
power efficiency in the stages 2 and 3. The I-Cache access
is distributed over two stages: the Wakeup stage (s2) and
the Fetch stage (s3). In the wakeup stage, Dynamic Voltage
Scaling (DVS) technique is employed for leakage reduction.
Only the required subbank needs to change its supply volt-
age to normal VDD, others maintain the drowsy mode. Fi-
nally, the instructions can be accurately accessed according
to the information provided by the analysis stage. The tasks
of each stage are introduced in the following sections.

3.2 Analysis Stage

Different from the traditional IFU pipeline stage, the analy-
sis stage is newly added. Various function blocks are used
to analyze the fetch address in order to filter the unnecessary
access and provide the information for I-Cache access. As
illustrated in Fig. 1, the analysis stage (s1) includes a sub-
bank decoder, a block buffer, a sentry tag array, an extended
BTB and a branch predictor.

The subbank decoder determines which subbank and
its row decoder are activated. Low order index bits are fed
to the subbank decoder to do this selection. In the tradi-
tional IFU, this proposed logic would increase the cache ac-
cess time since it needs to be accessed in series with the row
decoder. In ABSA, the subbank decoder is one stage ahead
of the row decoder, so that the pipelined decode operation
would hide the cache access delay caused by the serial de-
code operation.

A block buffer [6] is used for filtering accesses to the
whole I-Cache. If the block buffer contains the instructions
to be fetched, the access to I-Cache is avoided. In addition,
the tag array of I-Cache is divided into two parts. The first
part, named Sentry tag array [11], [27], contains lower bits
of the tags to decide which cache way needs to be accessed.

The second part, named Upper-Tag array, contains the re-
maining tag bits. The sentry-tag array is located two stages
ahead of the upper-tag array and fetching instructions. The
benefit is that the access for each cache way, including of its
row decode and precharge, is avoided if the sentry-tag array
identifies a miss according to the comparison result between
a sentry-tag and a fetch address in the analysis stage. Fur-
thermore, using the sentry-tag array does not lead to perfor-
mance degradation caused by way misprediction.

An extended BTB can maintain not only the target ad-
dress but also some other useful information for the low-
power techniques. The detailed design of the extended BTB
is introduced in Sect. 4.1. As same as ultraSPARC-III, the
gshare branch prediction is employed, and is performed in
the analysis stage because it is not too complex. Although
the main concern of our work is power-saving on I-Cache
since it is the biggest power consumption contributor of IFU,
other function blocks for more detailed analysis can be also
employed in the analysis stage to bring higher power saving.

3.3 Wakeup and Fetch Stages

In the wakeup stage (s2), according to the result of the sub-
bank decoding and way selection, only one row decoder is
activated to decide which cache set needs to be accessed.
Concurrently, the supply voltage of all lines in the selected
subbank is changed to the normal VDD while other subbanks
are in drowsy mode. Different from the DVS technique used
in drowsy I-Cache, the control signal consists of the subbank
selection signal and way selection signal, which ensure only
the subbank in the selected cache way is active at a time.
Finally, the remainder tag comparison is performed and the
fetch instructions are accesses in the fetch stage.

4. ABSA-Based Low-Power Implementation

In this section, we will first describe the extended BTB and
the power-efficient I-Cache configuration in order to support
our proposed IFU. Then, we explain ABSA how to reduce
the power consumption of I-Cache.

4.1 Extended BTB

The extended BTB is intended to provide more informa-
tion about the branch instructions in the analysis stage. As
shown in Fig. 2, the extended BTB includes not only three
traditional fields (i.e., the valid bit, Branch instruction Ad-
dress (BA) and Branch Target Address (BTA), but also two
new extra fields: Change Page Field (CPF) and Sentry Tag
Field (STF). CPF is only one bit, which records whether
the branch instruction will change to another physical page
when it is taken. The sentry tag of the branch target address
is recorded in STF. It can be directly compared to the sen-
try tag array to decide which cache way is valid when the
branch is taken.

When a branch is resolved, the extended BTB needs to
be updated only when it misses for this branch. However,



YE et al.: ANALYSIS BEFORE STARTING AN ACCESS
1401

Fig. 3 Power-efficient I-Cache architecture.

Fig. 2 Extended BTB architecture.

VPNbt: Virtual Page Number of branch target
PPNbt: Physical Page Number of branch target
VPNb: physical Page Number of branch instruction
ITLB: Instruction Translation Lookaside Buffer
BTA: Branch Target Address
BA: Branch instruction Address

the sentry tag cannot directly be extracted from the branch
target address because a virtual memory system [29] is used
in our design, in other words, the branch target address is
not a physical address but a virtual address. Thus, Instruc-
tion Translation Lookaside Buffer (ITLB) is accessed by the
Virtual Page Number of branch target (VPNbt) and the Phys-
ical Page Number of the branch target (PPNbt) is found. As
illustrated in Fig. 2, VPNbt is translated into PPNbt to gener-
ate both STF and CPF. The sentry tag is the corresponding
bits of PPNbt to be saved in STF, and the comparison result
between the Physical Page Number of the branch instruction
(PPNb) and PPNbt is saved in CPF.

4.2 Power-Efficient I-Cache Configuration

Considering performance and compatibility, a power-
efficient I-Cache is modeled in our simulation, which stems
from the principle that a large cache is broken down into
smaller block for both performance and power. And, it need

Fig. 4 DVS Implementation of the I-Cache line.

not be supported by software. As shown in Fig. 3, the 32 KB
4-way set-associative I-Cache is partitioned into eight 4 KB
subbanks in the horizontal configuration. The size of each
subbank is distributed through all cache ways so each por-
tion of the subbank in one cache way, called subarray, is
1 KB (set = 32 and block = 32 B). Figure 4 illustrates the
DVS circuit technique for each cache line. A separate mod-
ified precharge circuit is provided for each subarray. For
each cache line, the wakeup signal is decided by the com-
parison results of the sentry tag and the subbank decoder.
In our paper, when a cache line will be accessed, only 1 KB
subarray is woken up by a normal VDD. Different form the
drowsy I-Cache [13] in the vertically scheme, the horizontal
scheme will not cause the performance degradation that is
caused by the fetch instructions saved in an inactive cache
way. Furthermore, the traditional horizontal scheme is not
power-efficient since all the cache ways are accessed at a
time. In ABSA, the analysis stage provides not only sub-
bank selection signal but also way selection signal. Thus,
more power saving can be accomplished because only one
portion of the subbank of the selected cache way is active.



1402
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.7 JULY 2011

4.3 Reducing I-Cache Power

I-Cache used in our design exploits the fact that a large
cache is broken down into smaller subarrays to reduce the
wiring and diffusion capacitances of bit lines as well as the
wiring and gate capacitances of word lines used to activate
the memory cells. The reduced capacitance helps both the
cache access time and dynamic energy consumption lower
when accessing the caches. And, smaller drivers, precharg-
ing transistors and sense amplify can be used while parti-
tioning the data array horizontally into several segments of
bitcells.

ABSA activates only one portion of the subbank in the
selected cache way by the wakeup signal provided by the
analysis stage, and keep other subarray in the low-voltage
mode. Then, the dynamic and static power consumption
can be reduced. In this way, only one subarray can be row-
decoded, precharged and accessed in the wakeup and the
fetch stage, respectively. Figure 5 illustrates the detailed
process of wakeup signal. The subbank selection is per-
formed by subbank decoder. The three low order bits of
the index are fed to the subbank decoder to select one of
eight subbanks. For way selection, the two-level filter tech-
nique is used in the analysis stage. First, the block buffer is
accessed to check if it has contained the fetch instructions.
At the same time, the sentry tag array indexed by the fetch
address in each way is compared with the sentry bit of the
fetch address. Only when the block buffer misses and the
sentry tag hits, the corresponding subarray can be accessed.

However, as the same as the above mentioned, the cur-
rent virtual address cannot directly generate the sentry bit
for comparison. To address this problem, the last result of
ITLB lookup is saved into a special register called the Last
Physical Page Number (LPPN) that includes the VPN and
its corresponding PPN of the last ITLB lookup. The cur-
rent virtual address generated by the fetch address is directly
compared with the VPN in the LPPN. If they match, then
the current instruction is in the same page as the last one,
so the PPN in the LPPN as the current PPN can be com-
pared with the sentry tag array. This approach is based on
the tendency of spatial locality that the dynamic instruction
sequence tends to sequentially increasing in the same page.
There are two ways by which a program execution can move
from one instruction page to another: 1) the branch target
may not be in the same page as the branch instruction if
the branch predictor predicts taken and extended BTB pro-
vides the target address (we call this the branch case), and
2) two successive instructions which are on page boundaries
(we refer to this as the boundary case). In branch case, the
sentry tag field of extended BTB as the current PPN can be
compared with the sentry tag array. However, in the bound-
ary case, the PPN in the LPPN cannot be used for sentry
comparison, and the wakeup signals of all subarrays of the
selected subbank are valid.

As shown in Fig. 5, the current sentry tag maybe come
from LPPN or STF of the extended BTB. An 1-bit control

Fig. 5 Processing of wakeup signal.

LBIR: Last Branch Instruction Recorder
LPPN: Last Physical Page Number

signal, called Last Branch Instruction Recorder (LBIR), is
used to decide which sentry tag source is valid. It is set to
zero if the current fetch address is the branch target address
that is provided by BTB at the last cycle. Otherwise, it is
set to one. Note that the I-Cache precharge and access can
be generally avoided if the sentry tag comparison result is
not equal. But, in the boundary case, the current VPN does
not fit on the VPN in the LPPN (mismatch output is 1), and
LBIR is set to one, OR logic gate (G1) masks the way se-
lection signal from the sentry tag comparison. The result
is that the all cache ways of the selected subbank need to
be accessed. Fortunately, since the change of virtual page
number is not frequent in the continuous instruction stream,
the boundary case does not occur frequently. The results of
our experiment show that the contributions of the boundary
cases is less 3% during the whole program execution.

5. The Analysis of Performance, Scalability and Area

In this section, we first investigate the delay penalty due
to ABSA. Then, the scalability of ABSA is discussed to
present the applicability of this new power-efficient IFU ar-
chitecture. Finally, we also take the hardware cost of ABSA
into concern.

5.1 Delay Penalty

ABSA adopts the deeper pipeline technique to reduce both
of the cache access time and the power consumption. Two
kinds of delay are removed from the critical path of I-Cache
access. First, by moving sentry tag array to analysis stage,
the sentry bits’ comparison is eliminated from the critical
path of I-Cache access. Second, the subbank decoder and
the row decoder are moved to the analysis and the wakeup
stages, respectively. Thus, the time to access the row de-
coders of I-Cache is hidden. The quantitative analysis of the
critical path is presented in Sect. 6.3.

The most important contributor of performance degra-
dation is branch misprediction penalty due to ABSA. Com-
pared with the traditional IFU, two newly added stages (i.e.,



YE et al.: ANALYSIS BEFORE STARTING AN ACCESS
1403

Fig. 6 ABSA bal process flow.

the analysis and the wakeup stages) result in larger branch
misprediction penalty. This adverse effect can be allevi-
ated by two approaches. One is to improve the precision
of the branch prediction, which is the most common and
effective way to reduce the branch misprediction penalty
in the deeper pipelining processors [24]. Second is a bal-
anced method (named ABSA bal method), which provides a
tradeoff between power consumption and performance. The
detailed process flow of ABSA bal is shown in Fig. 6. A
low-confidence mechanism [15] is employed in the analy-
sis stage to identify the branches most likely to be mis-
predicted. Once such branch is encountered, the analysis
stage allows analyzing the address of the instructions from
the both paths following this low-confidence branch, simul-
taneously. And, the analysis result of the alternative path
is temporarily saved in the analysis stage as the alternative
wakeup signal. When this branch is issued into the execu-
tion unit, the subarray containing the instructions from the
alternative path following this branch is pre-awaked by the
alternative wakeup signal. Then, if the branch is resolved
and misprediction is discovered, the instructions from the
alternative path can be directly fetched in the fetch stage,
which reduces the branch misprediction penalty. But, the
static power consumption may increase because more than
one subarray may be awaked during the execution period of
the branch.

5.2 Scalability

A basic design principle of ABSA is that it can realize the
full potential of future semiconductor processes as process
technology evolves. Scalability is therefore of major im-
portance. When the processor runs at a higher frequency
and higher fetch bandwidth, ABSA is more scalable than
the traditional IFU architectures.

With the continuous increment of a cache size and the
array of the branch predictor, the design complexity of the
low-power strategies increases so that more times for anal-
ysis and prediction are required before I-Cache is accessed.
However, as the processor frequency grows, those strategies

cannot but exceeds one cycle in the traditional IFU architec-
ture. On the contrary, in ABSA, if the time to implement the
tasks of each stage exceeds one cycle, the only modification
is to increase the depth of the related stage. For example, the
analysis stage is split into two stages for fitting the branch
predictor with a larger array.

Fetch bandwidth is another important characteristic of
IFU. Trace cache, as the most popular approach, is widely
used in modern processors in order to improve the fetch
bandwidth [21], [22], [25]. ABSA can still maintain power
efficiency when using trace cache technique. In the tradi-
tional IFU, trace cache may increase the power consump-
tion of IFU because the processor simultaneously accesses
to both the trace cache and the I-Cache. Otherwise, to avoid
this simultaneous access, the sequential trace cache is em-
ployed to achieve lower power consumption, but it suffers
from a significant performance loss at the meantime. In
ABSA, trace cache can be assigned in fetch stage. In the
analysis stage, the index bits from the fetch address iden-
tifies whether the current trace exists. If the trace cache
hits, it can be accessed in the fetch stage and I-Cache ac-
cess is avoided. Otherwise, I-Cache is normally accessed.
Using trace cache in ABSA cannot increase the power con-
sumption since only one of the caches can be accessed in the
fetch stage, and the sequential access for a trace cache and
I-Cache is avoided so there is no performance degradation.

Furthermore, ABSA is expected to be a power-aware
IFU design, which not only is useful in the power reduc-
tion of I-Cache, but also can associate with other low-
power techniques to effectively reduce the power consump-
tion caused by other power consumers in IFU (e.g., branch
prediction, ITLB). In this paper, we only focus on power-
saving on I-Cache while ABSA is employed. In fact, the
power-saving approaches to reduce the power consumption
due to other power consumers of IFU can be also employed
by ABSA. Those low-power strategies need carry out ana-
lyze or prediction before accessing the corresponding com-
ponents of IFU, which often seem to require more infor-
mation and time. In the traditional IFU, since I-Cache,
the branch prediction, and ITLB are simultaneously imple-
mented as soon as the fetch address is generated, the pro-
cess will have to reduce the frequency or increase the design
complexity in order to gain more time for low-power execu-
tion. On the contrary, in ABSA, the only work designers
have to do is adding a new function block into the analysis
stage to provide more useful information, or deepening the
analysis stage in the case of more time being required by the
low-power implementation.

5.3 Area Overhead

ABSA reassigns the tasks for each stage, namely ABSA
changes little the function block of the traditional IFU (e.g.,
branch predictor, SRAM). Three major area increments are
an extended BTB, pipeline registers and a voltage control
circuit for each I-Cache line. The 1-bit Change Page Field
and 5-bit Sentry Target for each entry of BTB increase



1404
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.7 JULY 2011

0.75 KB area for the 1 K entries BTB. About the pipeline
registers, compared to the long bits of instructions and large
cache size, it is much smaller. At last, when using the DVS
technique, the total area overhead is less than 3% for the en-
tire cache line [13]. Therefore, the area increased by ABSA
can fairly be negligible for most superscalar processors.

Furthermore, ABSA employs the subbanking tech-
nique, resulting in the increase in the cache size. The area
overhead of subbanks mainly includes three parts: 1) Each
subarray requires a separate row decoder to reduce the word-
line drive and delay in our paper. Because of using the dy-
namic NOR decoder for row decoders, the area overhead of
row decoders is 4144 transistors. 2) ABSA requires a sepa-
rate modified precharge circuit shown in Fig. 4 for each 1 K
subarray. Each precharge circuit requires three PMOS. The
total number of the transistors of precharge circuit is 96. 3)
In the case of ABSA bal, two subarrays may be awaken at
the same time in order to reduce the branch misprediction
penalty. Therefore, each subarray has a separate sense am-
plifier that is active only when the corresponding wakeup
single is valid. The size of the sense amplifier is 270 bits,
including block size (32 B) + upper tag (14 bits). We use
the conventional 6 T memory cell so the total number of the
transistors of the sense amplifier is 1620. The sense am-
plifiers increased from 4 (one per way) to 32 (one per sub-
array), the increment of which is 45360 transistors. Tak-
ing these aspects, the total area overhead due to subbanks
is 49600 transistors. For a 32 KB 4-way cache with a block
size of 32 B, the cache area spent in the tag and data arrays is
approximately (1024×19×6)+ (1024×256×6) = 1689600
transistors. Thus, the overhead due to subbanking technique
is around 2.9% of the cache area, it is negligible.

6. Experimental Results

6.1 Simulation Methodology

To evaluate the power consumption and performance in he
0.13 µm CMOS technology, we employ a modified ver-
sion of SimpleScalar [9], incorporating the Wattch frame-
work [9] to model the dynamic power consumption, and
the HotLeakage model [30] for the static component. The
Wattch simulator built on the SimpleScalar simulation tool
set integrates the CACTI [14] timing, power and area mod-
els. The main simulation parameters, listed in Table 1,
roughly correspond to those in UltraSPARC-III micropro-
cessor [19]. We use a number of integer benchmarks from
the SPEC2000 suites benchmarks. All benchmarks were
compiled with highest optimization level by the Alpha com-
piler [26], and were fast-forwarded pass the first 500 mil-
lions instructions to bypass initialization and startup code
before measured simulation begins. Then, full-detail sim-
ulation is performed for next one billion instructions. We
used the ref input data set. Table 2 shows that for each
benchmark, the input set, the percentage of the dynamic
conditional branches and the branch prediction accuracy.

We also model a baseline processor. The IFU architec-

Table 1 Simulation processor configuration.

parameters value

Fetch/Decode/Issue/Commit 4 Instructions Width
Branch Direction Predictor 16 K-entry Gshare
Branch Target Buffer 512-Entry, 2-Way
LSQ Size 32
Instruction Fetch Queue Size 32
Functional Units 4 Int ALU, 2 Int mult/div,

FP ALU, 2 FP mult/div, 2
MEMPORT

Branch Misprediction Penalty 6 cycles
ITLB 32entry in each way, 4 KB

page size, 4way, LRU, La-
tency: 30 cycle

Inst./Data L1 Caches 32 KB, 32 Byte Blocks, 4-
way Mapped, Latency: 1
cycle

UL2 Cache 256 MB(s), 64 Byte Blocks,
8-way Mapped, Latency: 6
cycle

Memory Ideal size, Latency: 100
cycle

confidence estimator 4 K-entry, 4 bit JRS (Jacob-
sen et al. 1996) [15]

Table 2 Benchmark characteristics.

Bench. Input Set
dynamic

conditional
branch (%)

Prediction
Accuracy (%)

bzip2 ref.graphic 4.14 92.21
crafty crafty.in 7.66 92.11
eon kajiya image 4.31 92.64
gap ref 8.79 94.32
gcc scilab.in 10.02 93.51
gzip ref.graphic 7.76 91.26
mcf ref 8.52 92.10
parser ref 7.76 91.90
perlbmk ref.perfext 9.40 91.25
twolf ref 4.28 86.27
vortex ref 9.68 97.66
vpr route.in 7.31 89.96

ture of the baseline processor is based on the UltraSPARC-
III microprocessor with a 32 KB 4-way I-Cache. To com-
pare the power efficiency with ABSA, two low-power tech-
niques on I-Cache (i.e., two-level filter scheme and drowsy
I-Cache) are used in the baseline processor. Besides, the
baseline processor does not employ other power-saving ap-
proaches in IFU for fair comparison. Note that the branch
predictor uses a Gshare algorithm that maybe not advance
branch prediction scheme. However, if the simulated pro-
cessor using such predictor does not suffer from much run-
time overhead, others using more accurate branch predictor
would suffer from less runtime increment.

6.2 Power Savings

In this section, we explain how much power can be saved in
ABSA by comparing dynamic and static power consump-
tion of I-Cache with the baseline processor integrating two-
level filter scheme and drowsy I-Cache, respectively. The



YE et al.: ANALYSIS BEFORE STARTING AN ACCESS
1405

Fig. 7 Static power saving.

main reason to choose these two low-power techniques is
because they achieve better power/performance tradeoffs
than most other related approaches and both of them are
hardware-only approaches, which do not need software sup-
ports and change of instruction set architecture.

6.2.1 Static Power Reduction of I-Cache

As shown in Fig. 7, ABSA reduces leakage power in I-
Cache data cell by 90.12%, on average. This is because
ABSA is a very fine-grained method to reduce I-Cache leak-
age power. ABSA bal described in Sect. 5.1 reduces the
leakage power by 85.63%, on average. The 4.49% incre-
ment in leakage power is because that the wakeup stage
needs to awake an extra subarray containing the instruc-
tions from the alternative paths following a low-confidence
branch. Figure 7 also shows the Drowsy I-Cache with the
horizontal configuration, which uses DVS and sub-bank pre-
diction technique, reduces the leakage power by 73.09%, on
average. As a result, ABSA is much more effective in saving
the leakage power than the Drowsy I-Cache.

6.2.2 Dynamic Power Reduction of I-Cache

I-Cache employed by ABSA models a technique similar to
cache subbanking for saving power in the data and tag ar-
rays. Besides reducing power consumption, smaller subar-
rays also enable the cache array to be as well as possible
to minimize wire capacitance, which results in faster access
time and lower power dissipation. However, since each sub-
array has its own row decoder for the low wordline drive and
delay, more subarrays mean more power consumption by
row decoders. Our measurements show the power consump-
tion by the row decoder is about 22% of the total power con-
sumption of I-Cache in baseline cache configuration. But, in
ABSA, only one required row decoder of the selected cache
way is activated so the data and tag array can be further par-
titioned into smaller subarrays. Figure 8 shows the dynamic
power saving is about 66.92% for ABSA and 57.62% for
two-level filter scheme, respectively. So, even though the
two level filter scheme is very effective in reducing I-Cache
dynamic power, ABSA can reduce more power than it. It
is because that the two-level filter scheme accesses the row

Fig. 8 Dynamic power saving.

Table 3 Breakdown of power consumption (mWatts).

Baseline ABSA
Branch predictor 235 22.25% 245 33.24%
I-cache 646 61.17% 208 28.22%
Other 175 16.57% 175 23.74%
Low-confidence 0 0.00% 91 12.35%
Pipeline registers 0 0.00% 18 2.44%

Total 1056 737

decoders in all cache ways during implementing the L1 and
L2 filter.

6.2.3 Power Saving of IFU

Besides the power consumption of I-Cache, the total power
consumption of ABSA includes of other function blocks.
Compared to the baseline IFU architecture, ABSA adds
three newly hardware that lead to power increment: 1) 6-
bits for each BTB entry are required to save sentry tag field
and change page field, which increases the branch predic-
tion about 4.3% power consumption, on average. 2) The ad-
ditional registers are required between the pipeline stages.
For wakeup signals, ABSA needs 32 registers (4 ways ×
8 subbank) to transfer the wakeup signal from the analysis
stage to the wakeup stage, and another 32 registers from the
wakeup stage to the fetch stage. However, the power con-
sumption of those registers is very small because most of
them are inactive for a long period until the corresponding
subarray needs to be accessed. 3) ABSA bal also needs a
low-confidence mechanism, which causes extra power con-
sumption. In all, compared to the baseline IFU, the added
hardware increases the power consumption by 2.65% for
ABSA and 11.17% for ABSA bal.

The breakdown of average power consumption of
ABSA and the baseline IFU is shown in Table 3. The sim-
ulation results shows, although the newly added hardware
consumes some power, the total IFU power is still reduced
by 30.3%, on average. Another observation is that I-Cache
is no longer the largest contributor of power consumption in
ABSA. Note that the branch predictor and other function
blocks like as ITLB have not employed any power-saving
approaches in our experimentation. Thus, the total power
consumption of a processor using ABSA will be further de-
creased by integrating more low-power techniques.



1406
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.7 JULY 2011

Table 4 I-Cache access time.

Baseline (ns) ABSA (ns)
Data
path

Tag
path

Data
path

Tag
path

Row decoder 0.35 0.16 0 0
Wordline bitline 0.13 0.06 0.13 0.05
Sense amplifier 0.07 0.05 0.07 0.04
Tag compare 0 0.16 0 0.14
Mux driver 0 0.13 0 0.13
Output driver 0.06 0.06 0.06 0.06
Total 0.61 0.62 0.26 0.42

Total access time 0.62 0.42

6.3 Performance Analysis

In this section, we analyze the critical path of ABSA, and
make quantitative analysis on the performance degradation
due to ABSA.

6.3.1 Critical Path

In the analysis stage, the time to generate a wakeup signal
consists of the subbank selection time, the way selection
time and the corresponding logic control time. By using the
CACTI tool, we estimate the time of subbank selection is
approximately 0.08 ns. The time of way selection is approx-
imately 0.45 ns (0.35 ns for accessing sentry tag array and
0.1 ns for sentry tag comparison), and the time of control
logic is approximately 0.1 ns. Since the way selection sig-
nal and the subbank selection signal occur at the same time,
the total time to generate a wakeup signal is 0.55 ns. Mean-
while, the time to implement branch prediction and block
buffer is 0.46 ns and 0.3 ns, respectively. Thus, the critical
path of the analysis stage is 0.55 ns.

In the wakeup stage, according to the report in [13],
the transition time switching between the normal mode and
drowsy mode is 0.28 ns. Simultaneously, the time of the row
decoder is 0.26 ns. In the fetch stage, the time to access I-
Cache is shown in Table 4, in detail. The baseline processor
spends 0.63 ns for an I-Cache access. ABSA removes the
row decode and the part of tag comparison from the fetch
stage, so accessing I-Cache in ABSA is only 0.43 ns.

After all, the largest critical path in ABSA is 0.55 ns at
the analysis stage. Compared to the baseline IFU whose crit-
ical path is 0.62 ns at the I-Cache access, the ideal improve-
ment of processor frequency can achieve 11.29%. Note that
the largest delay does not come from I-Cache access, but
analysis stage. Therefore, smaller critical path can be ex-
pected by further deepening the analysis stage.

6.3.2 Overall Performance

ABSA induces some runtime increment due to larger branch
misprediction penalty. In Sect. 5.1, we discussed two ap-
proaches to alleviate this penalty. Specifically, ABSA bal
that pre-awakes the subarray for the alternative path can re-
duce the extra branch misprediction penalty due to ABSA.

Fig. 9 Runtime increment for each benchmark.

But, the performance is still reduced because of mispredic-
tion of branch prediction and low-confidence mechanism.
Figure 9 illustrates the runtime increment for each bench-
mark. The results show that the runtime in ABSA increases
inversely with the branch prediction accuracy and the num-
ber of the dynamic branches in each program. For example,
the vortex’s runtime increment is small because of its high
branch prediction accuracy. Although the twolf’s branch
prediction accuracy is the lowest in all the benchmark, its
runtime increment is not the largest. It is because that the
number of dynamically executed branches in twolf is small
so it encounters the small branch misprediction penalty.
ABSA bal can reduce the branch misprediction penalty due
to ABSA, the penalty reduction for each benchmark is based
on its own accuracy of the low-confidence mechanism. The
highest accuracy is 67.64% for vortex, the lowest is 41.21%
for eon and the average accuracy is about 56.27%. Com-
pared to the baseline, ABSA and ABSA bal increase the
simulation cycles by an average of 2.14% and 0.97%, re-
spectively.

7. Conclusions

In this paper, ABSA, a power-efficient IFU architecture, is
proposed to reduce the power consumption of I-Cache with
little performance overhead. It restructures the IFU pipeline
stages and carefully assigns tasks for each stage, which pro-
vides sufficient time and information to implement a more
accuracy and efficient I-Cache access. The contribution of
this paper is that, by removing the unnecessary restrictions
on the traditional IFU, ABSA provides the low-power strate-
gies with sufficient time and information to maximize the
power efficiency of IFU with a little change in these low-
power strategies and hardware modification.

Furthermore, our proposed ABSA ensures compatibil-
ity with other low-power approaches and enables them to
more effectively reduce the power consumption without the
cost of frequency or design complexity. In all, compared
to a conventional IFU design, ABSA reduces about 30.3%
power consumption of IFU (including 66.92% dynamic I-
Cache power reduction and 85.63% static I-Cache power
reduction respectively). Meanwhile the performance degra-
dation is about 0.97% while ABSA bal is employed in the



YE et al.: ANALYSIS BEFORE STARTING AN ACCESS
1407

case of the branch prediction and low-confidence mecha-
nism with low prediction accuracy.

Acknowledgments

This research was supported by CREST, JST and partially
by a grant of Regional Innovation Cluster Program 2nd
stage, MEXT.

References

[1] J.F. Edmondson, et al., “Internal organization of the alpha 21164, a
300-MHz 64-bit quad-issue CMOS RISC microprocessor,” Digital
Technical Journal, vol.7, no.1, 1995.

[2] J. Montanaro and et al., “A 160-mhz, 32-b, 0.5-w cmos risc micro-
processor,” Digital Technical Journal, Digital Equipment Corpora-
tion, vol.9, 1997.

[3] G. Hinton et al., “The microarchitecture of the pentium 4 processor,”
Intel Technical Journal, vol.Q1, Feb. 2001.

[4] J. Kin, M. Gupta, and W.H. Mangione-Smith, “The filter cache: An
energy efficient memory structure,” Proc. 30th Int. Microarchitecture
Symp., pp.184–193, Dec. 1997.

[5] N. Bellas, I.N. Hajj, C.D. Polychronopoulos, and G. Stamoulis, “Ar-
chitectural and compiler techniques for energy reduction in high-
performance microprocessors,” IEEE Trans. Very Large Scale In-
tegr. (VLSI) Syst., vol.8, pp.317–326, June 2000.

[6] C.L. Su and A.M. Despain, “Cache design for energy efficiency,”
Proc. 28th Int. System Sciences Conf., pp.306–315, 1995.

[7] K. Ghose and M.B. Kamble, “Reducing power in superscalar pro-
cessor caches using subbanking, multiple line buffers and bit-line
segmentation,” Proc. Int. Low Power Electronics and Design Symp.,
pp.70–75, 1999.

[8] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework
for architectural-level power analysis and optimizations,” Proc. 27th
Annual Intl. Symp. on Computer Architecture, pp.83–94, 2000.

[9] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An infrastructure
for computer system modeling,” IEEE Comput., vol.35, no.2, pp.59–
67, Feb. 2002.

[10] M.D. Powell, A. Agarwal, T.N. Vijaykurnar, B. Falsafi, and K. Roy,
“Reducing set-associative cache energy via way-prediction and se-
lective direct-mapping,” Proc. Int. Symposium on Microarchitec-
ture, pp.54–65, Austin, Texas, USA, 2001.

[11] Y. Cllarlg, S. Ruan, and F. Lai, “Design and analysis of low-power
cache using two-level filter scheme,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol.11, no.4, pp.568–580, 2003.

[12] K. Flautner, et al., “Drowsy caches: Simple techniques for reduc-
ing leakage power,” ACM SIGARCH Computer Architecture News,
vol.30, May 2002.

[13] N.S. Kim, K. Flautner, D. Blaauw, and T. Mudge, “Energy efficient
memory systems: Drowsy instruction caches: Leakage power reduc-
tion using dynamic voltage scaling and cache sub-bank prediction,”
Proc. 35th annual International Symposium on Microarchitecture,
Nov. 2002.

[14] P. Shivakumar and N.P. Jouppi, “CACTI 3.0: An integrated cache
timing, power, and area model,” http://www.hpl.hp.com.techerports/
PCompaq2DEC/WRL-2001-2.html, 2001.

[15] E. Jacobsen, E. Rotenberg, and J.E. Smith, “Assigning confidence
to conditional branch predictions,” Proc. 29th Annual Symp. And
Workshop on Microprogramming and Microarchitecture (MICRO-
29), 1996.

[16] J.E. Smith and G.S. Sohi, “The microarchitecture of superscalar pro-
cessor,” Proc. IEEE, vol.83, no.12, pp.1609–1624, 1995.

[17] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: Exploiting gen-
erational behavior to reduce cache leakage power,” Proc. 28th annual
International Symposium on Computer Architecture, May 2001.

[18] M. Powell, et al., “Gated-vdd: A Circuit technique to reduce leak-
age in deep-submicron cache memories,” Proc. International Sym-
posium of Low power Electronics and Design, 2000.

[19] T. Horcl and G. Lautcrbach, “UltraSPARCIII: Designing third gen-
eration 64-bit performance,” IEEE Micro, vol.19, no.3, pp.73–85,
1999.

[20] H.Q. Le, W.J. Starke, J.S. Fields, F.P. O’Connell, D.Q. Nguyen,
B.J. Ronchetti, W.M. Sauer, E.M. Schwarz, and M.T. Vaden, “IBM
POWER6 microarchitecture,” IBM Journal of Research and Devel-
opment, vol.51, Issue 6, pp.639–662, 2007.

[21] G. Hinton, D. Sager, M. Upton, D. BVoggs, D. Carmean, A. Kyker,
and P. Roussel, “The microarchitecture of the pentium4 processor,”
Intel Technology Journal, Q1 2001, 2001.

[22] P. Bannon and Y. Saito, “The Alpha 21164 microprocessor,” Proc.
COMPCON, pp.389–398, San Francisco, 1997.

[23] S. McGeady, “The i960CA superscalar implementation of the 80960
architecture,” Proc. COMPCON, pp.232–240, San Francisco, 1990.

[24] E. Sprangle and D. Carmean, “Increasing processor performance
by implementing deeper pipelines,” Proc. 29th Annual International
Symposium on Computer Architecture, pp.25–34, May 2002.

[25] E. Rotenberg, S. Bennett, and J.E. Smith, “Trace cache: A low
latency approach to high bandwidth instruction fetching,” Proc.
29th International Symposium on Microarchitecture, pp.24–34, Dec.
1996.

[26] E. Perelman, G. Hamerly, and B. Calder. “Picking statistically valid
and early simulation points,” Proc. 2003 Intl. Conf. on Parallel Ar-
chitectures and Compilation Techniques, pp.244–255, Sept. 2004.

[27] R. Min, Z. Xu, Y. Hu, and W.-B. Jone, “Partial tag comparison: A
new technology for power-efficient set-associative cache designs,”
VLSID04: 17th International Conference on VLSI Design, pp.183–
188, Jan. 2004.

[28] S. Wilton and N. Jouppi, “An enhanced cache access and cycle
time model,” IEEE J. Solid-State Circuits, vol.31, no.5, pp.677–688,
1996.

[29] J.P. Shen, Modern Processor Design: Fundamentals of Superscalar
Processors, chapter 3.5, McGraw-Hill Science/Engineering/Math, 1
edition, July, 2004.

[30] Y. Zhang, D. Parikh, K. Sankaranarayanan, et al., “HotLeakage: a
temperature-aware model of subthreshold and gate leakage for ar-
chitects,” University of Virginia, Department of Computer Science,
Technical Report CS-2003-05 Report, March 2003.

Jiongyao Ye was born in ShangHai, China
on May, 1978. He received the B.E degree in
Electronic Engineering in 2000, from Shang-
hai Marine University, where he was an assis-
tant during 2000-2002. In 2005, he received the
M.S. degree in Graduate School of Information,
Productions and Systems, from Waseda Univer-
sity. He then joined the Sony LSI Design Inc.,
where he worked in the field of LSI design from
2005 to 2008. He is currently working toward
the Dr. Eng. degree in Graduate School of Infor-

mation, Productions and Systems, from Waseda University. His research
interests include micro-architecture, low-power FPGA and their applica-
tions.



1408
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.7 JULY 2011

Yingtao Hu was born in Wuxi, China
on May, 1986. He received the B.E. degree
in software engineering from Dalian University
of technology, China in 2008. He is currently
a graduate student in the Graduate School of
Information, Production and Systems, Waseda
University, Japan. His research interest includes
low-power LSI design and information security.

Hongfeng Ding was born in Liaoyan, China
on April, 1986. He received the B.E. degree
in mathematics and applied mathematics from
Beijing University of Posts and Telecommuni-
cations, China in 2009. He is currently a grad-
uate student in the Graduate School of Informa-
tion, Production and Systems, Waseda Univer-
sity, Japan. His research interest includes high
performance processor design and low-power
design.

Takahiro Watanabe was born in Ube, Japan
on October, 1950. He received the B.E. and the
M.E. in Electrical Engineering from Yamaguchi
University, and the Dr. Eng. from Tohoku Uni-
versity. In 1979, he joined Research and De-
velopment Center of TOSHIBA Corp., where he
worked in the field of LSI design automation. In
August 1990, he joined Yamaguchi University,
the Department of Computer Science and Sys-
tems Engineering, and in April 2003, he moved
to Waseda University, Graduate School of Infor-

mation, Production and Systems. His current research interests are EDA al-
gorithm, Microprocessor and MPSoC, NoC, FPGA and their applications.
He is a member of IPSJ and IEEE.


