
1602
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.8 AUGUST 2011

PAPER

A Memory Efficient Result Cache Scheme for P2P DHT Based on
Bloom Filters∗

Takahiro ARIYOSHI†, Nonmember and Satoshi FUJITA†a), Member

SUMMARY In this paper, we study the problem of efficient processing
of conjunctive queries in Peer-to-Peer systems based on Distributed Hash
Tables (P2P DHT, for short). The basic idea of our approach is to cache
the search result for the queries submitted in the past, and to use them
to improve the performance of succeeding query processing. More con-
cretely, we propose to adopt Bloom filters as a concrete implementation of
such a result cache rather than a list of items used in many conventional
schemes. By taking such an approach, the cache size for each conjunctive
query becomes as small as the size of each file index. The performance of
the proposed scheme is evaluated by simulation. The result of simulation
indicates that the proposed scheme is particularly effective when the size
of available memory in each peer is bounded by a small value, and when
the number of peers is 100, it reduces the amount of data transmissions of
previous schemes by 75%.
key words: peer-to-peer, Distributed Hash Table, conjunctive query, bloom
filter

1. Introduction

Efficient search of shared resources is a key issue in large
distributed systems such as computational grid and Peer-to-
Peer (P2P) systems. In the literature, a number of schemes
have been proposed to solve such distributed file search
problem, and among such schemes, information manage-
ment based on the notion of Distributed Hash Table (DHT)
has attracted considerable attentions in the past decade.

A P2P overlay based on DHT is commonly referred to
as P2P DHT, and a number of concrete P2P DHT’s have
been proposed in the literature, such as Chord [7], CAN [4],
Patry [6], and Tapestry [8]. As will be explained later, by us-
ing a mechanism provided by the original DHT, the search
of files associated with a keyword could be efficiently real-
ized in P2P DHT. However, if we want to find files associ-
ated with multiple keywords, the requester of such (conjunc-
tive) queries must conduct a search for each keyword con-
tained in the query, and must take an intersection of those
results after collecting all of those search results from their
corresponding peers. In addition, the amount of search re-

Manuscript received November 4, 2010.
Manuscript revised February 25, 2011.
†The authors are with the Department of Information Engi-

neering, Graduate School of Engineering, Hiroshima University,
Higashihiroshima-shi, 739–8527 Japan.

∗Earlier versions of this paper were presented at T. Ariyoshi
and S. Fujita, “Efficient Processing of Queries with Multiple Key-
words in P2P DHT with Limited Memory,” In Proc. PDPTA 2010,
pp.51–55, July 2010, and T. Ariyoshi and S. Fujita, “Efficient Pro-
cessing of Conjunctive Queries in P2P DHTs Using Bloom Filter,”
In Proc. ISPA 2010, pp.458–464, September 2010.

a) E-mail: fujita@se.hiroshima-u.ac.jp
DOI: 10.1587/transinf.E94.D.1602

sult for a conjunction of keywords is generally much smaller
than the search result for each keyword, which implies that
we could significantly improve the performance of such a
naive scheme with respect to the response time and the
amount of message transmissions by designing an appro-
priate query processing scheme dedicated for conjunctive
queries.

In this paper, we study the problem of efficient pro-
cessing of conjunctive queries in P2P DHT. The basic idea
of our approach is to cache the search result for conjunc-
tions of the keywords processed in the past, and to use them
to improve the performance of succeeding query process-
ing. Such a cache is generally referred to as result cache [1]
and has been widely used in the field of database systems.
Here, the reader should note that there is a “freedom” in
designing concrete result cache in actual environment, and
we have to select an appropriate one according to the given
environment such as CPU power, memory size, communi-
cation bandwidth, and so on. For example, a file index used
in P2P DHT generally contains a unique ID of the file, name
and the IP address of the file holder, and several keywords
associated with the content of the file. If each index has a
size of 1 KB, we should prepare 1 MB of memory to store
1000 indices. Thus, if we use a caching scheme which stores
the search result for conjunctive queries in the form of an
index list consisting of 1000 indices on average, it requires
1 GB to store 1000 lists (i.e., 1000 conjunctions) per peer.
This value is apparently too large to ask to each user to ded-
icate space to the system, in such systems supported by the
volunteers as in P2P.

This paper proposes a new implementation of result
cache for P2P DHT with a limited capacity of the cache
memory. In order to attain a sufficiently high hit rate to the
result cache in such resource-restricted P2P DHTs, we need
to bound the cache size required for each conjunction as
small as possible. In conventional result cache schemes [3],
[5], a list of indices is cached for each query (and for each
sub-query), which consumes a large amount of storage, in
the worst case. To overcome such drawback of conven-
tional approaches, in this paper, we propose to use Bloom
filters [2] as a concrete implementation of the result cache.
By taking such an approach, the cache size for each query
becomes as small as the size of each file index, although
it (slightly) increases the frequency of the accesses to the
DHT due to false positiveness of Bloom filters (details of
the scheme will be given later). The performance of the
proposed scheme is evaluated by simulation. The result of

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

ARIYOSHI and FUJITA: A MEMORY EFFICIENT RESULT CACHE SCHEME FOR P2P DHT BASED ON BLOOM FILTERS
1603

simulation indicates that the proposed scheme is particularly
effective when the size of memory available in each peer for
the result cache is bounded by a small value, and it reduces
the amount of data transmissions of previous schemes by
36.6%.

The remainder of this paper is organized as follows.
Section 2 describes a model of P2P DHT. Section 3 de-
scribes a basic caching scheme. The proposed method is
given in Sect. 4. The simulation result is summarized in
Sect. 5. Section 6 overviews related work. Finally, Sect. 7
concludes the paper with future work.

2. Model

Consider a P2P system consisting of a set of peers P. In the
following, we assume that the set of peers is fixed, and peers
in P have a homogeneous capability including the mem-
ory capacity and the network bandwidth. Peers in P can
directly communicate with each other through an underly-
ing network protocol. Each peer holds several files. Each
file is attached a unique ID, and is associated with several
keywords representing the content of the file.

The basic idea of DHT is described as follows. At first,
consider a virtual coordinate space which will be partitioned
into several subspaces such that each subspace is managed
by each peer participating in P. Index of each file, i.e., the
name and the IP address of the file holder, is stored at a co-
ordinate point in the space which is calculated by applying
an appropriate hash function to the file ID and/or a keyword
associated with the file. Access to the stored information is
realized by forwarding a message to the peer managing the
point in the coordinate space. Such a message forwarding is
realized by repeating message transmissions among nearby
peers towards the direction in which the distance to the des-
tination point is minimized, where nearby peers are those
which manage subspaces adjacent in the whole coordinate
space.

In this paper, we consider conjunctive queries consist-
ing of several keywords. A conjunction of keywords is de-
noted as Q and R, and in the following, we will often iden-
tify a conjunctive query with a set of keywords contained in
it. As was described above, in conventional P2P DHT, in-
dex of a file associated with a keyword is mapped to a point
in the DHT, and is stored to the local storage of a peer who
manages the point.

3. Basic Scheme

This section describes a basic scheme to process conjunc-
tive queries in P2P DHT, which will be used in the proposed
scheme as a building block. The basic idea of the scheme
is to cache the search result for a given conjunctive query to
the DHT including partial results obtained through the pro-
cessing. More concretely, after obtaining a set of indices S
matching a given query Q, it stores the following informa-
tion to the DHT: 1) a string representing Q, 2) index set S ,
and 3) the name and the IP address of a peer holding S . The

point in the DHT to which the above information is stored is
calculated by applying a hash function to string Q, similar
to conventional DHT.

An outline of the procedure is described as follows (a
formal description the procedure will be given later): At
first, a requester checks whether or not an index to the search
result for Q is cached in the DHT. If it is cached, the re-
quester simply acquires the search result from the point,
and terminates the processing. Otherwise, it checks whether
there exists a subset Q′ of Q such that the search result for
Q′ is cached in the DHT, and if there exists such a subset,
the requester calculates the result for Q by referring to the
result for such subsets.

3.1 Notation

In order to formally describe the above idea, in the follow-
ing, we introduce two functions Size and Sub. Function
Size takes a conjunction R as a parameter, and returns the
number of indices matching R if the result for R is cached in
the DHT, and returns null otherwise. The reader should note
that function Size is easily realized by allowing each peer
to store the number of indices matching a conjunction to the
DHT when it stores the result for the conjunction. Function
Sub takes conjunction R as a parameter, and returns a set of
sub-conjunctions of R, denoted by Ψ (⊆ 2R), satisfying the
following two conditions:

• ⋃R′∈Ψ R′ = R, and
• for any element a ∈ R, Ψ contains a singleton set {a}.

The first condition requests that R is covered by Sub-
conjunctions contained in Sub(R). By this condition, it is
guaranteed that we can calculate the search result for R by
acquiring the set of indices matching R′ for each R′ ∈ Ψ
from the DHT (if any), and by taking an intersection of
them. The second condition ensures that the above proce-
dure works well even when the search result for conjunc-
tions of length two or more is not cached in the DHT (note
that if the set of indices matching conjunction {a} is not
stored in the DHT, it implies that there are no files matching
keyword a). In the simulation given in Sect. 5, we fix Sub
such that: 1) keywords in R are arranged in a lexicographical
order, and 2) Sub(R) contains all conjunctions correspond-
ing to the prefixes of the ordered sequence.

3.2 Algorithm

Let Q be a given query. By using the above two functions,
the basic scheme can be described as follows:

Algorithm BASIC CACHE

1. {When the result for entire Q is cached }
If Size(Q) � null, then acquire the search result for Q
from the DHT, and terminate (dynamic update of files
will be considered later).

2. { Calculation of set Ψ }

1604
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.8 AUGUST 2011

Fig. 1 Example 1.

Calculate Size(Q′) for each Q′ ∈ Sub(Q) and con-
struct a set of sub-conjunctions Ψ(⊆ Sub(Q)) consist-
ing of Q′’s whose search result is cached in the DHT.
If
⋃

Q′∈Ψ Q′ � Q, then output ∅ as the search result, and
terminate. Otherwise, proceed to the next step after ini-
tializing X and Ψ∗ to ∅.

3. { Calculation of set Ψ∗ }
Repeat the following operations until X becomes Q: 1)
Select Q′ with a smallest Size in Ψ, and move it from
Ψ to Ψ∗; 2) Update X as X := X ∪ Q′; and 3) If Ψ
contains Q′′ such that Q′′ ⊆ X, then remove it from Ψ.

4. { Calculation of the search result }
For each Q′ ∈ Ψ∗, acquire the search result for Q′ from
the DHT, and take their intersection. It then outputs the
result of intersection as the search result for Q.

5. { Cache of the search result }
Cache all partial results obtained during the process-
ing of Q to the DHT, with their corresponding sub-
conjunctions. Each peer participating in the DHT man-
ages such cached information by the LRU (Least Re-
cently Used) policy. That is, when the cache of a new
conjunction causes an excess of the limit of the cache,
then it expires a conjunction which is least recently ac-
cessed.

Note that Ψ∗ obtained in Step 3 satisfies
⋃

Q′∈Ψ∗ Q′ = Q
similar to Sub(Q) as long as the search result for Q is not
empty. In addition, set Ψ∗ is constructed in such a way that
the number of indices matching each conjunction in Ψ∗ is as
small as possible. By evaluating keywords in Q in the order
such that the amount of partial result is as small as possible,
we can reduce the amount of data transmissions.

Example 1: Let Q = {a, b, c, d, e} and Size(Q) = null
(Step 1). Suppose that we have a set of sub-conjunctions
Ψ, represented as follows (see Fig. 1 for illustration):

Ψ = {{a, c}, {b, c, d}, {c, d}, {a}, {b}, {c}, {d}, {e}},
and that the size of each conjunction is calculated as follows
(Step 2):

8, 4, 6, 20, 20, 30, 30, 40.

Since {b, c, d} is the smallest, we move it from Ψ to Ψ∗, and
update X as X := {b, c, d}. As a result, Ψ contains several
elements included by X. By removing them, Ψ is updated
as Ψ := {{a, c}, {a}, {e}}. By repeating similar operations, we
obtain Ψ∗ as follows (Step 3):

Ψ∗ = {{b, c, d}, {a, c}, {e}}.
We then cache the search result for {a, c, e}, {a, b, c, d},
{b, c, d, e}, and {a, b, c, d, e}, and terminate.

4. Proposed Method

BASIC CACHE works effectively provided that the cache
size of each peer is sufficiently large, since the search re-
sults will always be cached in the DHT, and the hit ratio to
the result cache monotonically increases as increasing the
elapsed time, unless expiration occurs. Unfortunately, each
cache has a fixed size, and we cannot avoid expiration of
cached data, which repeats the processing of the same query
to increase the amount of transmitted data. In order to over-
come such a problem, in this paper, we propose a new imple-
mentation of the result cache based on the notion of Bloom
filter [2].

In the following, after providing a brief review of the
Bloom filter, we describe the way of utilizing the Bloom
filter for the query processing. We then describe how to
apply the Bloom filter to the basic scheme described in the
last section.

4.1 Bloom Filter

Let S be an arbitrary subset of a universe U. The basic idea
of Bloom filter is to represent the containment of each ele-
ment in U to S by using a bit array B of length m (|U |),
where we will refer to B as the Bloom filter concerned with
subset S . Association of S to B is realized through k dif-
ferent hash functions h1, h2, . . . , hk from U to {1, 2, . . . ,m}.
More concretely, the record of an element z ∈ S to B is re-
alized by letting B[h j(z)] := 1 for each 1 ≤ j ≤ k, where
all bits in B are initialized to zero. On the other hand, the
containment of z to S is evaluated as follows:

Judge z ∈ S iff B[h j(z)] = 1 for all 1 ≤ j ≤ k.

By definition, such a judge involves a false positiveness, i.e.,
it may misjudge “y ∈ S ” even if it is not actually contained
in S (note that misjudge in the reverse direction does not
occur). It is known that the probability of such a misjudge
depends on parameters m, k, and the cardinality of subset
S [2]. In general usage of Bloom filter, such a probability
is requested to be as small as possible, and it is generally
selected such that the length of B is sufficiently large.

4.2 Bloom Filter as a Simple Index Filter

We can effectively use Bloom filters to reduce unneces-
sary data transmissions in P2P DHT (without using BA-
SIC CACHE) in the following manner. Recall that each file

ARIYOSHI and FUJITA: A MEMORY EFFICIENT RESULT CACHE SCHEME FOR P2P DHT BASED ON BLOOM FILTERS
1605

Fig. 2 Algorithm SIMPLE FILTER.

held by each peer is attached a unique ID. Let S be a set
of file indices which match a given conjunctive query Q.
By preparing a Bloom filter BQ corresponding to query Q,
and by recording indices contained in S to BQ, each peer
can avoid to transmit indices which do not match Q, with-
out conducting an actual processing of the conjunctive query
(in the following, we will call such indices which match a
certain keyword in Q but does not match the whole Q, as
“unnecessary” indices). More concretely, by distributing bit
sequence BQ to all peers managing the indices concerned
with keyword contained in Q, it can reduce the amount of
indices transmitted by the peer when this query is issued in
the next time. In other words, such a BQ could be regarded
as a “result cache” which represents the search result for Q
by using a bit array of length m.

The above idea is realized by the following algorithm
(see Fig. 2 for illustration):

Algorithm SIMPLE FILTER

1. Let Q = {w1,w2, . . . ,wx} be a conjunctive query issued
by a requester. The requester sends Q to peers manag-
ing file indices matching wi for each 1 ≤ i ≤ x (arrow
(1) in Fig. 2).

2. After receiving Q, a peer who manages indices match-
ing wi, conducts the following operation:

a. Let S i be the set of indices associated with key-
word wi.

b. If it has a Bloom filter BQ concerned with query
Q, then it applies BQ to S i to eliminate indices
which have no possibility of matching Q, and re-
turns the result to the requester (item (2) in Fig. 2).

c. Otherwise, if it has BQ′ concerned with a conjunc-
tion Q′ ⊂ Q, then it applies all such Bloom filters
to S i to obtain an index set. It then returns the
result to the requester. Here, the reader should
note that the false positiveness of Bloom filters
does not violate the correctness of the overall al-
gorithm; i.e., it never removes an index matching
Q although it may pass several indices which do

not match Q.
d. Otherwise, it simply returns S i to the requester.

3. After receiving all results, the requester takes an in-
tersection of them, and obtains the search result S for
query Q (item (3) in Fig. 2). If BQ does not exist, then it
generates BQ from S , and multicasts it to all peers man-
aging file indices concerned with a keyword contained
in Q.

4. The set of Bloom filters held by each peer is maintained
by using the LRU policy.

With this method, the amount of message transmis-
sions could be significantly reduced if the given query has
been issued in the past (as will be described later, we can at-
tain a sufficient reduction of data transmission even if the
size of BQ is bounded by 1 KB). In addition, since this
scheme checks the existence of Bloom filters for each sub-
conjunction of the given query (Step 2c), it would be effec-
tive even when the current query has not been issued in the
past.

4.3 Proposed Algorithm

This subsection describes the proposed algorithm. The idea
of the proposed algorithm is to reduce the number of in-
dices transferred to the requester in the basic scheme (i.e.,
Step 4 in BASIC CACHE) by using Bloom filters as in
SIMPLE FILTER. Concrete procedure is described as fol-
lows (the reader should note that different from schemes de-
scribed in previous subsections, the following scheme takes
into account the dynamic change of files, i.e., addition of
new indices and removal of existing indices. Such a differ-
ence does not affect the simulation result given in the next
section, since we will not consider such a dynamic case in
the simulation).

Algorithm FILTER CACHE

• Let Q = {w1,w2, . . . ,wx} be a conjunctive query is-
sued by a requester. Steps 1 to 3 are the same with
the basic scheme. Thus, we have a set of conjunctions
Ψ∗ (⊆ Sub(Q)) after Step 3. Here, note that the value
of Size(R) means the number of indices matching con-
junction R at the time of the last search for R, which
is generally smaller than the number of indices which
will pass through Bloom filter BR concerned with R.
• For each R ∈ Ψ∗, it calculates a set of indices match-

ing R by using a method similar to SIMPLE FILTER.
More concretely, it executes the following operation:
1) for each wi ∈ Q, obtain a set of conjunctions in
Ψ∗ containing keyword wi. 2) send the resulting set of
conjunctions to the peer p managing wi, 3) after receiv-
ing it, p eliminates redundant indices in S i by applying
Bloom filters corresponding to the received conjunc-
tions, 4) after taking a union of the resultant set with
the set of indices which is newly added to the system
after generating Bloom filter used in the above process,
and returns the result to the requester.

1606
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.8 AUGUST 2011

• After receiving all results, the requester takes an inter-
section of them, and obtains the search result S for Q.

Note that by taking a union with indices added after the gen-
eration of the current Bloom filters, it attains an adaption to
the dynamic change of the files (files removed after gener-
ating the Bloom filters do not affect the correctness of the
scheme, since they do not pass the Bloom filters).

5. Experiment

5.1 Setup

We evaluated the performance of the proposed scheme by
simulation. In order to eliminate the effect of the difference
of DHT implementations, in the following, we assume that
the hash table is a one-dimensional space, and is divided
into sub-spaces of an equal size, where each sub-space is
assigned to a given set of peers in one-to-one manner. The
number of peers is varied from 100 to 1600. The goodness
of schemes is evaluated in terms of the number of queries
actually submitted to the network and the amount of data
transmitted during the query processing. Note that the num-
ber of queries reflects the search time (e.g., if we should
submit 10 queries to the DHT to process a given conjunctive
query, it is 10 times worse than the case in which a single
query is enough to acquire the search result), and the amount
of transmitted data reflects the traffic over the P2P overlay.

Each peer has 10 files, each of which is associated with
at most 10 keywords. Keywords are selected from 1000
candidates according to the Zipf’s first law, where each file
is associated with 3.5 keywords, on average. We assume
that each index or a Bloom filter occupies a unit of mem-
ory, where a memory unit corresponds to 1 KB in this ex-
periment, and we will use the number of available mem-
ory units in each peer as a parameter. Each query is gener-
ated according to a Bernoulli trial with stopping probabil-
ity 0.2 ≤ p ≤ 0.5, and each keyword contained in a query
is selected according to the Zipf’s law with Zipf parameter
2.0. As was described previously, function Sub is fixed such
that: 1) keywords in R are arranged in a lexicographical or-
der, and 2) Sub(R) contains all conjunctions corresponding
to the prefixes of the ordered sequence. Finally, for com-
parison, we used the following two methods as the com-
petitors; i.e., result-caching scheme proposed by Kobatake
et al. [3] and a query processing scheme proposed by Vah-
dat [5], which will be referred to as KOB and VAH, respec-
tively (an outline of those schemes will be given in Sect. 6).

5.2 Number of Queries

At first, we evaluate the average number of queries issued
to the DHT during the processing of a conjunctive query.
In the experiment, we fix the number of peers to 100, the
memory size of each peer to 300 units, the total number of
keywords to 1000, and the stopping probability of Bernoulli
trial to 0.4 (in the following, parameters are determined as

Table 1 Average number of query submissions (|P| = 100).

Schemes Average query length
3.03 3.51 4.41 6.00

BASIC CACHE 28.72 141.64 586.44 1332.12
SIMPLE FILTER 1.25 1.24 1.23 1.22
FILTER CACHE 14.28 97.39 368.54 1060.52
KOB 1.62 1.53 1.63 1.73
VAH 1.43 1.52 1.63 1.71

Fig. 3 Impact of memory capacity to the amount of data transmissions.

above, unless otherwise stated).
The result is shown in Table 1. As shown in the ta-

ble, schemes BASIC CACHE and FILTER CACHE trans-
mit much more queries than the other schemes. In fact, 1)
the number of queries under KOB is bounded by a small
value due to the effect of Bloom filter used to keep the set
of conjunctions cached in the DHT (see Sect. 6 for the de-
tails), and 2) the number of queries under SIMPLE FILTER
and VAH is smaller than the number of keywords contained
in a query, which is because of the effect of “terminating”
the evaluation before checking all keywords contained in
a conjunction if it becomes apparent that there are no files
matching the given query. Such a badness of the proposed
schemes in terms of the number of transmitted queries could
be improved by combining it with the Kobatabe’s scheme
although it consumes a large amount of cache space.

5.3 Amount of Data Transmissions

Next, we evaluate the amount of data transmissions per
query. In the following, we fix the number of hash func-
tions used in Bloom filters to 10 (recall that this parameter
affects the false positiveness of Bloom filters).

5.3.1 Impact of Memory Capacity

We evaluate the impact of the memory capacity to the
amount of data transmissions. The result is shown in Fig. 3.
Each color corresponds to a given memory size, e.g., “300”
indicates that the memory size is 300 units. From the fig-
ure, we can find that the amount of data transmissions in

ARIYOSHI and FUJITA: A MEMORY EFFICIENT RESULT CACHE SCHEME FOR P2P DHT BASED ON BLOOM FILTERS
1607

Fig. 4 Amount of data transmissions for |P| = 100.

BASIC CACHE decreases as increasing the memory size of
each peer, which is apparently because of the reduction of
the frequency of expirations of cached data. However, when
the cache capacity reduces to 300 units (=300 KB), FIL-
TER CACHE beats the other schemes, because of frequent
expiration of cached data in previous list-based schemes
such as BASIC CACHE and KOB. Such a frequent expira-
tion causes a re-evaluation of conjunctions by spending a
number of (redundant) data transmissions, which enhances
the difference between those two schemes.

5.3.2 Query Length

In general, the effect of result cache depends on the length of
given conjunctive queries. Thus, as the next step, we eval-
uate the impact of the average query length to the amount
of data transmissions by varying the stop probability of
Bernoulli trial from 0.2 to 0.5. (The other parameters are
the same with previous experiments.) The result is shown in
Fig. 4. Each color corresponds to the average query length,
e.g., “3.03” indicates that we used a Bernoulli trial such that
the average query length is 3.03.

The amount of data transmissions decreases as in-
creasing the query length except for BASIC CACHE and
SIMPLE FILTER. On average, FILTER CACHE reduces the
amount of data transmissions of KOB by 75% and that of
VAH by 80%. Although the improvement from BASIC and
SIMPLE is not very large, it still reduces the amount of BA-
SIC by 45% and that of SIMPLE by 15%. A reason of
such phenomena is that as increasing the number of key-
words contained in a query, the number of files matching
the query becomes small. The amount of data transmission
for BASIC CACHE is smaller than that for KOB, which is
because of the effect of function Size which tries to select
sub-conjunctions in such a way that the amount of resultant
data transmissions becomes as small as possible.

(a) |P| = 400.

(b) |P| = 800.

(c) |P| = 1600.

Fig. 5 Scalability of the schemes.

5.3.3 Scalability

We conducted experiments to evaluate the scalability of
the schemes. The number of peers is varied from 100 to
1600. The result is summarized in Fig. 5 (the basic set-

1608
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.8 AUGUST 2011

ting is the same with Fig. 4). We can see from the fig-
ure that the superiority of the proposed schemes does not
change even by increasing the number of peers. For exam-
ple, SIMPLE FILTER reduces the amount of data transmis-
sions of the basic scheme by 49.7% in the best case, and FIL-
TER CACHE improves SIMPLE FILTER by 20.4% in the
best case. Another observation we can make from the figure
is that the difference between the basic scheme with KOB re-
duces as increasing the number of peers, which is probably
because an increase of the number of peers also increases
the number of files matching a given query, which increases
the number of conjunctions which cannot be cached with a
limited cache memory.

In summary, the proposed scheme is particularly effec-
tive to reduce the amount of data transmissions in P2P DHTs
with local storage of limited capacity. Such a superiority
does not change even if the number of peers in the P2P in-
creases. As for the number of queries, the badness of the
proposed schemes can be overcome by combining it with
Kobatake’s scheme.

6. Related Work

This section overviews previous techniques to realize an ef-
ficient processing of conjunctive queries in P2P DHT.

An extension of the hash function to the function from
the set of keywords to the hash table was originally proposed
by Reynolds and Vahdat [5]. This method is referred to as
the reversed DHT method in the literature. Bhattacharjee et
al. [1] proposed a data structure called view tree to support
an efficient processing of conjunctive queries in P2P DHT.
View tree realizes a result cache on P2P DHT, and efficiently
supports the processing of conjunctive queries by maintain-
ing cached conjunctions in a tree-structured overlay network
in a hierarchical manner. More concretely, each vertex in the
tree keeps the search result for a conjunctive query similar
to our proposed method. The tree is maintained in such a
way that the parent vertex corresponds to a conjuction that
is a “prefix” of the conjunction corresponding to a child ver-
tex. When a conjunctive query is submitted to a view tree, it
first examines if the result for the query is cached in the tree
by conduncting a tree traversal in a depth first manner. If it
is cached, the requester obtains the search result by simply
accessing to the corresponding vertex, and otherwise, the
requester inserts a new vertex corresponding to the query to
the view tree after obtaining the search result for the query.

Reynolds and Vahdat proposed a way to use Bloom fil-
ter to compress the data transmitted between peers while
processing conjunctive queries [5]. SIMPLE FILTER pro-
posed in Sect. 4 is an extension of this scheme. In contrast to
our scheme, in their scheme, a recording of file IDs match-
ing a keyword contained in a given query is conducted by
each peer holding such indices while conducting a conjunc-
tive search, and in addition, it does not cache the result of
conjunctive queries, i.e., Bloom filter is used merely as a
tool to transfer a set of indices to the next peer during the
processing of cunjunctive queries.

Kobatake et al. proposed another approach to reduce
the cost required for the processing of conjunctive queries.
In their scheme, a set of indices matching several keywords
is cached as in the view tree, and to reduce the time required
to find an appropriate conjunction which can be used to pro-
cess the currently given query, it records the ID of peer hold-
ing the result for such conjunction to a Bloom filter and cir-
culates it. Such a circulation among all peers is conducted
efficiently by using a tree-structured overlay.

7. Concluding Remarks

In this paper, we proposed a new implementation of result-
cache for P2P DHT. The simulation result indicates that the
proposed scheme is particularly effective when the memory
size is bounded by a small value, and when the number of
peers is 100, it reduces the amount of data transmissions of
previous schemes by 75% on average. As a future work,
we should extend the proposed scheme to a dynamic envi-
ronment in which peers dynamically join and leave, and we
should improve the performance of the scheme by consider-
ing the combination of caching scheme and the file search
scheme.

References

[1] B. Bhattacharjee, S. Chawathe, V. Gopalakrishnan, P. Keleher, and B.
Silaghi, “Efficient peer-to-peer searches using result-caching,” Proc.
IPTPS 2003, pp.225–236, Feb. 2003.

[2] B. Bloom, “Space/time trade-offs in hash coding with allowable er-
rors,” CACM, pp.422–426, July 1970.

[3] K. Kobatake, S. Tagashira, and S. Fujita, “A new caching technique
to support conjunctive queries in P2P DHT,” IEICE Trans. Inf. &
Syst., vol.E91-D, no.4, pp.1023–1031, April 2008.

[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” Proc. SIGCOMM, pp.161–
172. Aug. 2001.

[5] P. Reynolds and A. Vahdat, “Efficient peer-to-peer keyword search-
ing,” Proc. International Middleware Conference, pp.21–40, June
2003.

[6] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized ob-
ject location and routing for large-scale peer-to-peer systems,” Proc.
IFIP/ACM International Conference on Distributed Systems Plat-
forms (Middleware), pp.329–350, Nov. 2001.

[7] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” Proc. SIGCOMM, pp.149–160, Aug. 2001.

[8] B. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An infrastructure
for fault-tolerant wide-area location and routing,” Technical Report,
UCB/CSD-01-1141, April 2000.

ARIYOSHI and FUJITA: A MEMORY EFFICIENT RESULT CACHE SCHEME FOR P2P DHT BASED ON BLOOM FILTERS
1609

Takahiro Ariyoshi received the B.E. degree
in electrical engineering and M.E. degree in in-
formation engineering from Hiroshima Univer-
sity in 2008 and 2010, respectively. His research
interests include resource management in dis-
tributed systems.

Satoshi Fujita received the B.E. degree
in electrical engineering, M.E. degree in sys-
tems engineering, and Dr.E. degree in informa-
tion engineering from Hiroshima University in
1985, 1987, and 1990, respectively. He is a
Professor at Graduate School of Engineering,
Hiroshima University. His research interests in-
clude communication algorithms, parallel algo-
rithms, graph algorithms, and parallel computer
systems. He is a member of the Information
Processing Society of Japan, SIAM Japan, IEEE

Computer Society, and SIAM.

