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PAPER

Toward Simulating the Human Way of Comparing Concepts∗

Raúl Ernesto MENÉNDEZ-MORA†,††a), Nonmember and Ryutaro ICHISE†b), Member

SUMMARY An ability to assess similarity lies close to the core of cog-
nition. Its understanding support the comprehension of human success in
tasks like problem solving, categorization, memory retrieval, inductive rea-
soning, etc, and this is the main reason that it is a common research topic.
In this paper, we introduce the idea of semantic differences and commonali-
ties between words to the similarity computation process. Five new seman-
tic similarity metrics are obtained after applying this scheme to traditional
WordNet-based measures. We also combine the node based similarity mea-
sures with a corpus-independent way of computing the information content.
In an experimental evaluation of our approach on two standard word pairs
datasets, four of the measures outperformed their classical version, while
the other performed as well as their unmodified counterparts.
key words: WordNet, semantic similarity measures, information content,
knowledge

1. Introduction

An ability to assess similarity lies close to the core of cog-
nition. Its understanding support the comprehension of hu-
man success in tasks like problem solving, categorization,
memory retrieval, inductive reasoning, etc. In many fields
such as artificial intelligence, biomedicine, linguistics, cog-
nitive science, and psychology the semantic similarity of
words is a topic of research. The computation of seman-
tic similarity is extensively used in a variety of applications,
like words sense disambiguation [1], detection and correc-
tion of malapropisms [2], information retrieval [3]–[5], au-
tomatic hypertext linking [6] and natural language process-
ing. Several applications to the field of artificial intelligence
are discussed in [7]. However, despite numerous practical
applications today, its theoretical foundations lie elsewhere,
in cognitive science and psychology where it has been the
subject of many investigations and theories (e.g., [8]–[12]).

Let take a current example of peer-to-peer net-
works [13] into which semantic similarity has found its way.
Assuming a shared taxonomy among the peers to which they
can annotate their content, similarities among peers can be
inferred by computing similarities among their representa-
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tive concepts in the shared taxonomy. In this way, the more
two peers are similar, the more efficient it is to route mes-
sages toward them. Numerous similar applications are the
reasons for the increasing interest in this subject, whose ulti-
mate goal is to mimic human judgment regarding similarity
of word pairs.

Semantic similarity of words is often represented by
the similarity between the concepts associated with the
words. Several methods have been developed to com-
pute word similarity, some of them operating on the tax-
onomic dictionary WordNet [14] and exploiting its hierar-
chical structure. However the majority of them suffer from
a serious limitation. They only focus on the semantic in-
formation shared by those concepts, i.e., on the common
points in the concept definitions or in the semantic differ-
ences but they never combine both. The increasing need for
better measures and the new study area of semantic differ-
ences between words has led us to this study in the hope of
upgrading existing semantic similarities measures. In par-
ticular, we combined traditional WordNet-based semantic
similarity measures with the idea of the “similarity between
entities being related to their commonalities as well as to
their differences”, in order to improve the performance of
WordNet-based similarity measures and to obtain better re-
sults for applications using semantic similarities.

The paper is structured as follows. The next section re-
views some background knowledge and related work. Sec-
tion 3 describes our model, as well as the modified measures
and the corpus-independent metric. Section 4 discusses the
results of the experiment, and Sect. 5 summarizes our work,
draws some conclusions, and outlines future work.

2. WordNet Similarity Measures

2.1 Semantic Similarity

Close to the core of cognition, similarity plays an indispens-
able foundational role in cognitive theories where several
studies have been done. Four major psychological models of
similarity are: geometric [8], featural [9], [10], alignment-
based [11] and transformational [12].

Geometric models have been among the most influen-
tial approaches to analyzing similarity. Geometric models
standardly assume minimality [D(A, B) ≥ D(A, A) = 0],
symmetry [D(A, B) = D(B, A)], and the triangle inequal-
ity [D(A, B) + D(B,C) ≥ D(A,C)]. Tversky [10] criti-
cized geometric models on the grounds that violations of
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all three assumptions are empirically observed. When com-
paring things that are richly structured rather than just be-
ing a collection of coordinates or features often it is most
efficient to represent things hierarchically (parts containing
parts) and/or propositionally (relational predicates taking ar-
guments). In such cases, comparing things involves not sim-
ply matching features, but determining which elements cor-
respond to or align with one another. In alignment-based
models, matching features influence similarity more if they
belong to parts that are placed in correspondence, and parts
tend to be placed in correspondence if they have many fea-
tures in common and if they are consistent with other emerg-
ing correspondences. A fourth approach to modeling simi-
larity is based on transformational distance. The similarity
of two entities is assumed to be inversely proportional to the
number of operations required to transform one entity so as
to be identical to the other.

But the key to calculating semantic similarity lies in
resembling human thinking behavior. Semantic similarity
of concepts is determined by processing first-hand informa-
tion sources in the human brain. Some studies have tried to
assess the semantic proximity of two given concepts in or-
der to improve the semantic similarity computation. These
studies focus on similarity and they use synonymy†, hy-
ponymy†† [15], meronymy††† and other arbitrarily typed se-
mantic relationships among concepts. These relationships
can be used to connect concepts in graph structures. They
are the key ideas behind measures developed to assess the
semantic similarity of concepts, i.e., how much one concept
has to do with a different one. However, the measures tend
to focus on the common points in the concepts’ definitions;
they rarely consider semantic differences, and in the best
case both approach are never combined. This leaves a big
gap in the semantic similarity computation process.

2.2 WordNet

A number of semantic similarity computation methods op-
erate on the taxonomic dictionary WordNet [14] and exploit
its hierarchical structure. WordNet is a machine-readable
lexical database that is organized by meanings, and it was
developed at Princeton University. Synonymy, hyponymy,
meronymy and many other relationships between concepts
are represented in this lexical network of English words.
WordNet, as an ontology, is intended to model the human
lexicon, and psycholinguistic findings were taken into ac-
count during its design. It is classified as a light-weight
ontology, because it is heavily grounded on its taxonomic
structure employing the IS-A inheritance relation, and as a
lexical ontology, because it contains both linguistic and on-
tological information [16]. Figure 1 taken from [17] shows
a fragment of WordNet’s structure.

Nouns, verbs, adjectives, and adverbs are each orga-
nized into networks of synonym sets (synsets) each repre-
senting one underlying lexical concept and are interlinked
with a variety of relations. A polysemous†††† word will
appear in one synset for each of its senses. The back-

Fig. 1 Fragment of the WordNet taxonomy. Solid lines represent IS-A
links; dashed lines indicate that some intervening nodes were omitted to
save space.

bone of the noun network is the subsumption hierarchy (hy-
ponymy/hypernymy), which accounts for close to 80% of the
relations in WordNet.

2.3 Semantic Similarity Measures and WordNet

Based on WordNet and depending on the elements taken
into consideration, semantic similarity measures can be
classified into two different types: edge-based similarity
measures and node-based similarity measures.

An intuitive way to quickly compute the semantic sim-
ilarity between two nodes of a hierarchy is to count the num-
ber of edges in the shortest path between these two nodes.
The idea behind this is that the semantic distance of two con-
cepts is correlated with the length of the shortest path to join
these concepts. This measure was first defined by Rada in
[18]. However, it relies upon the assumption that each edge
carries the same amount of information, which is not true
in most ontologies [17]. Many other formulas have since
extended Rada’s measure by computing weights on edges
by using additional information, such as the depth of each
concept in the hierarchy and the lowest common superset,
or most specific subsumer (lcs) [19]. For example, in Fig. 1,
the lcs between the concepts nickel and dime is the concept
coin.

The measures which focus on structural semantic in-
formation (i.e., the depth of the lowest common superset
(lcs(c1, c2)), the depth of the concept’s nodes, and the short-
est path between them) are called edge-based similarity
measures. In a paper on translating English verbs into Man-
darin Chinese, Wu & Palmer [19] introduce a scaled metric
for what they call conceptual similarity between a pair of
concepts c1 and c2 in a hierarchy. Leacock & Chodorow [20]
also rely on the length of the shortest path between two
synsets for their measure of similarity. However they limit
their attention to IS-A links and take into account the maxi-

†A semantic relation that holds between two words that can (in
a given context) express the same meaning.
††The semantic relation of being subordinate or belonging to a

lower rank or class.
†††The semantic relation that holds between a part and the whole.
††††Polysemy: The ambiguity of an individual word or phrase that

can be used (in different contexts) to express two or more different
meanings.
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Table 1 Compilation of the different similarity measures and their main features.

Type Similarity Description

Edge-based

Rada [18]
Rely on the length of the shortest path joining two concepts.

S imlength

Wu & Palmer [19]
Rely on the depth of the lowest common superset between two concepts.

S imwup

Leacock & Chodorow [20]
Rely on the length of the shortest path between two synsets.

S imlch

Node-based

Lin [23] Defined by the ratio between the amount of information needed to state the commonality
S imlin of the concepts and the information needed to fully describe what the concepts are.

Resnik [17]
Defined by the information content of the lowest common superset between two concepts.

S imres

Pirró & Seco [24]
Based on Tversky’s theory but from an information theoretic approach.

S imP&S

Jiang & Conrath [22] A combined approach where the edge counting scheme is enhanced by the information
S im j&c content approach.

mum depth of the taxonomy.
The Wu & Palmer [19] and Leacock & Chodorow [20]

similarity measures are based in a linear model, whereas Li
et al.’s approach [21] combines structural semantic informa-
tion in a nonlinear model. Li et al.’s model empirically de-
fines a similarity measure that uses the shortest path length,
depth, and local density in a taxonomy. They include two
parameters which represent the contribution of the shortest
path length and the depth of the lcs in the similarity compu-
tation process.

Another way to compute the similarity between two
nodes is by associating a weight with each node. Such
similarity measures are called node-based similarity mea-
sures. The node-based similarity measures include the met-
rics of Resnik [17], Jiang & Conrath [22], Lin [23] and Pirró
& Seco [24].

The first node-based similarity measure we will cover,
was proposed by Resnik in [17]. It is defined by the in-
formation content (IC) of the lowest common superset (lcs)
of concepts c1 and c2. Resnik’s approach was the first one
bringing together ontology and corpus. Many other propo-
sitions have been made after Resnik to combine the IC of
the two target nodes and their lcs (e.g. [22], [23]). Both
Lin’s and Jiang & Conrath’s formulation correct a prob-
lem with Resnik similarity metric; if one were to calculate
S imres(c1, c1)†one would not obtain the maximal similarity.
Jiang & Conrath [22] metric is a semantic distance measure
which can be transformed to a similarity metric as shown in
[7].

Lin [23] calculates semantic similarity using a formula
derived from information theory. It uses the same elements
as Jiang and Conrath, but in a different fashion. According
to Lin “The similarity between c1 and c2 is measured by
the ratio between the amount of information needed to state
the commonality of c1 and c2 and the information needed to
fully describe what c1 and c2 are”.

The Pirró & Seco [24] similarity metric is based on
Tversky’s theory [10] but from an information-theoretic per-
spective. This measure achieves very good results in the
comparison to human judgments when it is combined with
the notion of intrinsic information content. In the next
section different approaches for computing the information

content (IC) will be introduced. Table 1 shows a compilation
of the different similarity measures and their main features.

S imP&S (c1, c2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3IC(lcs(c1, c2))
−IC(c1) − IC(c2) if c1 � c2

1 if c1 = c2

(1)

For a better understanding of the foundations of the
model presented in this paper we also introduce Tversky’s
abstract featural model of similarity [10].

In 1977, Tversky presented a model named the Con-
trast Model which takes into account features that are com-
mon to two concepts and features specific to each. That is,
the similarity of concept c1 to concept c2 is a function of
the features common to c1 and c2, those in c1 but not in c2

and those in c2 but not in c1. Admitting a function ψ(c) that
yields the set of features relevant to c, he proposed the fol-
lowing similarity function:

S imtvr(c1, c2) = αF(ψ(c1) ∩ ψ(c2))

− βF(ψ(c1)/ψ(c2))

− γF(ψ(c2)/ψ(c1)) (2)

where F is some function that reflects the salience of a set
of features, and α, β and γ are parameters provided for dif-
ferences in each component. According to Tversky, similar-
ity is not symmetric, that is, S imtvr(c1, c2) � S imtvr(c2, c1),
because humans tend to focus more on one object than on
the other depending on the way the relationship direction is
taken into consideration during the comparison. For exam-
ple, regarding the concept dime in Fig. 1, it is logical that
one of it’s most related concepts is nickel, but the same is
not true in the opposite direction. The concept nickel is also
like gold, metal, etc.

2.4 Information Content

Node-based similarity measures compute the similarity be-
tween two nodes by associating a weight with each node.

†From now on this notation S imabbr(c1, c2) will be used for rep-
resenting the similarity expression corresponding to the authors or
model specified by abbr when comparing concepts c1 and c2.
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From the perspective of information theory, this weight rep-
resents the information content (IC) of a concept. IC can
be considered to be a measure that quantifies the amount of
information a concept expresses. The more specialized a
concept is, the heavier its weight will be.

The literature contains two main ways of computing
information content. The most classical way is Resnik’s ap-
proach with a corpus [17]:

IC(c) = − log p(c) (3)

where p(c) is the probability of concept c in a corpus. Seco’s
approach [25] exploits the notion of intrinsic information
content (IIC) which quantifies IC’s values by scrutinizing
how concepts are arranged in an ontological structure:

IIC(c) = 1 − log (hypo(c) + 1)
log (maxwn)

(4)

where hypo returns the total number of hyponyms of a given
concept c and max wn is a constant that indicates the to-
tal number of concepts in the corresponding WordNet tax-
onomy. This definition of IC enables obtaining IC val-
ues in a corpus-independent way. Despite all this previ-
ous work, WordNet-based semantic similarity measures still
have problems, which we will discuss in the next section.

3. The Method

3.1 Menendez-Ichise Model

Most of the WordNet-based semantic similarity measures
just take into consideration semantic commonalities among
concepts for computing their values. The strength of seman-
tic differences has been diminished or not fully exploited
while their combination have been rarely considered from a
broader perspective. Having all these elements in mind and
considering the current structure of WordNet, we proposed
the Menendez-Ichise model [26]. In this section, we intro-
duce our model and its application to traditional WordNet
based similarity metrics. The modifications to those metrics
are founded on Tversky’s Contrast Model theory of similar-
ity [10] which is classified as a featural model of similarity.

Our model supports to be a specialization of Tversky’s
featured-based theory applied to traditional WordNet-based
semantic similarity measures. Paraphrasing Tversky, we
state that: “the similarity between two entities is related to
their commonalities as well as to their differences”, and our
general model is described by the following expression:

S im(c1, c2) = α ∗Comm(c1, c2) − β ∗ Di f f (c1, c2) (5)

where Comm(c1, c2) stands for commonalities, Di f f (c1, c2)
for the differences, and α and β are tuning factors (0 ≤ α)
and (0 ≤ β) that represent the importance of the commonali-
ties and differences in the model. Because WordNet’s struc-
ture is represented by an undirected graph we can’t avoid
assuming symmetry where there is none.

The use of semantic differences for computing seman-
tic similarity and its combination with the semantic com-
monalities is a novel approach. In the next section, we ex-
plain how we applied our model to WordNet-based semantic
similarity measures.

3.2 Semantic Commonalities and Differences in WordNet
Based Metrics

The main features considered by WordNet-based similarity
metrics are, the distance between nodes and the weight of
the nodes. This in turn leads to two different approaches:
edge-based and node-based, as mentioned above.

In our model, regardless of the approach used, we con-
sider the information from the root† to the lcs as the seman-
tic commonalities of the concepts c1 and c2; and the rest of
the information from the lcs to each of the concepts c1 and
c2 as the semantic differences. Hence, from the perspec-
tive of an edge-based approach, the differences are related to
the shortest path between the two concepts while the com-
monalities are related to the depth of the lcs. In node-based
approach, the differences are related to the information con-
tained in the nodes representing the concepts but not con-
tained in their lcs, because this last one its encapsulating the
common information. For example, regarding the concepts
nickel and dime in Fig. 1, the semantic commonalities are
in their lcs, i.e, the taxonomy subgraph from the root to the
lcs(nickel, dime) = coin. The semantic differences between
both concepts is enclosed in the taxonomy subgraph from
lcs(nickel, dime) to both concepts but without considering
any information from the root to the concept coin.

Equation (6) is a combination of the traditional length
and depth of the lcs metrics, because each of them deal with
the differences and the commonalities respectively. We con-
sider the first term of S im′length

††as the semantic commonal-
ities between the concepts, which is twice the distance from
the root to their lcs. The second term as the semantic dif-
ferences in this case the distance between the two concepts.

S im′length(c1, c2) = α ∗
(
1 − 1

2 ∗ depth(lcs(c1, c2))

)

− β ∗
(
1 − 1

length(c1, c2) + 1

)
(6)

depth(c) : depth of concept c in the taxonomy,
where the depth of the most abstract
node, the “root”, is 1.

length(c1, c2) : number of edges from node c1 to no-
de c2 in the taxonomy.

While Wu & Palmer measure relies on the depth of
the lowest common superset between the concepts (seman-
tic commonalities), the Leacock & Chodorow measure re-
lies on the length of the shortest path between two synsets

†The most abstract node in the taxonomy.
††From now on this notation S im′abbr will be used for represent-

ing the modified similarity expression corresponding to the authors
or model specified by abbr.
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(semantic differences). Now for each of their modified ex-
pressions (Eq. (7) and Eq. (8)) we have considered both the
semantic differences and the semantic commonalities; which
were not taken into consideration in their original formula-
tion. To follow the approach of their original expressions
the commonalities and the differences have been normal-
ized using a different approach for each case. While Wu
& Palmer measure used a normalization factor (the addi-
tion of the concepts’ depths in the taxonomy), Leacock &
Chodorow metric, used the properties of the the logarithm
function to soften its values after dividing by twice the tax-
onomy’s depth.

S im′wup(c1, c2) = α ∗
(

2 ∗ depth(lcs(c1, c2))
depth(c1) + depth(c2)

)

− β ∗
(

length(c1, c2)
depth(c1) + depth(c2)

)
(7)

S im′lch(c1, c2) = α ∗
(
− log

(
depth(lcs(c1, c2))

2 ∗ λ
))

− β ∗
(
− log

(
length(c1, c2)

2 ∗ λ
))

λ : maximum depth of the taxonomy. (8)

The modified Resnik’s similarity measure S im′res(c1,c2)
considers the semantic commonalities to be the information
content of the lcs(c1, c2) and the semantic differences to be
the information content encompassed by concepts, minus
the one already considered in the lcs(c1, c2).

S im′res(c1, c2) = α ∗ IC(lcs(c1, c2))

− β ∗ (IC(c1) + IC(c2)

− 2 ∗ IC(lcs(c1, c2)) (9)

After the application of our model, the modified Jiang
& Conrath similarity expression S im′j&c(c1, c2) is identical
to the one obtained for Resnik’s measure, Eq. (9), and it
is a generalization of the Pirró & Seco similarity measure,
Eq. (1).

S imP&S ⊂ S im′Res(c1, c2) = S im′j&c(c1, c2) (10)

According to Lin [23] “the similarity between c1 and
c2 is measured by the ratio between the amount of informa-
tion needed to state the commonality of c1 and c2 and the
information needed to fully describe what c1 and c2 are”. In
Eq. (11), we add the semantic differences as the information
content in each concept minus the one already considered
in the lcs(c1, c2) divided by the information needed to fully
describe the concepts. For Lin’s expression the information
needed to fully describe the concepts becomes a normaliza-
tion factor (see Table 2) whose effect we will discuss later.

S im′lin(c1, c2)=α ∗
(

2 ∗ IC(lcs(c1, c2))
IC(c1)+IC(c2)

)

− β ∗
(

IC(c1)+IC(c2)−2 ∗ IC(lcs(c1, c2))
IC(c1)+IC(c2)

)

(11)

Table 2 Normalization factor used with different metric approaches.

Metric Approach Normalization Factor
S im′wup edge-based depth(c1) + depth(c2)
S im′lin node-based IC(c1) + IC(c2)

Fig. 2 Abstract taxonomy.

3.3 Extending the Intrinsic Information Content

Our model plan to take advantage of the benefits of our pre-
vious work [27], which extends Seco’s intrinsic information
content (IIC). From Seco’s perspective, concepts that are
leaf nodes are the most specific in the taxonomy so the in-
formation they express is maximal. This means it does not
matter how deep is the leaf in the taxonomy. For exam-
ple, in Fig. 2 concepts C2 and C4 should not have the same
IC value, but since they both have the same number of hy-
ponyms under Seco et al. approach they would have equal
values of IC.

Although founded in the same ideas, Menendez and
Ichise [27] extended Seco’s model by considering the depth
of the concept in the taxonomy (depth(c)) as an important
factor. They stand for: “The deeper a concept is found in a
taxonomy means the amount of previous knowledge is larger
and it should bear a higher value of information content”.

We developed IChd, a corpus-independent information
content metric [27], where the hd comes from the uses of the
taxonomic properties number of hyponyms (h) and depth of
the concept (d). However in Eq. (12) we introduced some
slights modifications to our previous work. In this variation
of IChd we added “+1” to the argument of the logarithm in
the enumerator of the fraction to avoid undefined values of
the log function when its argument is 0. To keep the uni-
formity we also increased in one unit the argument of the
logarithm in the denominator of the fraction:

IChd(c)=1−
⎛⎜⎜⎜⎜⎜⎜⎝

log
(
hypo(c)∗

(
maxdepth−depth(c)

)
+1

)
log

(
maxwn ∗ maxdepth+1

)
⎞⎟⎟⎟⎟⎟⎟⎠

(12)

where function hypo(c) returns the number of hyponyms
of a given concept, maxwn is a constant that is set to the
maximum number of concepts in the taxonomy, function
depth(c) returns the depth of a given concept and maxdepth

represents the maximum depth of the corresponding taxon-
omy. When the number of hyponyms of a concept (hypo(c))
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Table 3 Values of the information content for various concepts using
different IC approaches.

concept pos sense hypo depth IC IIC IChd

entity noun 1 74373 2 0.0 0.009 0.018
cock noun 4 1 15 12.16 0.939 0.875
noon noun 1 0 11 11.06 1.0 1.0

decrease, the fraction in the IChd expression tends to 0 and
it moves IChd metric closer to its maximum value, 1. Simi-
lar behavior is observed when the concept is located deeper
into the taxonomy. The difference between the maximum
depth of the corresponding taxonomy and the concept’s
depth (depth(c)) moves closer to 0. When this difference
is closer to 0 the fraction in the IChd expression tends to 0
and it moves IChd metric closer to its maximum value, 1.

Table 3 shows some examples of the information con-
tent value for various concepts using different IC compu-
tation approaches. The columns represent: the concept’s
string, the taxonomy where is located (noun, verb, adj, adv),
the corresponding sense’s number, the total number of hy-
ponyms the concept have in the taxonomy, depth of the con-
cept, the IC value (corpus-dependent), the IIC value (Seco’s
approach) and the IChd value (our approach).

4. Experiments and Results

4.1 Evaluation Procedure and Data

The purpose of the experiments is to prove the hypothesis
that the use of semantics commonalities as well as seman-
tics differences can improve the computation of similarity
between concepts. We also want to test the effectiveness
of the IChd corpora independent information content metric
with node-based similarity measures. In the experiments we
evaluate the new semantic similarity measures and establish
a baseline for comparison of their results with those of their
original versions.

Unfortunately, there is a distinct lack of standards for
evaluating semantic similarities. Which means that the
accuracy of a computational method for evaluating word
similarity can only be established by comparing its results
against human common sense. That is, a method that comes
close to matching human judgments can be deemed accu-
rate.

The Pearson correlation coefficient indicates the
strength of a linear relationship between two variables. Al-
though its value generally does not completely characterize
their relationship, we will use it for comparing the results
of our similarity measures and the human judgments. The
Pearson correlation is +1 in the case of a perfect positive (in-
creasing) linear relationship, −1 in the case of a perfect de-
creasing (negative) linear relationship [28], and some value
between −1 and 1 in all other cases, indicating the degree of
linear dependence between the variables. As it approaches
zero there is less of a relationship. The closer the coefficient
is to either −1 or 1, the stronger the correlation between the
variables. If the variables are independent, Pearson’s corre-

Fig. 3 Algorithm for evaluating the quality of the similarity measures.

lation coefficient is 0, but the converse is not true because
the correlation coefficient detects only linear dependencies
between two variables.

The procedure for evaluating the quality of the devel-
oped similarity measures is described in Fig. 3. In general,
after choosing the dataset of word pairs, we will compute
the similarity between the words using different similarity
measures. To deal with the polysemy property of words,
the similarity for each possible combination of meaning for
each word pair will be computed. And we will keep the
pair of concepts whose similarity is maximal in the previ-
ous step. Each node-based similarity measures will be com-
puted using three different information content metrics (IC,
IIC, IChd). In all the measures the importance of the com-
monalities and the differences will be changed to assess the
best ratio between them.

Some datasets of word pairs are commonly used for
this evaluation. In particular, the Rubenstein and Good-
enough dataset (R&G in the following) and the Miller
and Charles dataset (M&C in the following) are standard
datasets for evaluating semantic similarities.

In 1965, Rubenstein and Goodenough [29] obtained
“synonymy judgments” of word pairs by hiring 51 subjects
to evaluate 65 pairs of nouns. The subjects were asked to as-
sign a similarity from 0 to 4, from “semantically unrelated”
to “highly synonymous”. Miller and Charles [30], 25 years
later, extracted 30 pairs of nouns from the R&G dataset and
repeated their experiment with 38 subjects. The M&C ex-
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Table 4 Parameters used for the corpus-independent IC computation.

Parameter Taxonomy Value
maxwn Noun 82115

Verb 25047
maxdepth Noun 20

Verb 14

periment achieved a correlation of 0.97 with the original
experiment of R&G. Resnik [17], in 1995, replicated the
M&C experiment with 10 computer science students, ob-
taining a correlation of 0.96. Pirró and Seco [24] in 2008
also recreated the R&G experiment this time with 101 sub-
jects, and arrived at a correlation coefficient of 0.972 for the
full dataset.

We used the human judgments of Pirró and Seco ex-
periment [24] for the word pairs of both datasets, the Miller
and Charles dataset (M&C) and the Rubenstein and Goode-
nough dataset (R&G). In M&C dataset we considered only
28 word pairs of the 30 used in the M&C experiment since a
word missing in WordNet 3.0 made it impossible to compute
ratings for the other two word pairs.

All the evaluations were performed using WordNet
3.0 [14] and the Brown Corpus†was used for the calculation
of the corpus-dependent information content metric. For the
computation we used Pedersen’s WordNet::Similarity Perl
module as the core. We also recreated the Pirró and Seco’s
experiment with the Java WordNet Similarity Library [24]
(JWSL) using Pirró and Seco’s intrinsic information content
(IIC), but we did not obtain the same results they did. Proba-
bly due to the selection of the parameters. Table 4 shows the
values we used for the parameters during the computation of
the corpus independent information content metric (IIC and
IChd) for the nouns and verbs WordNet’s sub-taxonomies.

For the each metric we performed two experiments.
The purpose of the first experiment is to check if the seman-
tics differences have a positive effect in the performance of
the measures when they are considered in the computation.
In the second experiment we pursue to narrow the values
for α and β which generate the higher performance of the
semantic similarity measures. In both experiments, for the
node-based measures we also check the effectiveness of the
IChd information content.

In the first experiment we only variate the importance
of the semantic differences’ factor, β, and then we calculate
the correlation of the new metrics’ results with the human
judgments values obtained in [24]. The importance of the
semantic commonalities factor was kept constant (α = 1)
in this experiment, since we wanted to focus on the effect
of semantic differences, but in the second experiment we
do variate the importance of the semantics’ commonalities
as well. In both experiments we used an step of 0.10 for the
variation of α and β. Each of the experiments was conducted
with two different dataset of words’ pairs, the M&C and the
R&G datasets. Table 5 shows the general details for each
experiment.

Table 5 Experiments description.

Experiment α β

Exp. 1 α = 1 β ≥ 0
Exp. 2 α > 0 β ≥ 0

4.2 Results and Discussion

Table 6 compiles the results of Exp. 1 for the edge-based
similarity measures using several values for the differences’
factors for the M&C dataset. Because of space limitation
we did not include in the table all the values of β used to
run the experiment, just the most representative. The sec-
ond column, entitled “Original”, represents the results of
the original measure††, i.e., the previous result. The corre-
lation value for the unmodified functions and when β = 0.0
would be the same if the modified measure considers the
commonalities as in the original metric. This is not the case
for S im′length and S im′lch similarity measures and it is the rea-
son for the difference in the correlation values between the
original function and the modified version when β = 0.0.
But going deeper in the details of the results we can say:

1. S im′length effectiveness improved when the semantic
differences were considered (compared with path-
length and depth of the lcs metrics). The ratio between
the semantic differences and the semantic commonal-
ities

(
β
α
= 0.6

)
was 0.6 which suggests the importance

of the commonalities is higher than the importance of
the differences.

2. S im′wup effectiveness remains the same as its original
version, showing no changes for any value of the se-
mantic differences’ importance, β. The normalization
done for this measure is the reason of the unaltered re-
sults.

3. S im′lch slightly improved its correlation value when
compared with its original expression since their ab-
solute value is closer to 1. The correlation values of
the modified version are negative confirming that our
approach for considering the semantic commonalities
and semantic differences is opposed to the approach
used in the original measure. In S im′lch the semantic
differences were considered a negative element in the
expression while in the original formulation it was con-
sidered a positive element. Highly related or similar
concepts obtained low values while unrelated concepts
obtained high values. From this perspective the mod-
ified version is behaving like a distance rather than a
similarity, therefore we could do the comparison using
the absolute values of the correlation.

For this similarity measure the ratio between the se-
mantic differences and the semantic commonalities
†The Brown University Standard Corpus of Present-Day

American English.
††The original metric have not been modified.
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Table 6 Correlation coefficients obtained for edge-based measures in Exp. 1 using the 28 words’
pairs of M&C dataset.

β

Original 0.0 0.1 0.3 0.6 1.0 2.1 12 15
S im′length 0.8401 0.6673 0.7958 0.8498 0.8571 0.8549 0.8493 0.8421 0.8417
S im′wup 0.7726 0.7726 0.7726 0.7726 0.7726 0.7726 0.7726 0.7726 0.7726
S im′lch 0.8293 −0.7126 −0.7446 −0.7804 −0.8039 −0.8165 −0.8261 −0.8296 −0.8295

Table 7 Correlation coefficients obtained for edge-based measures in Exp. 1 using the 65 words’
pairs of R&G dataset.

β

Original 0.0 0.1 0.3 0.6 1.0 2.1 12 15
S im′length 0.8373 0.4424 0.5974 0.7504 0.8200 0.8420 0.8480 0.8406 0.8400
S im′wup 0.7795 0.7795 0.7795 0.7795 0.7795 0.7795 0.7795 0.7795 0.7795
S im′lch 0.8631 −0.6604 −0.7126 −0.7753 −0.8189 −0.8426 −0.8598 −0.8644 −0.8642

Table 8 Correlation coefficients obtained for node-based measures in Exp. 1 using the 28 words’
pairs of M&C dataset and three different information content metrics.

β

Original 0.0 0.3 0.6 1.0 2.1 2.8 4.5

S im′lin
IC 0.8587 0.8587 0.8587 0.8587 0.8587 0.8587 0.8587 0.8587
IIC 0.8797 0.8797 0.8797 0.8797 0.8797 0.8797 0.8797 0.8797
IChd 0.8821 0.8821 0.8821 0.8821 0.8821 0.8821 0.8821 0.8821

S im′res

IC 0.8308 0.8308 0.8555 0.8624 0.8655 0.8671 0.8672 0.8671
IIC 0.8421 0.8421 0.8740 0.8816 0.8843 0.8846 0.8842 0.8833
IChd 0.8361 0.8361 0.8743 0.8819 0.8835 0.8811 0.8796 0.8773

S im′j&c

IC −0.8660 0.8308 0.8555 0.8624 0.8655 0.8671 0.8672 0.8671
IIC −0.8805 0.8421 0.8740 0.8816 0.8843 0.8846 0.8842 0.8833
IChd −0.8712 0.8361 0.8743 0.8819 0.8835 0.8811 0.8796 0.8773

(
β
α
= 12

)
shows the semantic differences are more im-

portant than the commonalities for the similarity com-
putation process.

Table 7 compiles the results of Exp. 1 for the edge-
based similarity measures using a larger dataset of words’
pairs, the R&G dataset. The general description for Table 6
are also valid in here but let go through the details:

1. S im′length effectiveness improved when the semantic
differences were considered. The ratio between the
semantic differences and the semantic commonalities(
β
α
= 2.1

)
was 2.1 which suggests the importance of the

semantic differences is higher than the importance of
the commonalities when we have a larger dataset like
R&G.

2. Despite the different dataset, the modified expression
of Wu & Palmer (S im′wup) remains the same as its orig-
inal version showing no changes for any value of β.

3. S im′lch slightly improved its correlation value com-
pared to the original version, since their absolute value
is closer to 1, when the semantic differences were
taken into consideration. Again the semantic differ-
ences seem to be more important than the common-
alities.

Table 8 compiles the results of Exp. 1 for the node-
based similarity measures using several differences’ factors

and three different information content metrics: IC, IIC and
IChd for the M&C words’ pairs dataset. Again the column
entitled “Original” represents the results of the original mea-
sure. The correlation value for the unmodified expression
and when β = 0.0 for S im′j&c measure are different because
in S im′j&c the commonalities were not consider as in the
original metric. After a deeper analysis of the results we
can say:

1. S im′lin achieved its highest value when combined with
the IChd metric. But a similar behavior to the one ob-
served for S im′wup was showed by S im′lin which no mat-
ter the value of the importance factors for the semantics
differences, it remains the same as its original version
as result of the normalization.

2. S im′res measure obtained higher values of correlation
than the original expression when the semantic differ-
ences were considered. The results of the measure
when combined with IChd approach overcome the IC
approach while remain as competitive as with the IIC
approach. The ratio between differences and common-
alities changed for IC, IIC and IChd. This similar-
ity measure is an extension of S imP&S . The correla-
tion values for S imP&S using IC, IIC and IChd were
(0.8655, 0.8843 and 0.8835) respectively. So, S im′res
always behaved better than S imP&S with any informa-
tion content criteria.

3. S im′j&c also obtained higher values than its original ex-
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Table 9 Correlation coefficients obtained for node-based measures in Exp. 1 using the 65 words’
pairs of R&G dataset and three different information content metrics.

β

Original 0.0 0.3 0.6 1.0 2.1 2.8 4.5

S im′lin
IC 0.8812 0.8812 0.8812 0.8812 0.8812 0.8812 0.8812 0.8812
IIC 0.8992 0.8992 0.8992 0.8992 0.8992 0.8992 0.8992 0.8992
IChd 0.9007 0.9007 0.9007 0.9007 0.9007 0.9007 0.9007 0.9007

S imP&S

IC 0.8793 0.8793 0.8793 0.8793 0.8793 0.8793 0.8793 0.8793
IIC 0.8944 0.8944 0.8944 0.8944 0.8944 0.8944 0.8944 0.8944
IChd 0.8915 0.8915 0.8915 0.8915 0.8915 0.8915 0.8915 0.8915

S im′j&c

IC −0.8689 0.8677 0.8792 0.8802 0.8792 0.8763 0.8750 0.8732
IIC −0.8848 0.8773 0.8928 0.8949 0.8944 0.8918 0.8907 0.8889
IChd −0.8747 0.8679 0.8903 0.8928 0.8915 0.8867 0.8847 0.8817

Table 10 Maximum values of correlation obtained for S im′length and
S im′lch measures in Exp. 2 for M&C and R&G datasets.

Pairs Correlation Parameters
Dataset Original Max. α β

S im′length M&C 0.8401 0.8571 1.0 0.6
R&G 0.8373 0.8481 0.5 0.9

S im′lch M&C 0.8293 −0.8296 1.0 12
R&G 0.8631 −0.8647 0.3 2.1

pression. The negative value of the original function
is due to the reason that the original expression is a
distance and not a similarity. Since the expression for
S im′j&c is equal to S im′res the rest of the conclusions are
the same as above.

Table 9 compiles the results of Exp. 1 for the node-
based similarity measures using a larger dataset of words’
pairs (R&G):

1. For this larger dataset S im′lin improved its effectiveness
when combined with IChd approach but it was not af-
fected by different importance of the semantic differ-
ences.

2. S im′res measure improved its effectiveness compared
with its original expression when our model is applied.
Again the combination with IChd approach overcome
the IC approach while remain as competitive as with
the IIC approach. For this larger dataset the ratio be-
tween the semantic differences and the semantic com-
monalities showed certain stability

(
β
α
= 0.6

)
, it was

0.6 for all the different information content approaches.
Although this lead us to the idea the commonalities
are more important than the differences. As we al-
ready say this similarity measure is an extension of
S imP&S . The correlation values for S imP&S using IC,
IIC and IChd with R&G dataset were 0.8793, 0.8944
and 0.8915 respectively. So, again S im′res behaved bet-
ter than S imP&S independently of the information con-
tent criteria.

3. S im′j&c achieved better results than its original expres-
sion.

The compilation of Exp. 2 for M&C and R&G datasets
is shown in Table 10 and Table 11. We excluded S im′wup and

Table 11 Maximum values of correlation obtained for S im′res in Exp. 2
using different IC approaches for M&C and R&G datasets.

Pairs IC Correlation Parameters
Dataset Metric Original Max α β

S im′res

M&C
IC 0.8308 0.8672 0.1 0.3
IIC 0.8421 0.8849 0.2 0.3

IChd 0.8361 0.8835 1.0 1.0

R&G
IC 0.8677 0.8803 0.9 0.5
IIC 0.8773 0.8949 0.9 0.6

IChd 0.8679 0.8928 1.0 0.6

S im′lin because α and β have not effect in their performance.
As we showed in Eq. (10), S im′res is an extension of S imP&S

and since its expression is equal to S imj&c their results will
be the same, so we also omitted from the experiment. In the
second experiment we also changed the values of α to obtain
the highest correlation value of the measures.

Table 10 shows the results of Exp. 2 for S im′length and
S im′lch measures from which we can arrive to the following
conclusions:

1. For both datasets S im′length obtained higher values when
our model is applied.

2. After the application of our model the S im′lch slightly
improved its correlation values for both datasets. In
both cases the ratio between the semantic differences
and the semantic commonalities

(
β
α

)
showed higher im-

portance for the semantic differences. This result its
due to the original construction of the function where
the differences had the leading vote.

Table 11 compiles the results of Exp. 2 for S im′res after
the application of our model and when different information
content approaches were applied. From this table we can
arrive to the following conclusions:

1. S im′res always obtained better correlations values than
its original formulation when our model is applied. The
combination of the modified expression with the IChd

approach improved the corpus-dependent metric while
remain as competitive as with IIC metric. For the larger
dataset (R&G) this measure showed some stability in
the ration between the semantic differences and the se-
mantic commonalities, close to the value β

α
= 0.6. This

trend was not observed for the M&C dataset, probably
due to the small number of pairs in the dataset.
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Summarizing the results of Exp. 1 and Exp. 2 we can
state the application of Menendez-Ichise model showed pos-
itive results for the S im′length, S im′lch, S im′j&c and S im′res
measures which obtained higher values of correlation than
their original expressions when the semantic differences be-
tween the concepts were taken into consideration. The use
of the IChd approach for the node-based measures always
showed better results than the corpus-dependent approach
while remaining as competitive as the IIC metric, in the case
of S im′lin it allowed to obtain the highest correlation value.
S im′wup measure remain the same as its original version. All
node-based similarity measures were superior to the edge-
based ones. The experiments also suggested a larger dataset
could be helpful for estimating a ratio of the importance be-
tween the semantic differences and the semantic commonal-
ities.

5. Concluding Remarks and Future Work

In this paper we introduced new ideas in the computation
of WordNet-based semantic similarity measures and we also
extended a corpora independent approach for calculating the
information content of a concept. The five new measures
developed are modifications of traditional WordNet-based
semantic similarity metrics. Supported by a featured-based
theory, they incorporate the idea of semantic differences be-
tween concepts into the similarity computation process. The
experimental results showed that, four of the measures out-
performed their classical while the other measure performed
the same as their classical versions. These results demon-
strate the strengths and positive effects of including concepts
semantic differences and the proposed information content
metric during their semantic similarity computations. The
extended corpora independent approach generated the high-
est value for one of the node-based measure, and in general
it improved the results of the corpus-dependent model while
remained as competitive as the intrinsic information content
approach.

This research focus on WordNet-based semantic sim-
ilarity measures. The studied similarity measures use the
hyponymy relation, also known as the “is-a” relation, for
computing the similarity between two concepts. Despite of
the fact that about 80% of the relationships in the Word-
Net taxonomy are “is-a” relationships, it is a shortcoming of
those measures not to consider other types of relations. The
term “semantic relatedness” refers to several types of lexical
relationships, including hyponymy/ hypernymy, synonymy,
meronymy, antonymy, as well as any other unsystematic re-
lationships, i.e. functional relationships. The application of
our approach to semantic relatedness measures remains as
an open area of research.

As future work, we would like to enlarge the words’
pairs dataset. This could help us to estimate the ratio be-
tween semantic differences and semantic commonalities.
We also would like to apply some machine learning methods
to estimate the best ratio between differences and common-
alities, and finally to apply our developed measures to a real

problem.
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