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Design and Implementation of a Low-Complexity Reed-Solomon
Decoder for Optical Communication Systems

Ming-Der SHIEH†a), Member and Yung-Kuei LU†, Student Member

SUMMARY A low-complexity Reed-Solomon (RS) decoder design
based on the modified Euclidean (ME) algorithm proposed by Truong
is presented in this paper. Low complexity is achieved by reformulat-
ing Truong’s ME algorithm using the proposed polynomial manipulation
scheme so that a more compact polynomial representation can be derived.
Together with the developed folding scheme and simplified boundary cell,
the resulting design effectively reduces the hardware complexity while
meeting the throughput requirements of optical communication systems.
Experimental results demonstrate that the developed RS(255, 239) decoder,
implemented in the TSMC 0.18 μm process, can operate at up to 425 MHz
and achieve a throughput rate of 3.4 Gbps with a total gate count of 11,759.
Compared to related works, the proposed decoder has the lowest area re-
quirement and the smallest area-time complexity.
key words: channel decoder, modified euclidean algorithm, optical com-
munication, Reed-Solomon codes, VLSI architectures

1. Introduction

Reed-Solomon (RS) codes, which have an excellent capabil-
ity of correcting burst errors, are widely applied in storage
and digital communication systems. In general, a syndrome-
based RS decoder consists of three main blocks: the syn-
drome computation (SC) unit, the key equation solver (KES)
unit, and the Chien search and error evaluation (CSEE) unit.
The SC unit computes the syndrome polynomial from the
received word. The error locator and error evaluator polyno-
mials are then determined by solving the key equation in the
KES unit. The two polynomials are passed to the CSEE unit
to find the error locations and values by using Chien search
and Forney algorithms, respectively. Together with a first-in
first-out (FIFO) buffer that compensates for the accumulated
latency in the three units, the received word is corrected ac-
cording to the computed error locations and values when it
is being read out of the decoder.

Solving the key equation to find the error locator and
error evaluator polynomials is recognized as the most criti-
cal part in the design of RS decoders. Two main decoding
algorithms are commonly adopted to solve the key equa-
tion: the modified Euclidean (ME) algorithms [1]–[7] and
the Berlekamp-Massey (BM) algorithms [8]–[13]. Conven-
tionally, architectures based on the BM algorithm for solv-
ing the key equation have the advantage of low computa-
tional complexity. Compared with the BM algorithm, the
ME algorithm usually leads to a more regular architecture
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with a higher computational complexity and hardware re-
quirement. Recently, Truong et al. presented a fast ME al-
gorithm [2], denoted as the TME algorithm hereafter, which
greatly reduces complexity by eliminating the need for de-
gree computation and comparison.

Since the RS(255,239) code can provide about 5.5 dB
coding gain for error correction and reduce the bit error rate
from 10−4 to 10−15, it is adopted for the submarine fiber-
optic system [14]. To meet the requirements of optical sys-
tems, an RS(255,239) decoder design employing pipelined
multipliers to reduce the critical path delay and parallel ar-
chitecture to obtain a higher throughput rate was presented
in [3]. However, the architecture is not cost-effective and re-
quires a larger number of clock cycles to solve the key equa-
tion. In recent years, three area-efficient folded architectures
developed using the ME algorithm have been presented [4]–
[6]. In [4], Lee employed the pipelined recursive method
to obtain a high throughput rate. The basic idea of the de-
sign in [5] is to use a pre-computation method to eliminate
the idle time of the KES unit; the hardware cost is reduced
by employing folding techniques. Based on Lee’s work, the
authors in [6] removed the need for the degree computation
circuit and shortened the critical path delay.

In this paper, an area-efficient RS decoder is presented
based on the TME algorithm. The decoder can operate at
high data rates with a critical path delay of Tmult+Tff , where
Tmult and Tff denote the delays of the finite-field multiplier
(FFM) and flip-flop, respectively. To reduce hardware com-
plexity, an efficient polynomial manipulation scheme based
on our previous work [20] is presented to remove redundant
information in the polynomial representation of the TME
algorithm. Applying the boundary cell simplification and
folding techniques, the proposed RS(255,239) decoder ob-
tains a 36 % reduction in hardware requirement and has a
better area-time complexity compared to those in [6]. Ex-
perimental results show that the proposed RS(255, 239) de-
coder can operate at up to 425 MHz with a total gate count
of 11,759 based on the TSMC 0.18 μm process.

The rest of this paper is organized as follows. Section 2
reviews the background and defines the notation used in this
work. The proposed architecture is presented in Sect. 3. In
Sect. 4, the performance evaluation is given and a compar-
ison with related studies is made. Finally, conclusions are
given in Sect. 5.

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers
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2. Background and Notation

This section gives a brief review of RS decoding and sum-
marizes the TME algorithm presented in [2], which forms
the basis of this work.

2.1 RS Decoding

A primitive RS(n, k) code is defined over GF(2m), where
n = 2m − 1 and k are the codeword and information lengths,
respectively, with each symbol m bits wide. The error-
correcting capability of RS codes is t = �(n − k)/2�, where
the floor function �x� denotes the greatest integer less than
or equal to x. Let C(x) and R(x) denote the transmitted
codeword polynomial and received word polynomial, re-
spectively. Assume that e errors were induced by channel
noise during transmission, and then we have

R(x) = C(x) + E(x) =
n−1∑

j=0

r jx
j (1)

where E(x) represents the error polynomial. In the decoding
process, the first step is to compute the syndrome:

si = R
(
αm0+i

)
= E
(
αm0+i

)
, 0 ≤ i < 2t, (2)

where α is the primitive element of GF(2m) and m0 is typi-
cally zero or one. If 2t syndromes are all zero, it is assumed
that no errors have occurred. Otherwise, the syndrome poly-
nomial is constructed as:

S (x) =
2t−1∑

i=0

six
i. (3)

Then, the error values and error locations are calculated
by solving the key equation:

Λ(x)S (x) ≡ Ω(x) mod x2t (4)

where the error locator polynomial Λ(x) and error evaluator
polynomial Ω(x) are defined as:

Λ(x) =
e∏

j=1

(
1 − Xjx

)
(5)

Ω(x) =
e∑

i=1

YiX
m0
i

e∏

j=1, j�i

(
1 − Xjx

)
(6)

The inverse of the roots of Λ(x), X1, X2, . . . , Xe,
are called error locators; i.e., if error locations are
xi1 , xi2 , . . . , xie , then X1 = α

i1 , X2 = α
i2 , . . . , Xe = α

ie . Corre-
sponding to these error locations, Y1,Y2, . . . ,Ye in Ω(x) are
the error values. Once Λ(x) and Ω(x) are calculated, the de-
coder can use the Chien search [15], conducted by checking
whether Λ(α− j) = 0 for each 0 ≤ j ≤ n − 1, to find error lo-
cators Xi. Error values can be determined using the Forney
algorithm [16]:

Yi = −
Ω(X−1

i )

Xm0−1
i Λ′(X−1

i )
= − xm0Ω(x)

xΛ′(x)

∣∣∣∣∣∣x = α− j
(7)

where Λ′(x) is the formal derivative of Λ(x). The calcu-
lated error values are subtracted from the corresponding er-
roneous symbols to complete the decoding process.

2.2 TME Algorithm

The proposed architecture is based on the TME algo-
rithm [2]. For completeness, the TME algorithm is briefly
reviewed below. Based on the Euclidean algorithm, Truong
et al. proposed a decoding algorithm that uses the mecha-
nism of the inverse-free BM algorithm [12] to avoid poly-
nomial division and the computation of discrepancy in con-
ventional Euclidean and BM algorithms, respectively. The
TME algorithm is stated as follows:

TME Algorithm
Initialization:

Ω(a)(x) = x2t,Ω(b)(x) = S (x),Λ(a)(x) = 0,Λ(b)(x) = 1,

k = 0, l = 0;

TME.1:

Ω(b)(x) = xΩ(b)(x),Λ(b)(x) = xΛ(b)(x); (8)

Ω(c)(x) = uΩ(a)(x) + vΩ(b)(x) (9)

Λ(c)(x) = uΛ(a)(x) + vΛ(b)(x)

If u � 0 and 2l ≤ k then

Ω(a)(x) = Ω(b)(x),Λ(a)(x) = Λ(b)(x), l = k + 1 − l;

(10)

Ω(b)(x) = Ω(c)(x),Λ(b)(x) = Λ(c)(x); (11)

TME.2:
k = k + 1. If k ≤ 2t − 1, then go to TME.1.

Output: Ω(b)(x),Λ(b)(x).

The variables u and v are the (2t)-th coefficients, i.e.,
leading coefficients, ofΩ(b)(x) andΩ(a)(x), respectively. The
superscripts a/b denote the previous/current states of poly-
nomials. The TME algorithm produces a zero coefficient
at the x2t term of Ω(c)(x) by performing (8) and (9) in each
iteration. Together with the control mechanism of u � 0
and 2l ≤ k in (10), the TME algorithm removes the need
for the degree computation and comparison in conventional
ME algorithms [1]. After 2t iterations, the desired Ω(b)(x)
and Λ(b)(x) are obtained simultaneously, and the results can
be directly used in the Chien search and the Forney algo-
rithm for finding the error locators and the error values [2].

Based on the TME algorithm, Truong et al. presented a
regular KES architecture [7]. This architecture can operate
at high data rates with a critical path delay of Tmult + Tadd +

Tff , where Tadd is the delay of the finite-field adder (FFA).
However, the main drawback of this architecture is its high
hardware requirement of 4t + 2 basic cells for a t-error-
correcting RS code. In the following, we will show how to
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reduce the number of required basic cells in [7] from 4t + 2
to 3t with the proposed polynomial manipulation scheme.

3. Cost-Effective RS Decoder

In the TME algorithm, as the iterations proceed, we observe
that the length of consecutive zero coefficients of Ω(b)(x)
grows incrementally, starting from the constant term. These
zero coefficients can be discarded because they are not used
in later iterations. That is, redundant zero coefficients can
be removed for efficient hardware implementation. More-
over, assume that both the SC and the CSEE units of the
pipelined designs are operated in a serial manner. This im-
plies that 255 clock cycles are needed to complete their tasks
for an RS(255,239) code. In contrast, the KES unit takes
2t = 16 clock cycles to perform the TME algorithm. Com-
pared with the SC and the CSEE units, the KES unit has a
large amount of idle time; therefore, the folding technique
can be employed to improve the utilization of the KES unit.

3.1 SC Unit

The 2t syndromes si computed based on the received word
polynomial R(x) can be derived using Horner’s rule as:

si =
(
. . .
((

rn−1α
i + rn−2

)
αi + rn−3

)
. . .
)
αi + r0, (12)

One register, one constant FFM, one multiplexer, and
one FFA are needed to calculate each syndrome. Figure 1
shows the basic cell and the overall architecture of the SC
unit. At the end of n clock cycles, the 2t syndromes are ob-
tained and then sent into the KES unit for finding Λ(x) and
Ω(x). Note that a constant FFM has much smaller complex-
ity than a full FFM does.

3.2 KES Unit

3.2.1 Proposed Polynomial Manipulation Scheme

To facilitate hardware implementation, it is assumed that ex-
cept the first leading zero coefficient of the polynomials,
the following zero coefficients, if any, are reserved for the
next iteration. That is, only one leading zero coefficient
is removed in each iteration. For example, if Ω(b)(x) =
0x16 + 0x15 + x14 + . . . + αx + α2 is produced by performing
(8), (9), and (11) in the k-th iteration, the degree of Ω(b)(x)

Fig. 1 SC unit and its i-th syndrome cell (Bi).

is regarded as 15 for the next iteration.
Let the notations Ω(x) and Λ(x) denote the error eval-

uator and error locator polynomials in the conventional ME
algorithm [1], respectively, and deg(F(x)) represent the de-
gree of F(x). Note that Ω(x) and Λ(x), respectively, can
be used instead of Ω(x) and Λ(x) defined in (4) to obtain the
error locations and the corresponding error values when per-
forming the Chien search and the Forney algorithm. Before
describing the proposed approach, we first introduce two
features that holds during the iterations of the conventional
ME algorithm: (i) As stated in [17], the sum of deg(Ω(a)(x))
and deg(Λ(b)(x)) remains 2t when performing the conven-
tional ME algorithm; (ii) in study [1], it was shown that the
sum of deg(Ω(a)(x)) and deg(Ω(b)(x)) is 4t − 1 − k at the be-
ginning of iteration k.

Based on features (i) and (ii), we deduce deg(Ω(b)(x))−
deg(Λ(b)(x)) = 2t − 1 − k. Since deg(Ω(b)(x)) = 2t − 1 and
deg(Λ(b)(x)) = k at the beginning of the k-th iteration in
the TME algorithm for 0 ≤ k ≤ 2t, we can further derive
deg(Ω(b)(x)) − deg(Ω(b)(x)) = deg(Λ(b)(x)) − deg(Λ(b)(x)).
This implies that the left-shift operation in (8) has the same
effect on both Ω(b)(x) and Λ(b)(x) during iterations of the
TME algorithm, i.e., Ω(b)(x) = xp(k)Ω(b)(x) and Λ(b)(x) =
xp(k)Λ(b)(x) for p(k) ≥ 0. Thus, Ω(b)(x) consists of p(k) con-
secutive zero coefficients, starting from the constant term,
at the beginning of the k-th iteration. The p(k) terms can
be treated as redundant information, which can be removed
with no information loss. Moreover, deg(Λ(b)(x)) is no more
than t during each iteration because it is a non-decreasing
value and is equal to t at the end of 2t iterations [1]. Since
deg(Λ(b)(x)) = deg(Λ(b)(x)) − p(k) which indicates p(k) ≥
k − t, the number of redundant zero coefficients of Ω(b)(x)
are more than k − t in the k-th iteration. Therefore, the fol-
lowing equation can be derived:

deg(Ω(b)(x)) = deg(Ω(b)(x)) − p(k) ≤ 3t − 1 − k. (13)

Knowing that there are more than k − t consecutive
zero coefficients of Ω(b)(x), a new polynomial Ψ(∗)(x) is de-
fined as the concatenation of the two polynomials Ω(∗)(x)
and Λ(∗)(x):

Ψ(∗)(x) = Ω(∗)(x) · xt+1 + Λ(∗)(x) (14)

The notation Ψ(∗)(x) is used to represent Ψ(a)(x) or Ψ(b)(x)
where appropriate. Since the degree of Λ(b)(x) is equal to
k, the reformulated Eq. (14) ensures that the useful data of
Ω(b)(x), i.e., Ω(x), cannot be overwritten by those of Λ(b)(x)
during iterations. Therefore, the concatenated polynomial
Ψ(x) is enough to find Ω(x) and Λ(x), which is helpful for
reducing the area complexity of the hardware implemen-
tation. Note that the degrees of Ψ(a)(x) and Ψ(b)(x) are
3t + 1 and 3t, respectively, because deg(Ω(a)(x)) = 2t and
deg(Ω(b)(x)) = 2t − 1.

3.2.2 Proposed Folding ME Algorithm

Since the degree of the defined polynomialΨ(x) is restricted
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to 3t + 1, the corresponding architecture can be constructed
using 3t + 2 basic cells. The basic cell design is shown
in Fig. 2, in which Ψi denotes the coefficient at the xi term
of Ψ(x); u and v are the leading coefficients of Ψ(b)(x) and
Ψ(a)(x), respectively. The control signal w is used to deter-
mine the previous state Ψ(a)(x) for the next iteration. Like
the (2t)-th coefficient of Ω(c)(x) in (9), i.e., Ω(c)

2t , the coeffi-
cient Ψ(c)

3t+1 is always reduced to zero; thus, there is no need
to store this value. As a result, the circuit used to update
Ψ

(b)
3t+1 is removed and the basic cell employed for updating
Ψ

(a)
3t+1 can be further simplified and merged into the control

block.
Moreover, from (8)–(11), (14), and the initial setting of

the TME algorithm, the constant term Ψ(a)
0 is always equal

to zero at each iteration, and Ψ(b)
0 remains 0 except for its

initial value. Hence, one register can be used instead of a
basic cell to store and update Ψ(a)

0 and Ψ(b)
0 . As a result, the

number of required basic cells is reduced from 3t + 2 to 3t.
To derive the low-complexity KES architecture for t-

error-correcting RS codes, a folding factor f is chosen and
two variables, g and p such that gf + p = 3t, where p < f
are defined. In this manner, the 3t basic cells can be divided
into either g or g + 1 groups, depending on whether p is
zero. After applying the defined concatenated polynomial
Ψ(x) in (14) and the folding technique, the proposed folding
ME algorithm, denoted as the FME algorithm, is expressed
as:

FME Algorithm
Initialization:
Ψ(a)(x) = x3t+1,Ψ(b)(x) = S (x)xt+1 + 1, k = 0, l = 0;

FME.1:
Ψ(b)(x) = xΨ(b)(x); (15)
For i = 1 to f
/ ∗ h = 0, 1, . . . , g − 1 (if p = 0) or g (if p � 0) ∗ /
Ψ

(c)
hf+i = uΨ(a)

hf+i + vΨ(b)
hf+i; (16)

If u � 0 and 2l ≤ k then
Ψ

(a)
hf+i = Ψ

(b)
hf+i; (17)

Ψ
(b)
hf+i = Ψ

(c)
hf+i; (18)

End
If u � 0 and 2l ≤ k then

Fig. 2 Basic cell of the KES unit.

l = k + 1 − l; (19)
FME.2

k = k + 1. If k ≤ 2t − 1, then go to FME.1.
Output: Ψ(b)

i for t ≤ i ≤ 3t.

In the FME algorithm, the variables u and v denote the lead-
ing coefficients Ψ(b)

3t+1 and Ψ(a)
3t+1, respectively. At the end of

the FME algorithm, the coefficients of the output Ψ(b)
i for

t ≤ i ≤ 2t and 2t + 1 ≤ i ≤ 3t, respectively, represent the
desired error locator and error evaluator polynomials, which
are the same as the useful information of Λ(b)(x) and Ω(b)(x)
derived from the TME algorithm. The implementation of
an area-efficient design based on the developed approach is
described below.

3.2.3 Low-Complexity KES Architecture

The architecture designed using the proposed FME algo-
rithm is referred to as the FME architecture. For the tar-
geted RS(255,239) code, the number of basic cells required
is 3t = 24. We choose f = 12 to get an area-efficient so-
lution for the RS(255,239) decoders. Figure 3 shows the
proposed folded architecture with its initial values indicated
in the folded basic cells (FBC). The architecture consists of
2 FBC cells. Each FBC cell is derived by folding 12 identi-
cal basic cells so that the 12 pairs of registers in each FBC
cell share the same arithmetic resources. In Fig. 3, six addi-
tional registers, denoted as Dj for 0 ≤ j ≤ 5, are employed
to reduce the critical path delay, and the signal SEL is in-
troduced to control the folded dataflow. The critical path
delay of the FME architecture is equal to Tmult, as indicated
in Fig. 3. Note that in the first cycle of each iteration, SEL is
set to 1 to transfer data between two FBC cells.

In each iteration, (12+2) clock cycles are needed to
complete the operations. After 16 iterations, the coefficients
of Ω(b)(x) and Λ(b)(x) are simultaneously obtained. There-
fore, the total number of clock cycles needed to calculate
Ω(b)(x) and Λ(b)(x) is 16 × (12 + 2) = 224. Since the cycle
number is lower than those of the SC and CSEE units, the
increased number of cycles resulting from adopting the fold-
ing scheme does not lead to performance degradation. As a
result, the FME architecture can efficiently handle the data
flow and operate at high speeds with a great hardware re-
duction as compared to conventional parallel architectures.

3.3 CSEE Unit

After obtaining the error locator polynomialΛ(x) and the er-
ror evaluator polynomial Ω(x) from the KES unit, the Chien
search is used to find the error locations by checking for a
result of Λ(α− j) = 0 for j = 0, 1, . . . , 254. The Forney algo-
rithm can then be used to evaluate the corresponding error
values. Figure 4 shows the overall structure of the CSEE
unit and its basic cell design. Since xΛ′(x) in (7) is equal to
the sum of the terms with odd degree in Λ(x), its value can
be evaluated by summing these odd-degree terms of Λ(x) at
x = α− j. In our design, Ω(x) and Λ(x), respectively, can
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Fig. 3 Proposed FME architecture for targeted RS(255,239) decoder.

Fig. 4 CSEE unit and its basic cell.

be used instead of Ω(x) and Λ(x) in (7) to calculate the er-
ror values. The control signal Ctrl Even is used to choose
the odd-degree terms of Λ(x). When the number of errors
e is even, Ctrl Even is set to 1; otherwise Ctrl Even = 0.
The inversion block in Fig. 4 can be realized with a ROM
table that has a shorter delay than that of a FFM. Note that
deg(Λ(x)) and deg(Ω(x)) are t and t − 1, respectively, and
the two polynomials can be represented asΛ(x) = βxt−eΛ(x)
andΩ(x) = βxt−eΩ(x) for e ≤ t, where β is a constant; more-
over, the value of m0 in (7) is set to 0.

3.4 Hardware Utilization

Figure 5 depicts the overall architecture of the proposed RS
decoder, in which the first-in first-out (FIFO) is employed
to compensate for the delays of the three main blocks. As
mentioned previously, both the SC and the CSEE units of the

Fig. 5 Proposed RS decoder.

Fig. 6 Pipelining strategy with the FME architecture.

pipelined design are operated in a serial manner. Thus, they
take 255 clock cycles to complete their tasks for the targeted
RS(255,239) decoder. Since the total number of clock cy-
cles spent in the proposed KES unit is 224, which is less than
codeword length 255, a 3-stage pipelined scheme with exe-
cution time of 255 clock cycles per stage are adopted. This
implies that there is no throughput degradation in the pro-
posed FME architecture. Figure 6 shows the timing relation-
ship among the three units of the decoder. Compared with
the architectures derived based on the conventional ME [1]
or the TME [2] algorithms, the idle time of the developed
KES unit is greatly reduced from 239 to 31 clock cycles.
This means that the hardware utilization of the proposed de-
coder is improved by the pipelining strategy. The proposed
decoder also has a low area requirement. The total latency
of the proposed RS decoder is 255 + 224 + 5 = 484 clock
cycles, in which the extra 5 cycles are introduced by the
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pipelined registers used to shorten the critical path delay in
the CSEE unit.

4. Experimental Results and Comparisons

4.1 Post-Layout Simulation Results

Using the proposed FME architecture, a low-complexity
RS(255,239) decoder was coded in the Verilog hardware de-
scription language and synthesized using the Design Com-
piler from Synopsys. The post-layout simulation shows
that the proposed design can operate at up to 425 MHz
with a total gate count of 11,759 when implemented in the
TSMC 0.18 μm technology. The layout view of the pro-
posed RS(255,239) decoder designed with the FIFO buffer
for storing input symbols is shown in Fig. 7. The decoder
has a core size of about 0.63 mm × 0.63 mm.

4.2 Complexity Analysis of the KES Unit

To verify the effectiveness of the proposed design, we em-
ployed the cell library information in [18] to analyze the
resulting area and time complexities of the various KES de-
signs for targeted RS(255,239) codes. For simplicity, the
cell delay and area requirement of each cell are normalized
with respect to those of the 2-input NAND gate as given in

Fig. 7 Layout view of the proposed RS decoder.

Table 1 Normalized delay and area of employed standard cells.

Table 2 Comparison of hardware complexity, critical path delay, and latency of KES unit for
RS(255,239) decoders.

Table 1. The compiled results including the area-time (AT)
complexity and improvement are shown in Table 2. We de-
fine the AT complexity as the product of the area complexity
(AC) and the time complexity (TC), i.e., AT = AC×TC. The
AT improvement is defined as (AT2 −AT1)/AT2, where AT2

and AT1 denote the AT complexity of the related work and
ours, respectively.

For a fair comparison, we used the same kind of FFM,
as presented in [3], for each design. The 3-stage pipelined
FFM and 2-stage FFM, respectively, need extra 23 and 15
pipelined flip-flops. The critical path delay and the area re-
quirement of the non-pipelined FFM, employed in the pro-
posed architecture, can be estimated as Tmult = Tand2+5Txor2

and Amult = 64Aand2 + 77Axor2, respectively. Note that the
widths of FFAs, registers, and multiplexers listed in Table 2
are 8 bits. Excluding the control block, the proposed FME
architecture consists of 4 FFMs, 2 FFAs, 60 registers, and 4
multiplexers. In Table 2, although the designs in [3], [4], and
[6] have better TC than ours because of the use of pipelined
multipliers, the proposed FME architecture has the lowest
AC and the smallest AT complexity. Compared with de-
sign in [5], ours has small AC and TC, respectively, because
fewer registers are required for storing the coefficients of
updated polynomials and a shorter critical path delay exists
in the proposed design. The design in [6] takes 260 clock
cycles for solving the key equation. This implies that the
performance of the decoder is degraded because the decod-
ing delay of the KES unit is more than 255. Note that the
symbol Txor2 represents the delay time of a 2-input XOR
gate, which is the same as the delay time of FFA.

4.3 Comparison with Related Works

Table 3 lists the performances of various RS(255,239) de-
coder designs. To consider the scaling effect of fabrication

Table 3 Performance comparison with various RS(255,239) decoders.
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technology, we adopt the definition of technology scaled
normalized throughput rate (TSNT) in [5] as

TSNT= (Throughput rate) × (Tech./90 nm)/# of Gates.

As can be seen from the table, the proposed design
has the best TSNT. Although the designs in [3], [4], and [6]
have higher throughput rates than that of the proposed de-
coder, they have much higher hardware cost because they
use pipelined multipliers to reduce the critical path delay.
From Table 3, the proposed RS decoder with the FME ar-
chitecture can work at a higher speed and has lower hard-
ware requirements than those of our pervious design in [20].
Compared with the design in [6], the proposed design re-
duces the hardware requirement by about 36 %. Moreover,
the throughput rate of design in [6] is indeed decreased due
to the reasons mentioned above. Note that the comparison of
the total gate counts of decoders was conducted by exclud-
ing the effect of the FIFO employed to buffer the received
input symbols.

4.4 High-Throughput Optical Communication Systems

Based on the proposed RS decoder, we can easily construct
a 4-way parallel RS decoder to reach a throughput rate of
4 × 3.4 = 13.6 Gbps. This high-throughput RS decoder will
have high-speed and area-efficient advantages than that pre-
sented in [5] to meet the demand for optical communication
applications with throughput rates beyond 10 Gbps.

The targeted design in this work is an area-efficient
RS(255,239) decoder which is good enough for constructing
a 4-way parallel architecture to meet the requirements of op-
tical communication systems. Therefore, the employment of
pipelined multipliers was not considered in the current de-
sign. If higher throughput rates are required, the proposed
FME architecture can employ the pipelined multipliers, as
used in [6], to shorten its critical path delay. The proposed
RS decoder with pipelined multipliers possesses a higher
throughput rate than that of the design in [6] when operated
at the same clock rate because the required computation cy-
cles of the KES unit in [6] are more than 255, which results
in performance degradation. The proposed design also has
lower hardware requirements.

5. Conclusion

This paper presented a low-complexity RS(255,239) de-
coder design based on the proposed FME architecture for
optical communication systems. We showed how to refor-
mulate the TME algorithm to derive a more compact poly-
nomial representation so that a significant reduction in hard-
ware complexity can be obtained for VLSI implementation.
Then, an efficient folded architecture was developed to fur-
ther reduce the hardware requirement of the targeted RS
decoder design without sacrificing its throughput. Exper-
imental results demonstrate that the proposed decoder has
the lowest area and AT complexity as compared to those of

related studies. Moreover, the high-speed structure and sim-
ple control scheme of the proposed design make it suitable
for high-performance implementations. The proposed RS
decoder is thus a cost-effective solution for optical commu-
nications applications.

Acknowledgments

This work was supported in part by the National Science
Council of R.O.C. under contract NSC 96-2221-E-006-296.
Parts of this work have been presented in international sym-
posium on circuits and systems [19].

References

[1] H.M. Shao, T.K. Truong, L.J. Deutsch, J.H. Yuen, and I.S. Reed,
“A VLSI design of a pipeline Reed-Solomon decoder,” IEEE Trans.
Comput., vol.C-34, no.5, pp.393–402, May 1985.

[2] T.K. Truong, J.H. Jeng, and T.C. Cheng, “A new decoding algorithm
for correcting both erasures and errors of Reed-Solomon codes,”
IEEE Trans. Commun., vol.51, no.3, pp.381–388, March 2003.

[3] H. Lee, “High-speed VLSI architecture for parallel Reed-Solomon
decoder,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.11,
no.2, pp.288–294, April 2003.

[4] H. Lee, “A high-speed low-complexity Reed-Solomon decoder for
optical communications,” IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol.52, no.8, pp.461–465, Aug. 2005.

[5] H.Y. Hsu, A.Y. Wu, and J.C. Yeo, “Area-efficient VLSI design of
Reed-Solomon decoder for 10GBase-LX4 optical communication
systems,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.43, no.4,
pp.1019–1027, Nov. 2006.

[6] B. Yuan, Z.F. Wang, L. Li, M.L. Gao, J. Sha, and C. Zhang,
“Area-efficient Reed-Solomon decoder design for optical commu-
nications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.56, no.6,
pp.469–473, June 2009.

[7] Y.W. Chang, T.K. Truong, and J.H. Jeng, “VLSI architecture of
modified Euclidean algorithm for Reed-Solomon code,” Elsevier J.
Inform. Sciences, vol.155, no.1-2, pp.139–150, May 2003.

[8] J.L. Massey, “Shift-register synthesis and BCH decoding,” IEEE
Trans. Inform. Theory, vol.IT-15, no.1, pp.122–127, Jan. 1969.

[9] A. Raghupathy and K.J.R. Liu, “Algorithm-based low-power/high-
speed Reed-Solomon decoder design,” IEEE Trans. Circuits Syst.
II, Analog Dig. Signal Process., vol.41, no.11, pp.1254–1270, Nov.
2000.

[10] H.C. Chang, C.B. Shung, and C.Y. Lee, “ A Reed-Solomon product-
code (RS-PC) decoder chip for DVD applications,” IEEE J. Solid-
State Circuits, vol.36, no.2, pp.229–238, Feb. 2001.

[11] T. Park, “Design of the (248,216) Reed-Solomon decoder with era-
sure correction for Blu-ray disc,” IEEE Trans. Consumer Electron-
ics, vol.51, no.3, pp.872–878, Aug. 2005.

[12] I.S. Reed, M.T. Shih, and T.K. Truong, “VLSI design of inverse-free
Berlekamp-Massey algorithm,” IEE Proc.-E, vol.138, no.5, pp.295–
298, Sept. 1991.

[13] M.D. Shieh, Y.K. Lu, S.M. Chung, and J.H. Chen, “Design and im-
plementation of efficient Reed-Solomon decoders for multi-mode
applications,” Proc. IEEE Int. Symp. Circuits Syst. (ISCAS’2006),
pp.289–292, Kos, Greece, May 2006.

[14] Telecommunication Standardization Section, International Telecom.
Union, “Forward error correction for submarine systems,” ITU,
ITU-T Recommendation G.975, Geneva, Switzerland, Oct. 2000.

[15] S.B. Wicker and V.K. Bhargava, Reed-Solomon Codes and Their
Applications, IEEE Press, New York, 1994.

[16] G. Jr. Forney, “On decoding BCH codes,” IEEE Trans. Inf. Theory,
vol.IT-11, no.4, pp.549–557, Oct. 1965.



1564
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.8 AUGUST 2011

[17] R.J. McEliece, The Theory of Information and Coding: A Math-
ematical Framework for Communication, Addison-Wesley, MA,
1977.

[18] Artisan Components, TSMC 0.18-μm Process 1.8-Volt SAGE-XTM

Standard Cell Library Databook, Sunnyvale, CA, 2003.
[19] Y.K. Lu, M.D. Shieh, and C.M. Wu, “Low-complexity Reed-

Solomon decoder for optical communications,” Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS’2010), pp.4173–4176, Paris, France,
May 2010.

[20] Y.K. Lu and M.D. Shieh, “High-speed low-complexity architecture
for Reed-Solomon decoder,” IEICE Trans. Inf. Syst., vol.E93-D,
no.7, pp.1824–1831, July 2010.

Ming-Der Shieh received the B.S. degree
in electrical engineering from National Cheng
Kung University, in 1984, the M.S. degree
in electronic engineering from National Chiao
Tung University, Taiwan, in 1986, and the Ph.D.
degree in electrical engineering from Michigan
State University, East Lansing, in 1993. From
1988 to 1989, he was an engineer at United
Microelectronic Corporation, Taiwan. From
1993 to 2002, he was with the faculty of De-
partment of Electronic Engineering, National

Yunlin University of Science & Technology. He received the teaching
award in 1998 and was the department chairman from 1999 to 2002. Since
2002, he has been with the Department of Electrical Engineering, National
Cheng Kung University, where he is currently a professor. His research
interests include VLSI design and testing, VLSI for signal processing, and
digital communication. He was the program co-chair and general co-chair
of Asian Test Symposium in 2004 and 2009, respectively, and the chair
of Tainan Chapter of IEEE Circuits and Systems from 2009 to 2010. He
is now the associate editor of IEEE Transaction on Circuits and Systems:
Part I.

Yung-Kuei Lu received the B.S.
and M.S. degree in electrical engineering
from National Cheng Kung University,
Taiwan, in 2000 and 2005 respectively. He is
pursuing his Ph.D. degree in National Cheng
Kung University, Taiwan, since 2005. His re-
search interests include VLSI implementation in
digital signal processing architectures and error
control coding.


