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A Development of Cascade Granular Neural Networks

Keun-Chang KWAK†a), Member

SUMMARY This paper studies the design of Cascade Granular Neural
Networks (CGNN) for human-centric systems. In contrast to typical rule-
based systems encountered in fuzzy modeling, the proposed method con-
sists of two-phase development for CGNN. First, we construct a Granular
Neural Network (GNN) which could be treated as a preliminary design.
Next, all modeling discrepancies are compensated by a second GNN with
a collection of rules that become attached to the regions of the input space
where the error is localized. These granular networks are constructed by
building a collection of user-centric information granules through Context-
based Fuzzy c-Means (CFCM) clustering. Finally, the experimental results
on two examples reveal that the proposed approach shows good perfor-
mance in comparison with the previous works.
key words: cascade granular neural network, human-centric system,
information granules, context-based fuzzy c-means clustering

1. Introduction

During the past few years, a considerable number of studies
have been conducted on fuzzy logic and Granular Neural
Network (GNN), together with a rapid growth in the vari-
ety of applications [1], [9]–[11]. In spite of this profound
diversity existing in the area, all fuzzy models share a uni-
fied design viewpoint and rely on a single coherent method-
ological platform. On the other hand, GNN introduced in
this paper uses Linguistic Model (LM) of complex systems
consisting of information granules [2]. The purpose of this
network is to reveal associations between fuzzy sets defined
in input and output spaces. Furthermore, this network is de-
signed by using fuzzy information granulation realized via
Context-based Fuzzy c-Means (CFCM) clustering [3]–[7].
This clustering technique builds information granules in the
form of fuzzy sets and develops clusters by preserving the
homogeneity of the clustered patterns associated with the in-
put and output space. In this paper, we develop the concept
of Cascade Granular Neural Networks (CGNN) for human-
centric systems as knowledge-based models. After adopting
a construct of granular network as a preliminary network, all
modeling discrepancies are compensated by a second granu-
lar network that becomes attached to the regions of the input
space where the error is localized. The experimental results
reveal that the proposed method yields a better performance
in comparison with conventional GN, Radial Basis Function
Networks (RBFN) based on CFCM clustering for Boston
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housing data and automobile MPG (miles per gallon) pre-
diction [5], [7].

2. Granular Neural Networks (GNN)

For the design of the GNN, we consider the contexts to
be described by triangular membership functions being dis-
tributed in the output space with the 1/2 overlap occurring
between two successive fuzzy sets. The automatic gener-
ation of linguistic contexts is obtained by the output data
density and probabilistic distribution [8]. We denote those
fuzzy sets by W1, W2, . . . , Wp. Let us recall that each con-
text generates a number of induced clusters whose activation
levels are afterwards summed up as shown in Fig. 1. The
output type of the network denoted by ξ1, ξ2, . . . , ξp is gran-
ular. More specifically, assuming the triangular form of the
contexts, triangular fuzzy number Y is expressed as

E = W1 ⊗ ξ1 ⊕W2 ⊗ ξ2 ⊕ . . .Wn ⊗ ξn (1)

We denote the algebraic operations by ⊗ and ⊕ to empha-
size that the underlying computing operates on a collection
of fuzzy numbers. As such, E is completely characterized
by its three parameters that are the lower, modal value, and
upper bounds as follows

Fig. 1 Architecture of granular neural network.
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ek− =
∑p

t=1
Wp−ξp

ek =
∑p

t=1
Wpξp

ek+ =
∑p

t=1
Wp+ξp (2)

For the k-th data point, xk, we use the explicit notation
E(xk) = <ek−, ek, ek+> which helps emphasize the input-
output relationship. The computations realized by the out-
put neuron in Fig. 1 depend on the underlying formalism of
granular computing realized there. The emergence of the
network structure suggests that we should be able to elim-
inate possible systematic error and this could be easily ac-
complished by augmenting the summation node at the out-
put layer by a numeric bias term w0. This shifts the fuzzy
set of output by the bias value. The bias term is computed
in a straightforward manner so that it eliminates a potential
systematic error

w0 =
1
N

N∑

k=1

(ek − ẽk) (3)

where ẽk denotes a modal value of E produced for given
input xk.

The optimization completed by the CFCM clustering is
realized iteratively by updating the partition matrix and the
prototypes. The update of the partition matrix is completed
as follows [3]

utik =
wtk

c∑

j=1

⎛⎜⎜⎜⎜⎜⎝
‖xk − vi‖∥∥∥xk − v j

∥∥∥

⎞⎟⎟⎟⎟⎟⎠
2

m−1

(4)

where i = 1, 2, . . . , c, k = 1, 2, . . . ,N
The utik represents the element of the partition matrix

induced by the i-th cluster and k-th data in the t-th context.
Here wtk denotes a membership value of the k-th data to the
t-th context. The cluster centers vi are calculated in the form

vi =

N∑

k=1

um
tik xk

N∑

k=1

um
tik

(5)

where the fuzzification factor “m” is generally taken as 2.0.

3. Cascade Granular Neural Networks (CGNN)

In this section, we cover the fundamental concept of the
construction of the GNN with cascade structure. There
are two essential phases: First, we construct a preliminary
GNN which could be treated as a preliminary construction.
Next, all modeling discrepancies are compensated by a sec-
ond GNN with a collection of rules that become attached to
the regions of the input space where the error is localized.
The proposed clustering supporting the design of informa-
tion granules is completed in the space of the input data as-
sociated with the error of the preliminary GNN while the

Fig. 2 The block diagram of cascade granular neural network.

clusters is guided by a collection of some pre-defined fuzzy
sets defined in the space of error. By taking into account
the contexts, the clustering in the input space is focused by
some predefined fuzzy sets of contexts. This helps reveal
the relationships between the regions of the input space and
the associated error and naturally leads to the formation of
some web of connection between the information granules
defined in the error space and constructed in the input space.

The experimental data under discussion are the pairs
of the n-dimensional input-output data sets. They come in
the following form {x(k), target(k)} k = 1, 2, . . . ,N, where
x(k) ∈ Rn and target(k) ∈ R. The enhancement of the net-
work at which the granular part comes into the play is based
on the transformed data {x(k), e(k)} where the residual part
manifests through the expression e(k) = target − z(k) which
denotes the error of the preliminary GNN. In the sequel,
those data pairs are used to develop a second GNN as the
cascade rule-based part of the network. Here this rule-based
augmentation of the second network associates input data
set with the error produced by the preliminary GNN in the
form of the rules “if input then error”. The rules and the in-
formation granules are constructed by means of CFCM clus-
tering. Figure 2 shows the system modeling by combining
preliminary granular network (GNN1) and second granular
network (GNN2).

4. Experimental Results

First, we shall use the Boston Housing data as an example.
This data set concerns prices of real estate in the Boston
area. The MEDV (median value of the price of the house)
depends on 13 continuous attributes and 1 binary attribute.
The data set consists of 506 examples. The training and
testing data set are randomly selected by 60 %–40 % split
in the normalized space between 0 and 1, respectively. The
experiment is performed by 20 iterations.

The training data set is used for model construction,
while the testing set is used for model validation. Thus,
the resultant model is not biased toward the training data
set and it is likely to have a better generalization capacity
to new data. Figure 3 shows the linguistic contexts pro-
duced by probabilistic distribution of localized error. Here,
the error between the actual output and network output in
Fig. 3 is obtained after performing preliminary granular net-
work on training data set. This linguistic context is gen-
erated by histogram, probability density function, and con-
ditional density function in alphabetical order. For further
details on the automatic generation of linguistic contexts,
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Fig. 3 Linguistic contexts obtained by localized error.

see [8]. As shown in Fig. 3, the linguistic contexts are pro-
duced by output error density when p=6. Figure 4 displays
the output of the CGNN and actual output for training and
testing data, respectively. As shown in Fig. 4, it is obvi-
ous that the proposed CGNN has good prediction perfor-
mance. Table 1 lists the RMSE (root mean square error) re-
sults regarding approximation and generalization capability,
respectively. Here Train RMSE and Test RMSE represent
RMSE for training and testing data, respectively.

In the design of GNN, we used six contexts and clusters
(p=c=6) in each context for CFCM clustering. Although the
GNN has a structured knowledge representation in the form
of fuzzy if-then rules, it lacked the adaptability to deal with
nonlinear model as listed in Table 1. Moreover, we con-
structed the RBFN based on six contexts and clusters in the
same manner. Here learning rate is 0.0001 and the num-
ber of epoch is 1000. As listed in Table 1, the experimental
results revealed that the proposed networks yielded a bet-
ter performance in comparison with the GNN and RBFN-
CFCM.

Next, we shall use the well-known automobile MPG
(miles per gallon) data as a nonlinear regression example. In
this example, 6 input variables consist of cylinder number,
displacement, horsepower, weight, acceleration, and model
year. The output variable to be predicted in terms of the
preceding six input variables is the automobile’s fuel con-
sumption in MPG. The data set consists of 392 examples
of different car makes after removing instances with miss-
ing values. In a similar fashion, the training and testing data
set are randomly selected by 60 %–40 % split. The exper-
iment is performed by 20 iterations. Figure 5 and Table 2
represent the experimental results regarding approximation
and generalization capability obtained by training and test-
ing data, respectively. As listed in Table 2, the experimental
results revealed that the proposed approach yielded a better
performance in comparison with the conventional granular
network and RBFN based on context-based fuzzy cluster-
ing.

Fig. 4 Predication performance of CGNN.

Table 1 Performance comparison of the proposed method.

Fig. 5 Predication performance of CGNN.

Table 2 Performance comparison of the proposed method.

5. Conclusions

We have proposed the cascade design methodology of gran-
ular neural network. This methodology is quite different
from the one commonly pursued in the realm of fuzzy mod-
els with the predominant concept of rule-based architec-
tures. One could view this design methodology as a way
of augmenting a preliminary granular neural network by a
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collection of local rule-based models. The experimental re-
sults on two examples revealed that the proposed CGNN
showed a better performance and effectiveness in compar-
ison with the previous literatures. We can recognize that the
well-defined semantics of the information granules used in
system modeling is essential when designing a user-centric
system.
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