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SUMMARY Conventional array processors randomly access in-
put/coefficient data stored in memory many times during three-dimensional
discrete cosine transform (3D-DCT) calculations. This causes a calculation
bottleneck. In this paper, a 3D array processor dedicated to 3D-DCT is
proposed. The array processor drastically reduces data swapping or re-
placement during the calculation and thus improves performance. The
time complexity of the proposed N × N × N array processor is O(N) for
an N3-size input data cube, and that of the 3D-DCT sequential calcula-
tion is O(N4). A specific I/O architecture, throughput-improved architec-
tures, and more scalable architecture are also discussed in terms of practical
implementation. Experimental results of implementation on FPGA (field-
programmable gate array) suggest that our architecture provides good per-
formance for real-time 3D-DCT calculations.
key words: 3D-DCT, array processors, data manipulation, FPGA

1. Introduction

Advances in digital imaging applications such as high-
definition television [1], teleconference, medical and space
exploration images [2], and portable video players have
increased demand for effective image compression tech-
niques. Prospective systems such as portable video chatting
require high-performance computing to realize video com-
pression because the transmission bandwidth is often lim-
ited [3]. 2D-DCT (two-dimensional discrete cosine trans-
form) is used for the spatial information compression of
2D images [4]. Three-dimensional (3D)-DCT extends the
DCT energy compaction properties to integral 3D images
and the spatio-temporal coding of 2D video sequences [4],
[5]. 3D-DCT video compression by using quantized coef-
ficients produces high compression ratios and good visual
quality of the reconstructed video frames [6]–[8]. In addi-
tion, image data can be compressed by a factor of 10 with
3D-DCT without reducing the image quality by scan or-
dering [9]. In this paper, we discuss array processors that
perform 3D-DCT effectively. A block diagram of the 3D-
DCT/IDCT (Inverse DCT) video codec is shown in Fig. 1.

As compared to motion-estimation/compensation-
based methods, the 3D-DCT approach offers three advan-
tages for portable video compression systems.

1. No motion estimation is needed; hence, the number of
en/decoding operations per pixel is much less than in a
motion-estimation/compensation-based method [10].
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2. The encoder and decoder have equivalent architecture;
however, coefficient data stored in memory are differ-
ent when they perform encoding or decoding.

3. There is no relationship between the complexity of im-
plementation and the compression ratio [11].

The sequential calculation of 3D-DCT is time-consuming
because coefficients and input data stored in memory have
to be accessed randomly many times; this makes it difficult
to implement a real-time application. Thus, researchers have
proposed many algorithms [12], [13] and hardware architec-
tures [14], [15] for the rapid computing of 3D-DCT, espe-
cially for real-time applications. In [16] and [17], parallel
algorithms for fast 3D-DCT computation based on butterfly
calculation are proposed. The butterfly calculation is car-
ried out in log2 N steps for an N3-size image. However, the
wiring cost connecting the 3D butterfly modules becomes
high when N is large. In addition, these algorithms and hard-
ware architectures require complex data alignments. Thus,
special data alignment circuits are needed to prepare input
data in an appropriate form. Moreover, time-consuming
postprocesses such as recursive additions must be performed
after the butterfly calculation [17]. The well established tra-
ditional design and complexity analysis of the systolic algo-
rithms [18] usually ignore the I/O processes, but they often
take a long time to maintain a 2D data alignment. Further-
more, hardware realization of the 2D data alignment is rel-
atively difficult. Nowadays, the advances in the 3D VLSI
technology [19], stacked memory [20], [21], and Giga-size
sensor arrays [22] with a parallel read-out and embedded
logic allow realization of massively parallel array proces-
sors with one I/O channel per PE (Processing Element) [23].
These technologies are able to achieve the multidimensional
data streams [24] and solve the current I/O bottleneck prob-
lems on many core architectures. However, to show practi-

Fig. 1 Block diagram of the 3D-DCT/IDCT video codec.
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cal implementation results, in this paper, the proposed array
processors are implemented with their standard I/O on an
FPGA board.

In this research, practical array processors dedicated
to 3D-DCT are proposed. Our array processor has N3 PEs
connected in the form of a 3D toroidal cube. Each PE has
the same structure: MAC (multiply and accumulate) units,
a register file, and wires connected to adjacent PEs. Com-
pared to other processors [4], [11], [14], [15], our array pro-
cessor can input and output data without any preprocessing
or postprocessing (e.g., time-space skewing) and drastically
reduce data swapping or replacement tasks during 3D-DCT
calculation by introducing a smart data transfer scheme with
a simple PE array structure. This is the key to realize high-
speed calculation of 3D-DCT.

The rest of this paper is organized as follows. Sec-
tion 2 presents the definition of 3D-DCT. In Sects. 3 and
4, the original array processor architecture and its I/O inter-
faces for 2D devices are proposed. Throughput-improved or
scalable architectures are presented in Sects. 5 and 6. Exper-
imental results and evaluations are given in Sect. 7. Conclu-
sions are discussed in Sect. 8.

2. Definition Formula of 3D-DCT

Let XN×N×N = [X(i, j, k)], 0 ≤ i, j, k ≤ N−1, be an input data
cube. The 3D type-II discrete cosine transform of XN×N×N

is defined as follows [4]:

YN×N×N = [Y(s, r, p)], 0 ≤ s, r, p ≤ N − 1,

where

Y(s, r, p) = Φ ·
N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

X(i, j, k)

×C(k, p) ×C( j, r) ×C(i, s),

Φ =

√
8

N3
· ε(s) · ε(r) · ε(p),

ε(m) =

{ 1√
2
, f or m = 0;

1, f or m > 0;
m ∈ {s, r, p},

and elements of the coefficient matrix CN×N = [C(u, v)] are
pre-computed as

C(u, 0) =
1√
2
, C(u, v) = cos

(
π(2u + 1)v

2N

)
,

u ∈ {i, j, k}, (u, v) ∈ {(i, s), ( j, r), (k, p)}.
The 3D-DCT is a linear transformation that converts an orig-
inal 3D coordinate system (i, j, k) into a new 3D system,
(s, r, p). Coefficient matrix CN×N is used for converting k-,
j-, and i-coordinates into p-, r-, and s-coordinates, respec-
tively. Hereafter, we call the calculation that strictly follows
the above formulas as “sequential calculation.”

3. Proposed Array Processor Architecture

3.1 Overview

Figure 2 overviews the proposed array processor architec-
ture when N=4. The array processor has a cubic structure.
Each PE is basically connected with six adjacent PEs, and
the PEs located on the surface of the cube have wrap-around
torus connections. In other words, a PE is connected to the
PE on the opposite side of the cube.

The structure of a PE used in the proposed array pro-
cessor is shown in Fig. 3. For N3-size 3D-DCT, each PE is
mainly composed of I/O selectors, a MAC unit, a switch
(SW), and a register file. The I/O selectors are imple-
mented by a 3-to-1 multiplexer and a 1-to-3 demultiplexer.
In Fig. 3, the input data come from the input ports: (i+1)%N,
( j+1)%N, and (k+1)%N. Hereafter, the operator “%” indi-
cates modulo operation. The calculated data go out through
the output ports: (i−1)%N, ( j−1)%N, and (k−1)%N. Each
selector is controlled by a state signal. The switch takes a
multiplicand, a multiplier, and an accumulated data from the
register file. The size of the register file is 3N + 4; 3N regis-
ters are for coefficients and four registers are for input data
and calculation results.

The data transfer directions are shown in Fig. 4. All
PEs have homogeneous structure and perform parts of the
3D-DCT calculation and data transfer systolically. The se-

Fig. 2 An overview of the proposed array processor architecture for 43-
size 3D-DCT (control unit is not shown).

Fig. 3 PE structure of the array processor.
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Fig. 4 Directions of the data transfer.

Fig. 5 A sliced view of the i-k plane.

quence to calculate the result of N3-size 3D-DCT is data
input, steps 1, 2, and 3 for 3D-DCT calculation, and data
output. In traditional array processors, the data swapping
or replacement during the 3D-DCT calculation is a perfor-
mance bottleneck because of the high-speed operations and
low-speed memory data access. The proposed array proces-
sor maintains input data integrity and locality, and there is
no data rearrangement during the 3D-DCT calculation. This
is a significant feature for improving the performance.

3.2 Data Input/Output

The partial I/O connections of the proposed array processor
are shown in Fig. 5. This array processor inputs N2 data
simultaneously. The N × N input ports are arranged on the
k = N−1 (i, j)-plane; each PE transfers input data to (k−1)-
th adjacent PE opposite to k-axis. N microsteps are needed
to input all N3 data. The output sequence is almost the same
as the input sequence. The N × N output data of PEs on the
k = 0 (i, j)-plane are fed from the corresponding PEs on the
k = N − 1 plane using the end-around torus connections.
The PEs on the k = 0 plane also have output ports, which
are used to get the N3 final results.

3.3 Calculation Procedure of 3D-DCT

As shown in Sect. 2, the 3D-DCT is a heavy task that re-
quests many MAC operations, and it is difficult to realize a

Fig. 6 Time chart to perform a N3-size 3D-DCT.

hardware circuit that performs the 3D-DCT directly. How-
ever, since 3D-DCT is a separable transform [25], we can
implement it as the set of three 1D transforms and reduce
the hardware cost. In our array processor, there are three
steps to obtain the 3D-DCT result. To perform 3D-DCT,

• the coefficients and input data stored in memory have
to be accessed many times, and/or
• the partial results need to be rearranged to accelerate

memory data access after each 1D transform is fin-
ished.

These processes are significant performance bottlenecks for
a fast 3D-DCT calculation. By prestoring the 3D-DCT co-
efficients for each PE and moving the partial calculation re-
sults appropriately using the torus connections between PEs,
our array processor can completely eliminate the abovemen-
tioned data rearrangement in obtaining the 3D-DCT results.
This is a key reason why our array processor can perform
3D-DCT effectively.

In our array processor, actual 3D-DCT is performed in
three steps: steps 1, 2, and 3. In step 1, X(i, j, k) is multi-
plied with C(k, p). In step 2, Ẋ(i, j, p), results of step 1, is
multiplied with C( j, r). In step 3, Ẍ(i, r, p), results of step 2,
is multiplied with C(i, s). The time chart to perform a N3-
size 3D-DCT is shown in Fig. 6. As shown in Fig. 6, each
step has N microsteps. The processing sequence of a PE in
each microstep is as follows:

1. Receive data from the adjacent PE and store it in the
register.

2. Multiply received data with the coefficients that are
prestored in the register on each PE. The calculation
result is then stored in the register.

3. Transfer local data to the adjacent PE.

Transferred data in each step are

• input data for step 1,
• the calculation result of step 1 for step 2, and
• the calculation result of step 2 for step 3.

In each microstep, the coefficient data used in PE(i, j, k) are

• C((k + microstep) mod N, k) for step 1,
• C(( j + microstep) mod N, j) for step 2, and
• C((i + microstep) mod N, i) for step 3.

The coefficients are preset in each PE before processing. For
the 3D-IDCT, data of the transposed coefficient matrix CT

are used. The elements of CT are preset on the appropriate
PEs.

The total number of calculation microsteps for the pro-
posed N × N × N torus array processor is 3N for an N3-size
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input data cube. Thus, the time complexity is O(N) while
that of the 3D-DCT sequential calculation is O(N4).

4. I/O Interfaces

Although our array processor does not require any compli-
cated I/O circuits performing input data alignment, it has to
handle N3 data at once to obtain the final output data. Thus,
dedicated I/O interfaces tuned to our array processor are de-
signed.

The N×N I/O ports are connected to the k = N−1 (i, j)-
plane of the proposed array processor. The I/O interface is
provided to implement our array processor on 2D devices.
Figure 7 is an overview of the I/O architecture. The archi-
tecture consists of six parts: an input memory, input address
generator, input buffer, output buffer, output address gener-
ator, and output memory. The input part of the architecture
performs the following operations in each microstep.

• Derive the input memory address using the input ad-
dress generator.
• Get one pixel data from the input memory and put it

into the proper FIFO of the input buffer.
• Update control signals for the input buffer, address gen-

erator, and array processor.

In addition, the input buffer sends N2-size sub-frame
data to the array processor simultaneously when the array
processor requests data for the next calculation. The in-
put memory is used as a frame buffer for the input data.
This memory is connected to a host computer and the in-
put buffer. The video data from the host computer are stored
in this memory sequentially. The output data of the input
memory are managed by an input address generator. The in-
put memory has enough capacity to contain 2N3 data. The
array processor begins its operations after the first N3 data
arrive at the input buffer from the input memory.

The input address generator produces the memory ad-
dress for the input memory access in each clock cycle. It
requests four parameters: the base address (BA), vertical
resolution of video data (RV), horizontal resolution of video

Fig. 7 Block diagram of I/O interface architecture.

data (RH), and N. As shown in Fig. 8, the address generator
has an adder and six address tables for address calculation.
The contents of each address table are calculated using the
following expressions:

MDx[i] = i, f or 0 ≤ i < N
MDy[i] = RH × i, f or 0 ≤ i < N
MDz[i] = RH × RV × i, f or 0 ≤ i < N
BMDx[i] = N × i, f or 0 ≤ i < RH/N
BMDy[i] = RH × N × i, f or 0 ≤ i < RV/N
BMDz[i] = RH × RV × N × i, f or 0 ≤ i < 2

Here, MDx, MDy, and MDz are the x-, y-, and z-coordinates
of the data in an N × N × N-size data block. BMDx, BMDy,
and BMDz are the x-, y-, and z-coordinates of the data block
in the processing video data.

The input address generator derives proper memory ad-
dress values from these six tables. A memory address is
easily obtained using the following expression:

ADDR = BA+MDx+MDy+MDz+BMDx+BMDy+BMDz

Here, ADDR is the target memory address for the input
memory access.

The input buffer is used for timing gap elimination be-
tween the array processor and the input memory. Figure 9
overviews the input buffer architecture. The architecture has

Fig. 8 An overview of the address generator.

Fig. 9 An overview of the input buffer.
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N × N asynchronous FIFOs and a buffer controller. The in-
put buffer sequentially receives data from the input memory
and puts them into proper FIFOs to generate N×N-size sub-
frame data. The input buffer sends sub-frame data at once
to the array processor for the next 3D-DCT calculation. The
buffer controller has three control signals: a write-enable
signal sent to each FIFO, a full signal sent to the input ad-
dress generator, and a read-request-enable signal sent to the
array processor. The write-enable signal controls writing in
FIFOs to store N2-size sub-frame data correctly. The full
signal is asserted when all FIFOs become full; the input ad-
dress generator does not update the input memory address
when full signal is asserted. The read-request-enable sig-
nal is asserted when FIFOs have enough data for the next
3D-DCT calculation; the array processor stops input opera-
tions when read-request-enable signal is asserted. The read-
request signal from the array processor is directly passed to
each FIFO to request the next data for the FIFO.

The data flow scheme of the output architecture is op-
posite to that of the input architecture. The output buffer is
used for timing gap elimination between the output mem-
ory and the array processor output. Figure 10 overviews the
output buffer architecture. The output buffer receives N × N
data at once from the output ports of the array processor and
sends them to proper locations of the output memory using
a selector. As shown in Fig. 10, the buffer controller gen-
erates four control signals for the output buffer. The select
and read-enable signals are used to control output data of
the FIFO. The write-request-enable signal is asserted when
each FIFO has enough capacity to receive N3 data from the
array processor; the array processor sends data to the out-
put buffer when this signal is asserted. The empty signal is
asserted when all FIFOs become empty. This signal is also
sent to the output memory and the output address genera-
tor. The output memory address and data are updated only
when the empty signal is negated. The output address gen-
erator generates the memory address for the output memory
access. The processing sequence of the output address gen-
erator is the same as that of the input address generator. The
output memory stores the output data from the output buffer.
The data allocations in the output memory are the same as
those in the input memory. The memory address is gener-
ated by the output address generator.

Fig. 10 An overview of the output buffer.

Using the proposed I/O interfaces, effective I/O data
management is realized without data stream modification on
the host computer.

5. Throughput Improvement

Hereafter, we call the array processor proposed in Sect. 3 as
“original” architecture. To improve the throughput of orig-
inal architecture, two pipelined architectures are also pro-
posed. Although the improved architectures require more
hardware resources than the original architecture, significant
performance improvements are expected.

The first version of the pipelined architecture has PEs
shown in Fig. 11 and has the following features:

• There are two MAC units in each PE.
• The number of registers to store calculated data is the

same as original architecture has.
• I/O switches are used instead of the (de)multiplexers.
• Input ports are arranged on the i = N − 1 ( j, k)-plane;

each PE transfers input data to the i − 1 adjacent PE
opposite to the i-axis.

The pipeline scheme is shown in Fig. 12. The columns rep-
resent pipeline stages and the rows represent time steps.
Here, each step consists of N microsteps. There are three
processing stages: stage A, B, and C. Each stage performs
different process at each time step. In order to perform
two MAC operations simultaneously, each PE has two MAC
units. Here, the registers read/written on each time step are
not overlapped; thus, the number of registers used for regis-
ter files is same as the original architecture. So the critical
paths are not lengthened, and no additional paths are used
in this version. Instead, the I/O switches are used to con-
trol data flows, and the input ports are rearranged to prevent

Fig. 11 PE structure of “Pipelined ver. 1”.

Fig. 12 Pipeline scheme for “Pipelined ver. 1”. In each box, top line
shows the process in each stage; bottom line shows the data transfer direc-
tion.
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data path overlapping in each processing stage. This archi-
tecture, “Pipelined ver. 1,” performs 3D-DCT calculation at
a rate that is 2.5 times faster that of the original architecture,
theoretically.

The second version of the pipelined architecture has
PEs shown in Fig. 13 and has following additional require-
ments:

• I/O operations are separated from the calculations. To
do this, dedicated I/O ports: in + 1, out + 1, in − 1,
and out − 1 are provided as shown in Fig. 13. Using
these I/O ports, the data transfer to/from the adjacent
PEs can be performed simultaneously with the calcula-
tion in the PE.
• There are three MAC units in each PE.
• The number of registers to store calculated data is dou-

bled that of the original architecture.

The pipeline scheme is shown in Fig. 14; the rows and
columns are the same as those in Fig. 12, except for the addi-
tion of “Input” and “Output” stages. They show the data I/O
timing for the corresponding stage process. Since all three
paths along the i-, j-, and k-axes are fully used in the three-
step calculations, additional dedicated wires for the data I/O
processes are required. Besides, to perform three MAC op-
erations simultaneously, each PE has three MAC units. To
keep the data integrity during calculations, the number of
registers used for register files is doubled compared to the
original one; the total number of registers is 3N + 8.

Fig. 13 PE structure of “Pipelined ver. 2”.

Fig. 14 Pipeline scheme for “Pipelined ver. 2”. In each box of the top
three rows, top line shows the process in each stage; bottom line shows the
data transfer direction. Input and Output rows show the input or output
data for Stage X.

Under these conditions, “Pipelined ver. 2” theoretically
performs at a rate 5.0 times faster that for the original archi-
tecture; however, its cost could be much higher than that
of Pipelined ver. 1. In addition, its structure is more com-
plex, especially in terms of wiring, and this could lengthen
the critical path delay for the whole circuit. The practical
performance improvement ratios are presented in Sect. 7.

6. Area Optimization

Our array processor requires O(N3) hardware resources, and
it is important that this number is decreased for practical im-
plementation. Figure 15 shows the estimated number of reg-
isters and MAC units in our original/pipelined architectures
in the case of N = 2, 4, and 8. If we could perform N3-
size 3D-DCT using (N/2)3-size architecture, the number of
hardware resources would be polynomially less. We refer to
this architecture as “Block” architecture.

Assuming N=4, a 2 × 2 × 2-size array processor archi-
tecture performing 43-size 3D-DCT is shown in Fig. 16. The
features of this Block architecture are as follows:

Fig. 15 Estimated number of registers and MAC units:
Org: Original, P1: Pipelined ver. 1, P2: Pipelined ver. 2.

Fig. 16 43-size 3D-DCT calculation by using 2 × 2 × 2-size array pro-
cessor.



IKEGAKI et al.: 3D-DCT PROCESSOR AND ITS FPGA IMPLEMENTATION
1415

Fig. 17 Time chart to perform a (N/2)3-size 3D-DCT.

• The structure of PE is the same as that of the original
architecture.
• The N3-size 3D-DCT calculation is divided into eight

(N/2)3-size calculations.
• 3N microsteps are needed for each (N/2)3-size 3D-

DCT calculation.
• FIFOs are inserted into each toroidal connection of the

i-, j-, and k-axes. Each FIFO is composed of N/2 reg-
isters in its implementation.
• The number of operators is theoretically 1/8 of that for

the original architecture.
• The number of coefficient registers in each PE is the

same as for the N3-size original architecture.

Figure 17 shows the time chart to perform a (N/2)3-
size 3D-DCT. This “partial” 3D-DCT has similar process-
ing sequence as the original architecture, but the number of
microsteps to perform each process is different from that of
the original one. On the original architecture, all of the pro-
cesses: input, calculation step 1, 2, and 3, and output take
N microsteps. On the other hand, the Block architecture
takes: N/2× 4 microsteps for input, 3N microsteps for cal-
culations, and N/2 microsteps for output. Thus, in order
to commit a N3-size 3D-DCT and its I/O process, it takes
44N microsteps on this Block architecture; recall that the
original architecture requires 5N microsteps.

However, compared with the original architecture pro-
posed in Sect. 3, the number of MAC units is polynomially
reduced. Thus, the architecture is easy to implement for
area-limited hardware such as field-programmable gate ar-
rays (FPGAs). In addition, the FIFOs attached to the array
processor only require ordinary FIFO functions, and com-
mercially available discrete FIFOs can be used in board-
level integration. Note that we used an (N/2)3-size pro-
cessing array to simplify the proposed mechanism, but the
mechanism is applicable to any (N/m)3-size processing ar-
ray, where m = 2, 4, 8, ...,N/2.

7. Experimental Results

In this section, all of four proposed architectures are imple-
mented on an FPGA. We have already discussed theoretical
issues for the proposed architectures and shown their pre-
liminary implementation results in [26], [27], but re-evaluate
all architectures and compare them with other related works.

7.1 Performance Evaluation

First, we implemented the proposed architectures for an

Table 1 Performance and resource utilizations of proposed architectures
for 4 × 4 × 4 data (N=4, Target FPGA: Cyclone II EP2C70F896C6).

FPGA and evaluated their resource utilization and perfor-
mance. The experimental parameters and conditions are as
follows:

• N = 4
• Input data bit-width: 16 bits
• Target FPGA: Cyclone II EP2C70F896C6

The experimental results are presented in Table 1 for the
original array processor architecture proposed in Sect. 3,
Pipelined ver. 1 and Pipelined ver. 2 with pipeline schemes
presented in Sect. 5, and the Block architecture described in
Sect. 6. To compare their performances, throughput is de-
fined as the number of processed 3D-DCTs per second; a
43-size data cube is transformed each time. In this imple-
mentation, one microstep is one clock cycle. As shown in
Table 1, Pipelined ver. 1, Pipelined ver. 2, and the Block
architectures have certain advantages over the original ar-
chitecture.

• Pipelined ver. 1 performs better than the original archi-
tecture by a factor of 2.7; it requires only 88 additional
multipliers than the original architecture.
• Pipelined ver. 2 has the best performance. It performs

better than the original architecture by a factor of 5.1.
• The Block architecture can be implemented with the

lowest hardware cost: 12.5%-26.8% of the cost of the
original architecture.

Since the MAC units and their peripherals in each PE are
structurally parallelized by pipelining, the critical path de-
lays of these architectures become shorter. This is the rea-
son why the clock frequencies of the pipelined architectures
are higher than that of the original architecture.

Table 1 also shows the resource utilizations on the tar-
get FPGA. Since the number of states (combinations of the
processes in each microstep) of Pipelined ver. 1 is smaller
than that of the original architecture, the control unit of
Pipelined ver. 1 can be implemented by using smaller num-
ber of LEs (Logic Elements) and registers compared to the
original architecture. Pipelined ver. 2 uses all three paths
along the i−, j−, and k− axes in each microstep, as shown
in Fig. 14. There is no control signal to switch data-flows
of these three paths, while the control signal of the original
architecture and Pipelined ver. 1 have this switching control.
Hence, the bit-width of the control signal is smaller than that
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Table 2 Performance and resource comparison of the proposed archi-
tectures and the architecture proposed in [14] (N = 4, input data bit-
width = 8 bits) (*1) (Normalized clock speed) = (Clock freq. of [14])
× (Max. clock freq. of “Cyclone II EP2C70F896C6”) / (Max. clock freq.
of “EPF10K100EFC484-1”) (*2) Assume the number of data cube on one
frame is 1200.

of the original architecture and Pipelined ver. 1. This con-
trol signal is assigned to output pins. Thus, in Table 1, the
total number of I/O pins of Pipelined ver. 2 is 1 bit smaller
than that of the original architecture and Pipelined ver. 1.
Theoretically, the numbers of registers in the pipelined ar-
chitectures should be ×2 and ×3 of the original architecture,
respectively. However, the numbers of embedded 9-bit mul-
tipliers in Table 1 do not follow this fact. This is because
the input data bit-width is 16 bits in our implementation and
some parts of multipliers are realized using LEs.

In Table 2, we compared our architectures with the ar-
chitecture proposed in [14] which also realizes 3D-DCT.
The experimental conditions are the same as [14]: N = 4;
input data bit-width = 8 bits. Our architectures are imple-
mented using an Altera Cyclone II EP2C70F896C6. We
use frame rate (frames per second) to compare the perfor-
mance. Since [14] implements their architecture using an
Altera EPF10K200EFC484-1, we normalized the perfor-
mance using the following equation, by referring the device
data sheets.

Normalized clock speed
= Clock f req.o f [14]× Max. clock f req. o f “CycloneIIEP2C70F896C6′′

Max. clock f req. o f “EPF10K100EFC484−1′′

= Clock f req. o f [14] × 402.5 MHz
180.0 MHz

Table 2 also shows hardware resource, i.e., the number of
LEs, used to realize the corresponding architecture. It takes
the embedded multipliers into account. Although the pro-
posed architectures use 1.5 - 15.0 times hardware resources,
they perform 10 - 361 times better throughput, compared to
the architecture proposed in [14]. In fact, their relative ratios
of the frame rate per the number of LEs, which indicate the
relative performance per hardware resource, are improved
by factors of 6.5 - 24.4.

7.2 Minimum Clock Frequency to Perform Real-Time 3D-
DCT

We also evaluated the theoretical minimum clock frequen-
cies required to perform real-time 3D-DCT analytically. We
assume N = 4; the required clock frequencies of the pro-
posed architectures under 32 and 60 fps (frame per second)
conditions are presented in Tables 3 and 4.

For VGA-size input video data under 32/60 fps condi-

Table 3 Minimum operating clock frequency for real-time 3D-DCT
(N=4, 32 fps).

Table 4 Minimum operating clock frequency for real-time 3D-DCT
(N=4, 60 fps).

tions, the minimum clock frequencies are as follows:

• Original architecture: 3.1/5.8 MHz
• Pipelined ver. 1: 1.2/2.3 MHz
• Pipelined ver. 2: 0.6/1.2 MHz
• Block architecture: 27.1 MHz

VGA is one of the most frequently used video data formats.
Except for the Block architecture, the presented frequency
values are only a few MHz; such low clock frequency af-
fords low power consumption.

For UXGA-size input video data under a 60 fps condi-
tion, the minimum clock frequencies are as follows:

• Original architecture: 36.0 MHz
• Pipelined ver. 1: 14.4 MHz
• Pipelined ver. 2: 7.2 MHz
• Block architecture: 316.8 MHz

UXGA is considered a high-quality video format. The fre-
quency values of the pipelined architectures are less than
20 MHz. Playing high-quality video on portable devices is
an upcoming demand, and this architecture will be useful in
such applications.

As shown in the above cases, the Block architecture re-
quires much higher clock frequency than other architectures
for real-time processing; thus, high-resolution video cod-
ing using this architecture is impractical at present. How-
ever, using the implemented circuit presented in the previ-
ous section, it can handle XGA-size video data of 32 fps and
SVGA-size video data of 60 fps. Therefore, this architecture
is suitable for smaller-size video encoding.

7.3 Resource Utilization

In this section, we discuss the resource utilization of the pro-
posed architectures. Tables 5–7 present the resource utiliza-
tions of the architectures when N = 2, 4, and 8. The im-
plementation target is Cyclone III EP3C120F780C8 FPGA.
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Table 5 Resource utilization (N=2, Target FPGA: Cyclone III
EP3C120F780C8).

Table 6 Resource utilization (N=4, Target FPGA: Cyclone III
EP3C120F780C8).

Table 7 Resource utilization (N=8, Target FPGA: Cyclone III
EP3C120F780C8).

The input data bit-width is 16 bits. In Table 7, the symbol
“∗” in each table indicates that FPGA-implemented mul-
tipliers are fully used. Thus, some multipliers are imple-
mented by using LEs. In addition, the symbol “†” indicates
the corresponding three architectures, i.e., the original ar-
chitecture, Pipelined ver. 1, and Pipelined ver. 2, cannot be
implemented in the target Cyclone III FPGA because of its
resource limitations. The values shown in the corresponding
columns are the estimated values obtained by using Altera
Quartus II, a logic design tool.

As shown in the second columns of Tables 5-7, the
numbers of embedded multipliers are 2 × N3 in the origi-
nal architecture since the multiplication of 16-bit input data
is performed by two embedded multiplier 9-bit elements on
each PE. Because of the resource limitation of the FPGA,
in the N=8 case, some multiplications are implemented us-
ing logic elements. This is one reason why the resource
utilization increases greatly from the case N=4 to the case
N=8. The third and fourth columns show the resource uti-
lizations of the pipelined architectures. The numbers of
LEs in the pipelined architectures are much higher than the
number in the original architecture. In Sect. 7.1, Pipelined
ver. 2 had the best performance among all proposed archi-
tectures. However, the resource cost of this architecture is
more than twice that of the original architecture when N
becomes large. On the other hand, as shown in Table 7,
the Block architecture uses less than 1/6 of the resources

of the original architecture when N=8; this architecture is
the most practical for the implementation target Cyclone III
EP3C120F780C8 FPGA.

Each of the proposed architectures has an advantage
in terms of its performance or hardware cost. Thus, an ap-
propriate architecture should be selected on the basis of the
target FPGA and the target application to obtain the best
balance of cost and performance.

8. Conclusion

In this paper, we proposed 3D array processors dedicated to
3D-DCT calculation and presented their implementation re-
sults for an FPGA. The array processor drastically reduced
data swapping or replacement during the 3D-DCT calcula-
tion and showed significantly improved performance. The
computational complexity of the proposed array processor
is O(N) for an N3 input data cube, and that of the 3D-DCT
sequential calculation is O(N4). In addition, the advanced
architectures featuring data pipelining were proposed to im-
prove the data throughput. The pipelined architectures per-
formed 3D-DCT calculation faster than the original archi-
tecture based on sequential data handling by factors of 2.7
and 5.1. Furthermore, the Block architecture was proposed.
This architecture could perform 83-size 3D-DCT using a 43-
size processor array, which reduced the hardware cost to less
than 1/6 of the cost of the original architecture. Evaluation
results showed that the Block architecture, with adaptable
scalability, provides good performance for real-time appli-
cations.
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